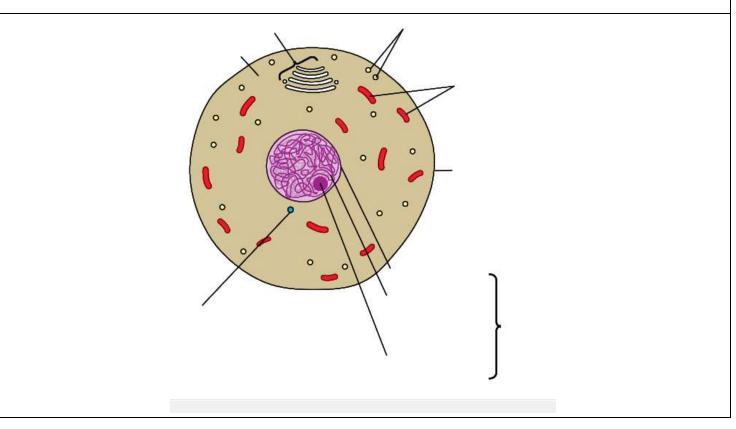
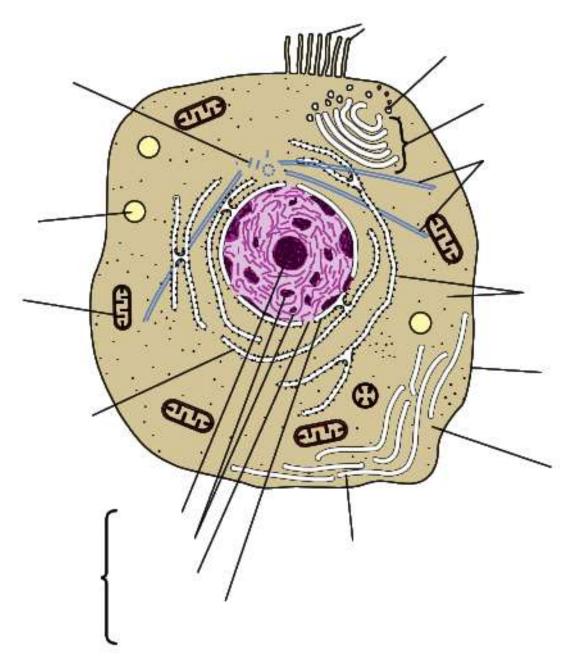

Cell structure and function

- \geq Cells are the basic units of structure and function of all living things.
- ≻ Most cells are very small, and their structures can only be seen by using a microscope.
- Define a cell
- ۶ Types of cells
 - Prokaryote 0
 - Eukaryote 0
- ≻ Label missing parts of a prokaryote cell



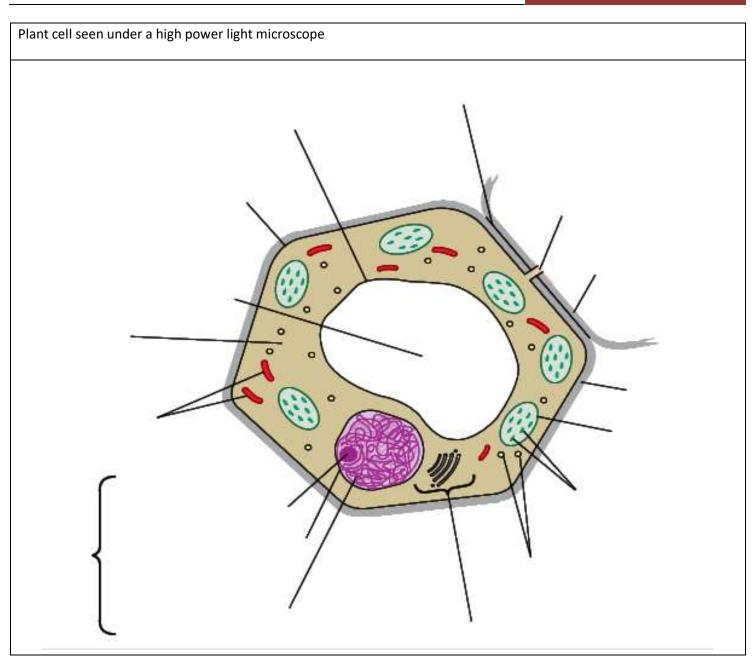
 \triangleright State the process of cell division in prokaryotes

