

Cambridge University Examinations

General Certificate of Education Ordinary Level O – LEVEL 5070. Notes, P1, P2 and P4

Teacher: - Mubashir Sulehri

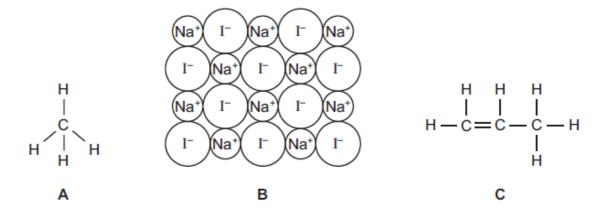
Chapter

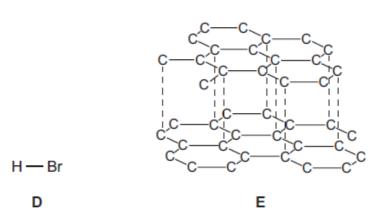
Chemical Bonding

Work Sheet Paper 1

Mubashir Sulehri

03224307040


Lahore Grammar School Roots International School Lahore Learning Campus Bloomfield Hall School


WORKSHEET PAPER

Chemical Bonding (Questions)

<u>2</u>

The structures of some substances are shown below.

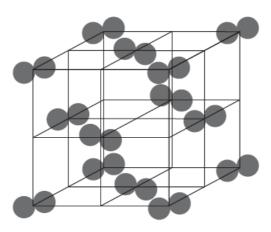
(a) Answer these questions using the letters A, B, C, D or E.

(i)	Which structure is methane?	[1]
(ii)	Which two structures are giant structures? and	[1]
(iii)	Which two structures are hydrocarbons? and	[1]
(iv)	Which structure contains ions?	[1]
(v)	Which two structures have very high melting points?	
	and	[1]

The structure of the ammonia molecule is shown below.

$$H \stackrel{N}{\downarrow} H$$

	(i)	Write the simplest formula for ammonia.	
	(ii)	Describe the type of bonding in a molecule of ammonia.	
	(iii)	Ammonia is a gas at room temperature. Suggest why ammonia has a low boiling point.	
3		w a 'dot and cross' diagram to show the bonding in methane. only need to draw the outer (valence) electrons of carbon.	[2]
4	Ex	plain, in terms of metallic bonding, why iron is a good electrical conductor.	
			[2
5		e of the reasons why copper is used in mobile phones is because it is a good ductor of electricity.	
	(i)	Draw a labelled diagram to show the metallic bonding in copper.	


(ii)	Explain how copper conducts electricity.
Expl	ain why both carbon dioxide and methane are gases at room temperature.
	ideas about structure and bonding.
	[1]
	e diamonds are an impure form of carbon. Part of the structure of a blue diamond wn below.
	= carbon atom = boron atom
	blue diamond
Blue	e diamonds have a high melting point and can conduct electricity.
(a)	Explain, in terms of structure and bonding, why blue diamonds have a high meltipoint.
(b)	Normal diamonds are a pure form of carbon. They do not conduct electricity.
	(i) Explain, in terms of structure and bonding, why normal diamonds do not conductive electricity.

	(II) Suggest why blue diamonds can conduct electricity.
	[1]
(c)	Graphite is another pure form of carbon. Suggest two reasons why graphite is often used as an electrode in electrolysis.
	1
	2[2]
Pota	assium fluoride is an ionic solid with a high melting point.
(i)	Draw a 'dot and cross' diagram to show the bonding in potassium fluoride. You only need to show the outer (valence) electrons.
(ii)	Explain why the melting point of potassium fluoride is very high.

9 Iodine forms a diatomic molecule, I₂. It has a simple molecular structure.

8

The diagram shows the structure of the simple molecular lattice of iodine.

Each iodine molecule is held in place by weak intermolecular forces. Within each iodine molecule the atoms are covalently bonded.

[3]

	(a)	Exp	plain why solid iodine does not conduct electricity.	
				[1]
	(b)		en heated, solid iodine turns directly into iodine gas . e the kinetic particle theory to explain this change of state.	
				[2]
	(c)		w a 'dot-and-cross' diagram to show the bonding in an iodine molecule. ow only the outer shell electrons.	
				[1]
10			'dot-and-cross' diagram to show the bonding in a molecule of carbon dioxid	
	Sh	ow o	only the outer shell electrons.	
11	(5)	<i>(</i> 2)		1]
11	(a)	(i)	Draw a 'dot-and-cross' diagram for Cl ₂ O.	
			You only need to draw the outer shell electrons.	

[1]

(11)	explain, using point.	ideas about	structure a	and bonding,	why Cl ₂ O i	has a low melting
						[2]

(b) Draw diagrams to show the electronic structures and charges of both ions present in potassium oxide.

[2]

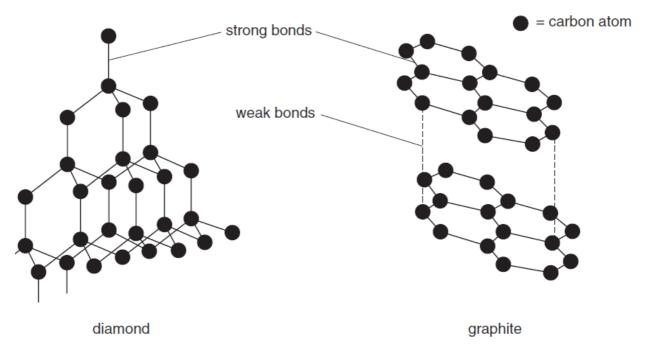
Solid sodium chloride and magnesium oxide have the same structure and bonding.

This is the structure of sodium chloride.