Eukaryote

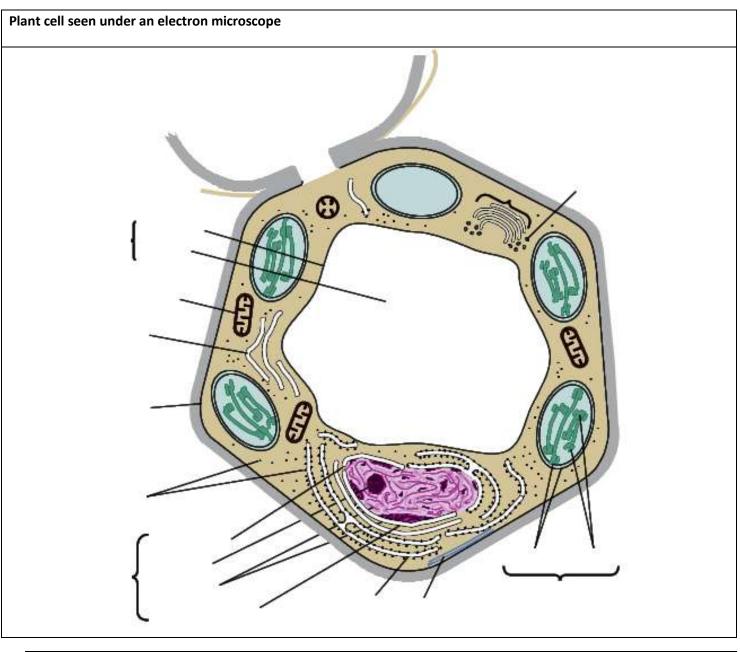

There are many types of eukaryote cells				
C	Animal cell			
C	D Plant cell			
C	> Yeast			
C	> Algae			

Animal cell seen under light microscope

\triangleright	Size of an animal cell		
\triangleright	Name structures not seen under light microscope		
\triangleright	Label the different parts of an animal cell seen under a high power light microscope		
\triangleright	Name structures seen a prokaryote but not in an animal cell		
\triangleright	If actual size of this cell is 20um, calculate the magnification of this cell		


Animal cell seen under an electron microscope

\succ	Label parts of an animal cell				
≻	Name the structure not seen under a high power light microscope				
≻	State a role of each structure of an animal cell				
		• Cell surface membrane			
	 Cytoplasm 				
		• Nucleus			
	• Mitochondrion				


0	Golgi bodie	S
---	-------------	---

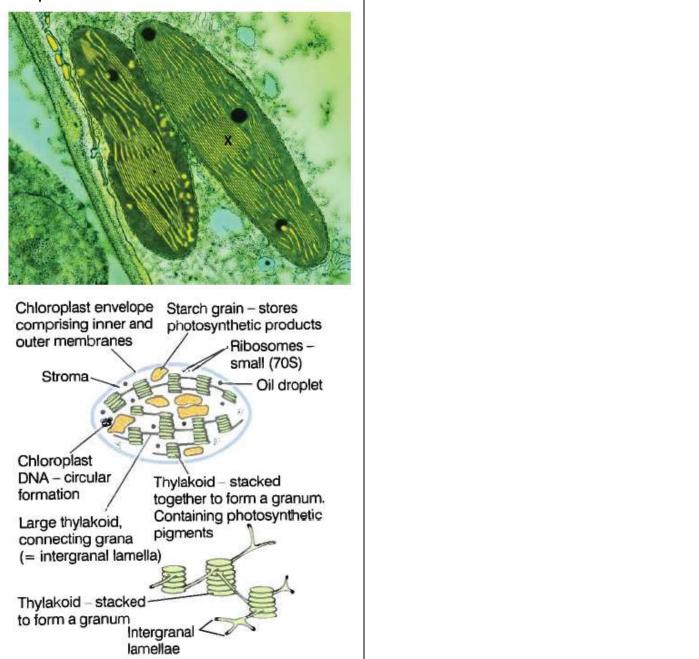
- Golgi vesicles
- o RER,
- o SER
- o Lysosome
- Centrioles
- o Ribosomes
- o Microvilli
- o Cytoskeleton

≻	Size of a plant cell		
≻	Label parts of a plant cell seen under a high power light microscope		
≻	Name structures of a plant cell not seen under a light microscope		
≻	State	a role of each	
	0	Cell wall	
	0	Chloroplast	
	0	Sap vacuole	

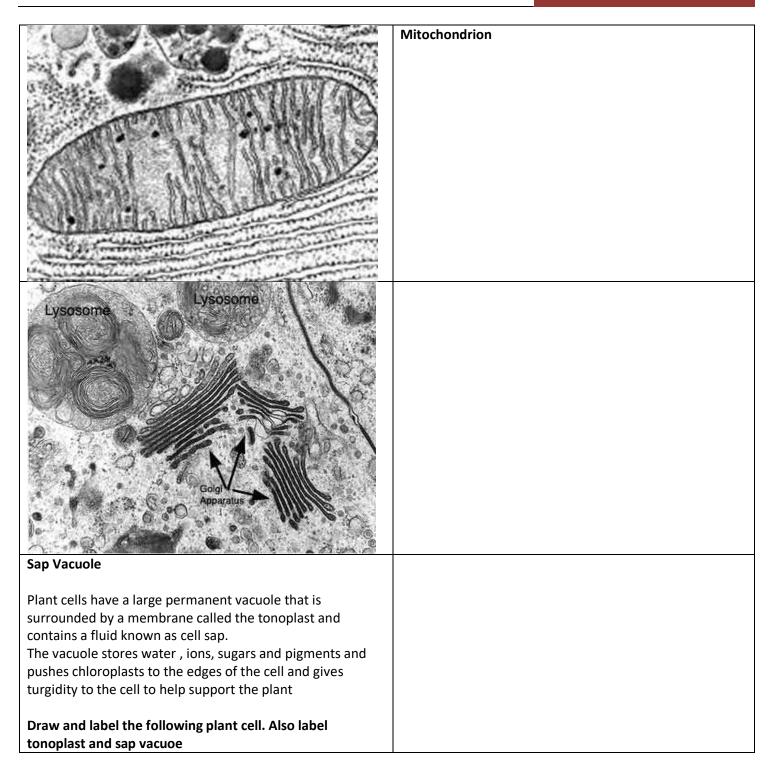
Calculate the magnification of this plant cell if actual size has been 40 um

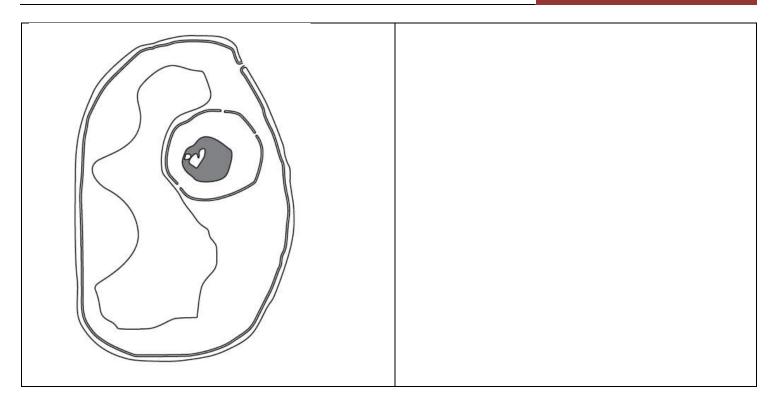
[Pick the date]