Key

Na Na

Oc≀⁻


The table shows the melting point of these two compounds.

compound	melting point/°C
magnesium oxide	2852
sodium chloride	801

(a)	(i)	What are the formulae for a magnesium ion and an oxide ion?
		F41
		[1]

		(ii)	Suggest why magi sodium chloride.								
13	(c)		ur forms simple molecu		a relati	ve mo	olecula	ır mass o	of 256.		
			gest the formula of a su								
	(d)		ur has a low melting poi								[1]
	(-)	(i)	Explain why sulfur has					,.			
											[1]
		(ii)	Explain why sulfur doe	s not conduct e		-					
											[1]
	(e)	Sulf	ur reacts with potassiur	n to form potas	ssium s	ulfide					
			e the formula and the e ssium sulfide.	lectronic confiç	guration	of th	e posi	tive ion a	and of the	negativ	e ion in
		pos	tive ion								
		form	ula	electronic c	onfigura	ation					
		neg	ative ion								
		form	ula	electronic c	onfigura	ation					[2]
	(f)	Sulf	ur reacts with hydrogen	to form hydro	gen sul	fide, I	H ₂ S.				
		Dra	v the 'dot-and-cross' dia	agram to show	the bor	nding	in a m	olecule	of hydroge	en sulfic	de.
		Only	draw the outer shell el	lectrons.							

14 The structures of diamond and graphite are drawn below.

(a)	Nan	ne the type of strong bond shown on the diagram.
		[1]
(b)		mond has a melting point of about 3700 $^{\circ}\text{C}$ and graphite has a melting point of about 0 $^{\circ}\text{C}.$
	(i)	Explain why both diamond and graphite have very high melting points.
	(ii)	Suggest why the melting point of graphite is lower than that of diamond.
		[3]
(c)		npare the electrical conductivity of diamond and graphite. Iain your answer.

.....[2]

The table shows the melting points and relative electrical conductivities of three elements from Period 3 of the Periodic Table.

property	element					
	magnesium silicon					
melting point /°C	649	1410	113			
relative electrical conductivity	good conductor	poor conductor	does not conduct			

(a)	Use	Use ideas of structure and bonding to explain							
	(i)	i) the difference in the melting points of magnesium and sulfur,							
			[2						
	(ii)	the difference in the electrical conductivity of magnesium and sulfur.							
			[2						
(b)	Silio	con has a structure similar to diamond.							
	Exp	lain why silicon has a high melting point.							

Copper(II) sulfate is an ionic compound.

(a)	Describe the arrangement of the ions and the type of attractive forces between the ions in solid copper($\scriptstyle\rm II$) sulfate.
	arrangement
	type of attractive forces[2]
(b)	Explain why solid copper(II) sulfate does not conduct electricity but aqueous copper(II) sulfate does conduct.
	[2]
Dra	uw a 'dot-and-cross' diagram of an oxygen molecule.
	ow only the outer shell electrons.
OH	Willy the outer orien decirons.

[2]

Some properties of the Group IV elements are shown in the table.

element	melting point /°C	relative electrical conductivity
carbon (diamond)	3550	non-conductor
silicon	1410	poor conductor
germanium	937	poor conductor
tin	232	conductor
lead	328	conductor

(a)	(1)	Explain in terms of structure and bonding why diamond has such a high melting point.
		[2]
	(ii)	Use the information in the table to suggest how the type of structure and bonding in carbon (diamond) differs from the type of structure and bonding in tin. Explain your answer.
		[2]
	(iii)	Lead oxide is an amphoteric oxide.
		What is the meaning of the term amphoteric oxide?
		[1]
Soc	dium d	oxide, Na ₂ O, is an ionic compound.
(a)	Stat	e the electronic configuration for each of the ions in sodium oxide.
	sodi	um ion
	oxid	e ion
Exp	olain I	now molten sodium oxide conducts electricity.
		[1]

The Periodic Table of Elements

												_											
		III/	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
		IIA				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	П	iodine 127	85	Αt	astatine -			
		I				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Ъ	tellurium 128	84	Ъо	polonium –	116	_	livermorium —
		>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
		2				9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	S	ti 119	82	Ър	lead 207	114	Fl	flerovium
		=				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
												30	Zu	zinc 65	48	p O	cadmium 112	80	Нg	mercury 201	112	ű	copernicium -
ments												29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
The Periodic Table of Elements	dn											28	Ż	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
iodic Tak	Group	Gro										27	ဝိ	cobalt 59	45	格	rhodium 103	12	'n	iridium 192	109	Ĭ	meitnerium -
The Per			-	I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -
						J						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium -
							lo	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	Та	tantalum 181	105	g C	dubnium –		
						al	ator	relat				22	j	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	¥	rutherfordium -
									ı			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	လွ	strontium 88	56	Ва	barium 137	88	Ra	radium
		_				3	:=	lithium 7	£	Na	sodium 23	19	×	potassium 39	37	Вb	rubidium 85	55	Cs	caesium 133	87	<u>ن</u>	francium -
© UCL	ES 2	019													50	70/2	22/M	∟ /J/1	9				

71	Lu	lutetium 175	103	Ļ	lawrenciu	ı
20	Υb	ytterbium 173	102	Š	nobelium	ı
69	Tm	thulium 169	101	Md	mendelevium	1
89	ш	erbium 167	100	Fm	fermium	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	Ò	dysprosium 163	86	ŭ	californium	ı
65	Tp	terbium 159	97	益	berkelium	ı
64	gg	gadolinium 157	96	Cm	curium	ı
63	Ш	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium	93	ΔN	neptunium	ı
09	PZ	neodymium 144	92	\supset	uranium	238
59	Ā	praseodymium 141	91	Ра	protactinium	231
28	Ce	oerium 140	06	Ч	thorium	232
22	Гa	lanthanum 139	89	Ac	actinium	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

lanthanoids