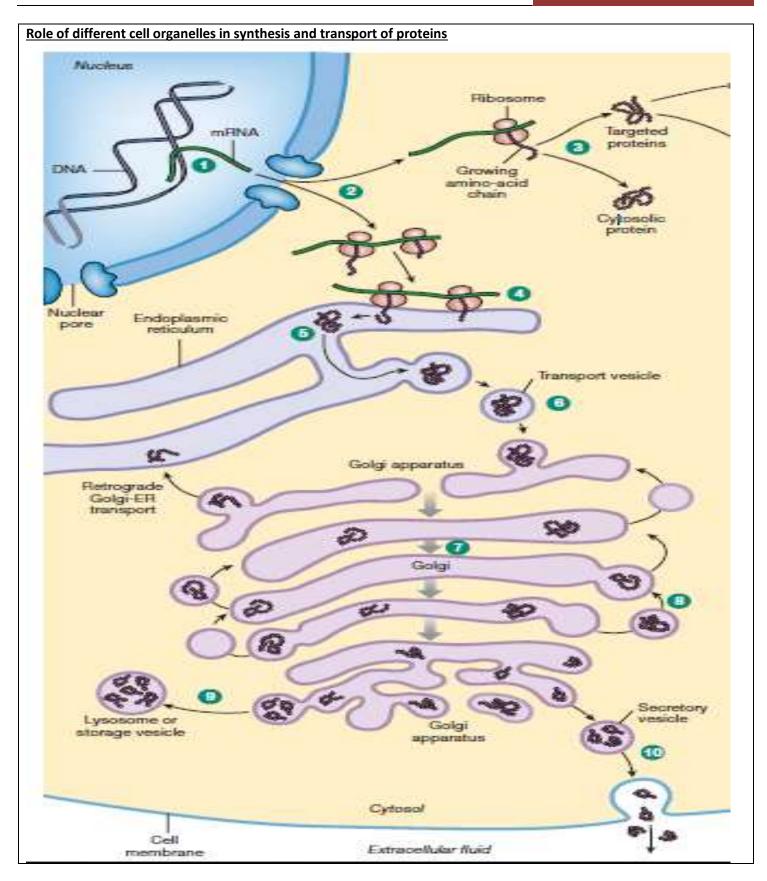
> Label parts of a plant cell seen under an electron microscope


		-
Feature	Prokaryote	Eukaryote
Organism		
Size		
Form		
Cell wall		
Cell organelles		
Chromosomes		
Protein synthesis		
Cell division		
Flagalla		
Flagella		
Respiration		
Photosynthesis		
Nitrogen fixation		

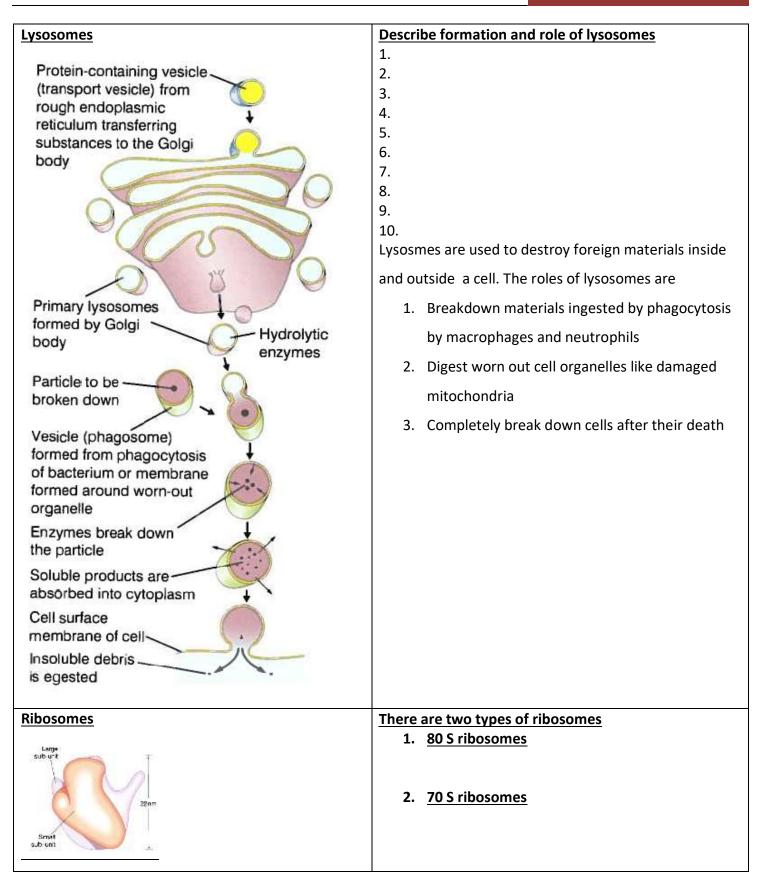
Differences between prokaryotes and Eukaryotes


Components of a cell Cell component Redraw and Describe structure and function Cell membrane Cell wall Cell wall A rigid cell wall surrounding the cell consisting of cellulose microfibril running through a matrix of other complex polysaccharides. May be secondarily thickened in some ntercellular cells by lignin or other substances. airspace Middle lamella cell surface Thin layer of pectic substances ie. Calcium and membrane magnesium pectate. Plasmodesmata middle A fine cytoplasmic thread linking the cytoplasm of two lamella naeghbouring cells through fine pores in their cell walls. The pore is lined with the cell surface membrane and has a central tubular core, often associated with ER asmodesma Detail of plasmodesma ER tubular CON **Nucleus**


[Pick the date]



[Pick the date]



Describe the role of nucleus, endoplasmic reticullum, ribosomes and	golgi bodies in synthesis and transport of proteins.
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10	
Centrioles	
	Describe structure and Role of centrioles
6 } dimer 5 nm	
dimers can reversibly appearance in	
dimers can reversibly appearance in attach to a microtubule cross section	

Microvilli	

[AS LEVEL BIOLOGY] [Pick the date]

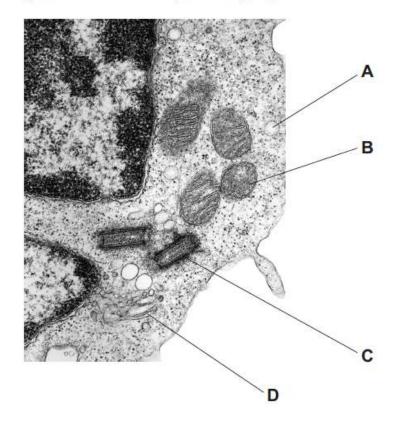
Cell component	Size	Functions	Found in
Cell wall	2um	Fully permeable. Prevents cells from bursting	Plant cell
Cell membrane	7nm	Partially permeableBothControls movement of substances into and outof cells. Prevents mixing	
Nucleus	7um	Controls cellular activities like proteins synthesis and cell division	Both
Nucleolus	2.5um	Synthesis of ribosomes	Both
Cytoplasm		Cellular reactions take place	Both
Endoplasmic reticulum	0.2um Each cistern	R.E.R Synthesis and transport of proteins S.E.R synthesis of lipids and detoxification	Both
Golgi bodies	7 nm Each cisterna	Sorting, assembling, and sorting of proteins Both	
Chloroplast	4um	Trap light energy convert into chemical energyPlant cellsie ATP synthesis and synthesis of sugars	
Mitochondria	3um	Synthesis of ATP during respiration Both	
Secretory vesicles	3um Vary in size	Contains substances to exported out of cells Both	
Lysosomes	1.0um	Contain hydrolytic enzymes Animal cells Autolysis Phagocytosis apoptosis	
Centrioles	200 nm dia 500 nm length	organise microtubules Animal cells spindle formation help in cell division	
ribosomes	18nm 22nm	Synthesis of proteins	Both

Inside a cell, a damaged mitochondrion can be surrounded and enclosed by a membrane to form a vesicle.

What happens after the fusion of a lysosome with the vesicle?

- A ATP production by the mitochondrion increases.
- **B** Enzymes from the lysosome repair the mitochondrion.
- **C** Hydrolytic enzymes catalyse the breakdown of the mitochondrion.
- **D** The mitochondrion is released from the cell by exocytosis.

Complete the following table of componenets of cells


Structure	Description of structure	Function
Cell surface membrane	Trilaminar appearance A central pale layer(Layer) sandwitched inbetween two dark layerslayer)	Partially permeable controls movement of substances into and out of a cell
Nucleus	size cell organelle. Enclosed by an envelop of membranes that is perforated by It contains which is extended form taken by during in the cell cycle. It contains a (a small darkly stained region)	Chromosomes contain, the molecule of inheritance, DNA is organized into which control all the activities of the cell. DNA is the basis of cell division and hence reproduction. The nucleolus manufactures Nuclear pores allow movent of substances, ,, into the nucleus and movement of substances, out of the nucleus
Endoplasmic reticulum	Consists of a system of single membrane bound flattened sacs or tubules called, , which lies continuously with outer membrane of the nucleus.	, out of the nucleus If are found attached on outer surface of cisternae, then it is called endoplasmic reticulum and that transports proteins made by the, SER ,() ER is without and produces lipids and steroids.
Ribosomes		
Mitochondria		
Golgi bodies		

Lysosomes	
Cell wall	
Middle lamella	
Plasmodesmata	
Chlanaplast	
Chloroplast	

Large central vacuole Sap vacuole	
San vacuole	
Sup vacuoic	
Centrioles	

The electron micrograph shows part of a eukaryotic cell.

Which of the labelled organelles is a site of protein synthesis?

Differences between a plant and an animal cell

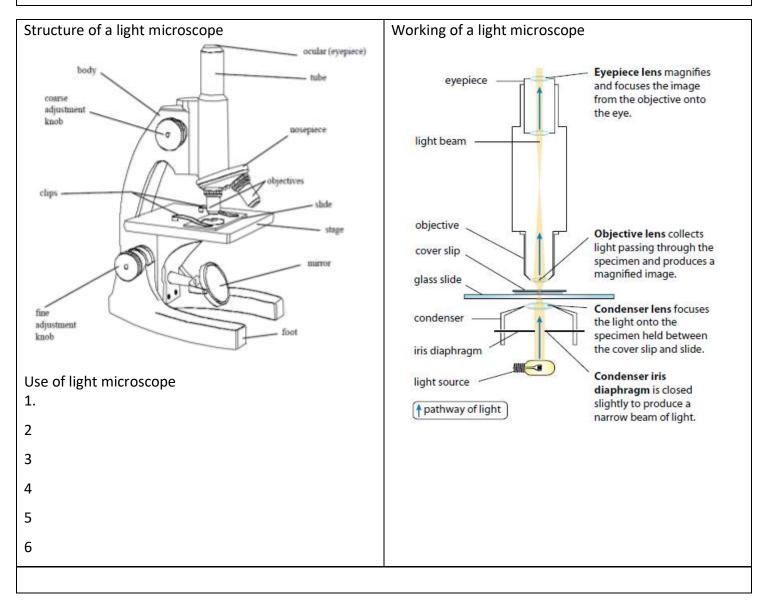
Feature	Plant cell	Animal cell
Cell wall		
Pits and Plasmodesmata		
Vacuole		
Chloroplasts		
Centrioles		
Cilia and flagella		
Reserve food material		
Lysosomes		

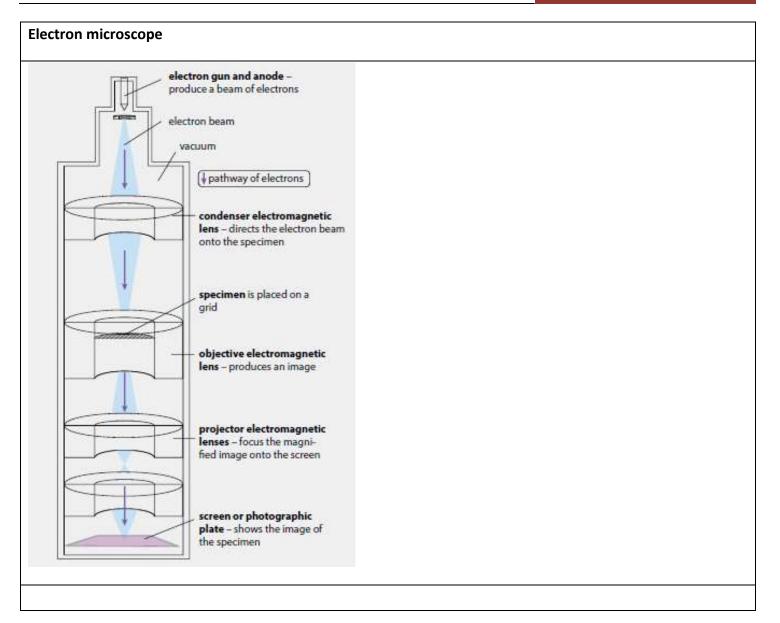
Endosymbiosis

Prokaryotic cells are far older and more diverse than eukaryotic cells. Prokaryotic cells have probably been around for 3.5 billion years - 2.5 billion years longer than eukaryotic cells. It is thought that eukaryotic cell organelles like mitochondria and chloroplasts are derived from prokaryotic cells that became incorporated inside larger prokaryotic cells. This idea is called endosymbiosis, and is supported by these observations:

· organelles contain circular DNA, like bacteria cells.

· organelles contain 70S ribosomes, like bacteria cells.


 \cdot organelles have double membranes, as though a single-membrane cell had been engulfed and surrounded by a larger cell.


Microscopy

Study of cells involves use of microscopes

Two types of microscopes

Light microscope

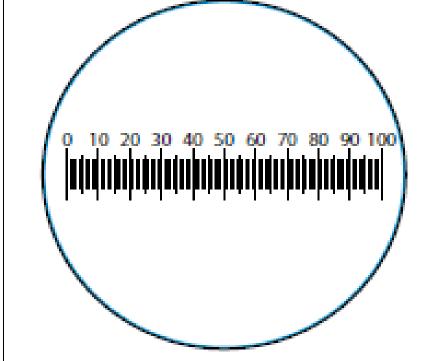
Feature	Light microscope	Electron microscope
Radiations used		
Radiation source		
Radiation medium		
Nature of lenses		
Wave length of radiations used		
Resolution		
Magnification		
Way the Image is seen		
Image formed		
Example structures that can or can		
not be seen		

Re	Resolution				
<u> </u>	\triangleright	Ability to distinguish two objects separate from each other			
Ē	≻	Resolution of an object is half of the wavelength of radiations used			
	\triangleright	>_ Why			
		wavelength 400nm interferes with light waves 400nm interferes with light waves 400nm interferes with light waves stained ribosomes of diameter 25nm do not interfere with light waves			
ſ	 Does the power of a lens effect resolution of a microscope 				
[~	What does a resolution of 200 nm means			
\triangleright	Th	e smaller the objects that can be distinguished, the higher the resolution.			
\triangleright	Re	esolution is half of the wavelength of the rays that are being used to view the specimen.			
\blacktriangleright	Th	e wavelength of a beam of electrons is much smaller than the wavelength of light.			
		An electron microscope can therefore distinguish between much smaller objects than a light microscope – in other words, an electron microscope has a much higher resolution than a light microscope.			
		We can therefore see much more fine detail of a cell using an electron microscope than using a light microscope.			
Ma	agnification				
ŀ		Number of times an image is larger than the actual size of an object			
		Formula			
		Magnification = <u>Image size</u> Actual size. or M=I/A			
	۶	Does power of a lens effect the magnification of a microscope			

> Does change of wave length of light rays used effect the magnification of a microscope

Units of measurement of length					
Measurement	Symbol	Number per meter	Number of meters		
Kilometer	Km	0.001	10 ³		
Meter	М	1	1		
Millimeter	Mm	1000	10 ⁻³		
Micrometer	Um	1000000	10 ⁻⁶		
Nanometer	Nm	100000000	10 ⁻⁹		

Measuring cells


Eyepiece graticule.

a transparent scale.

Usually has 100 divisions but an unknown scale

placed in the microscope eyepiece

it is seen at the same time as the object to be measured.

Stage micrometer Placed on the microscope stage and is brought into focus. may be etched onto a glass slide or printed on a transparent film. It has subdivisions of 0.1 and 0.01 mm printed on it. it is used to calibrate the eyepiece graticule scale, Measure the diameter of a cheek cell using EPG Place the cheek cells slide on the stage Focus at X40 You will view both the cheek cells and EPG together Align the scale from one edge of a cell to other edge of a cell Count number of divisions of EPG overlapping from one edge to other edge of the cell cheek cells on a slide on the stage of the microscope 10 20 30 60 70 80 90 100 eyepiece

> the eyepiece of the microscope

graticule in

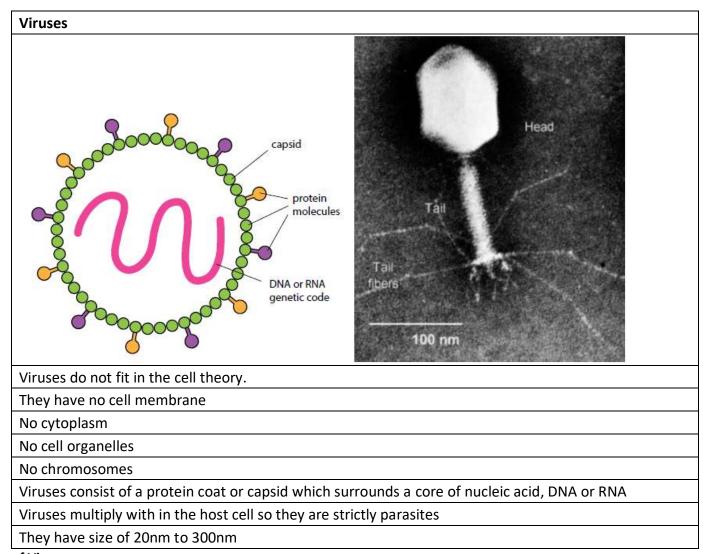
There are 20 Div of EPG overlapping from one edge to the other edge from 40 div to 60 div. As EPG has an unknown scale so there are no units with these divisions. To calculate the length of 20 Div of EPG we should know the length of 1 div of EPG which is calibrated by using SM stage micrometer

Caliberation

Replace the slide of the cheek cells with the SM slide
view through the eye piece again.
bring both the scales EPG and SM to overlap each other
The images of the two scales can then be superimposed as shown below
scale (arbitrary units) 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 10 20 30 40 50 60 70 80 90 100 0 10 10 20 30 40 50 60 70 80 90 100 0 10 10 20 30 40 50 60 70 80 90 100 0 10 0 10 20 30 40 50 60 70 80 90 100 0 10 0 10 0 10 0 0 10 0 0 10 0 0 0
Count how many divisions of EPG overlap with how many divisions of SM
From the Figure above 5 small divisions of SM= 20 divisions of EPG
1 small division of SM= 0.1mm
so 5 X 0.1 = 20 divisions of EPG
1 division of EPG = 5X 0.1/20 or 0.0025 mm or 2.5 um
The diameter of the cell shown superimposed on the scale in Figure 1.8b measures 20 eyepiece units and so its actual diameter is:
$20 \times 2.5 \ \mu m = 50 \ \mu m$

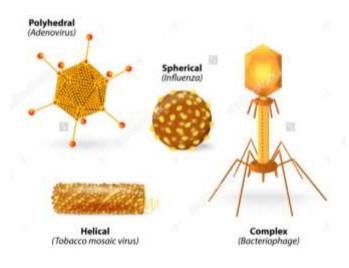
Calculating the magnification of a photograph or image
Step 1 Measure the length in mm of the cell in the photograph using a ruler.
You should find that it is about 60 mm.
x750.
Step 2 Convert mm to μ m. 1 mm = 1000 μ m so
$60 \text{ mm} = 60 \times 1000 \ \mu \text{ m}$
$= 60\ 000\ \mu m$
Step 3 Use the equation to calculate the magnification.
Magnification=Image /Actual
OR
Actual=Image /Magnification
=60000/75 0
=80um

A student has drawn a cell structure as seen using a light microscope.


The magnification of the drawing is $\times 600$.

The length of the structure on the drawing is 6 mm.

What is the actual length of the cell structure?


 $\label{eq:alpha} {\bm A} = 1 \times 10^{-1} \, \mu m \qquad {\bm B} = 1 \times 10^{0} \, \mu m \qquad {\bm C} = 1 \times 10^{1} \, \mu m \qquad {\bm D} = 1 \times 10^{2} \, \mu m$

[AS LEVEL BIOLOGY] [Pick the date]

Shape of Viruses

Viruses have three distinct shapes

How are viruses named?

Named after the disease it causes. For example, rabies viruses or polio viruses

Named after the tissues they infect. For example, Adenoviruses cause common cold found in the adenoids tissues between the back of the throat and the nasal cavity.

Today viruses are given a genus name ending in the word virus and a species name.

If a virus affects bacteria it is called a bacteriophage or phage.

Examples of Viruses

HIV - RNA virus called retrovirus. HIV in a human host affects white blood cells. People with HIV eventually will get AIDS because more white blood cells become infected and produce new viruses. Remember white blood cells are used to fight diseases leaving the body unable to protect itself.

Cancer - Some viruses are linked to cancer. Hepatitis B is a virus that can cause liver cancer and disrupts the normal growth and division of cells.

Plant viruses - Plant viruses require wounds or bites to enter the host. ex. Tobacco mosaic virus – disease in tobacco plants which stunts plant growth.