

CAMBRIDGE UNIVERSITY EXAMINATIONS

General Certificate of Education Advanced Subsidiary Level and Advanced Level (As Level and A Level) Paper 1 Multiple Choice Questions(MCQs)

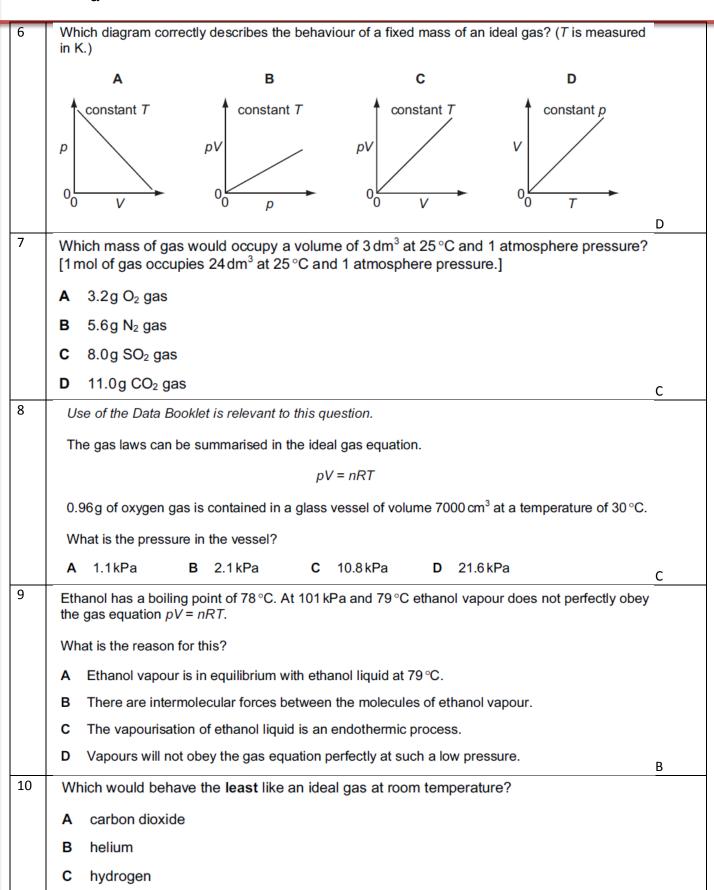
Teacher: - Mubashir Sulehri

Chapter 7

States of Matter

Mubashir Sulehri

03224307040


Lahore Grammar School Roots International School Lahore Learning Campus Bloomfield Hall School Green Hall Academy

1	What is the volume of steam produced when 1.00 g of ice is heated to 323 °C at a pressure of 101 kPa?										
	Α	$0.27\mathrm{dm^3}$	В	1.3 dm ³	(С	$2.7\mathrm{dm}^3$		D	48 dm ³	С
2	Measured values of the pressure, volume and temperature of a known mass of a gaseous compound are to be substituted into the equation										
	pV = nRT										
	in order to calculate the relative molecular mass, $M_{\rm r}$, of the compound.										
	Which conditions of pressure and temperature would give the most accurate value of M_r ?										
		pressure	temp	erature							
	Α	high	h	igh							
	В	high	I	ow							
	С	low	h	igh							
	D	low	I	ow							
3	Wł	nich of the follo	owina le	east resen	nbles an	ide	eal gas?				С
	Α	Which of the following least resembles an ideal gas? A ammonia									
	В	helium									
	С	hydrogen									
	D	trichloromet	hane								
4	14/1-				-1 11						Α
4	vvn	Which gas closely approaches ideal behaviour at room temperature and pressure?									
	_	A ammonia									
		B carbon dioxide									
	С	helium									
	D	oxygen									С
5	The	density of ice	e is 1.00	0g cm ⁻³ .							<u>-</u>
		What is the volume of steam produced when 1.00 cm ³ of ice is heated to 323 °C (596 K) at a pressure of one atmosphere (101 kPa)?									
	[1 m	[1 mol of a gas occupies 24.0 dm ³ at 25 °C (298 K) and one atmosphere.]									
	-	0.267 dm ³	В	1.33 dm ³			57 dm ³			48.0 dm ³	
	~	5.207 dill		1.00 0111	•	2.0	, uiii			10.0 dili	С

D

nitrogen

Α

11	The general gas equation can be used to calculate the $M_{\rm r}$ value of a gas.									
	For a sample of a gas of mass mg , which expression will give the value of M_r ?									
	Α	$M_{\rm r} = \frac{mpV}{RT}$ B	$M_{\rm r} = \frac{pVRT}{m}$ C $M_{\rm r} = \frac{mRT}{pV}$ D $M_{\rm r} = \frac{pV}{mRT}$	С						
12	Which least resembles an ideal gas at room temperature and pressure?									
	Α	ammonia								
	В	helium								
	С	hydrogen								
	D	methane		Α						
13	Use of the Data Booklet is relevant to this question.									
	When 0.15 g of an organic compound is vaporised, it occupies a volume of 65.0cm^3 at 405K and $1.00\times10^5\text{Nm}^{-2}$.									
	Using the expression $pV = nRT$, which of the following expressions should be used to calculate the relative molecular mass, $M_{\rm r}$, of the compound?									
	Α	$\frac{0.15 \times 65 \times 10^{-6} \times 1 \times 1}{8.31 \times 405}$	05							
	В	$\frac{0.15 \times 8.31 \times 405}{1 \times 10^{5} \times 65 \times 10^{-3}}$								
	С	$\frac{0.15 \times 65 \times 10^{-3} \times 1 \times 1}{8.31 \times 405}$	05							
	D	$\frac{0.15 \times 8.31 \times 405}{1 \times 10^{5} \times 65 \times 10^{-6}}$		D						
14	Which compound is the only gas at room temperature and pressure?									
	Α	CH ₃ CH ₂ CH ₂ NH ₂	$M_{\rm r} = 59.0$							
	В	CH ₃ CH ₂ CH ₂ OH	$M_{\rm r} = 60.0$							
	С	CH₂OHCH₂OH	$M_{\rm r} = 62.0$							
	D	CH₃CH₂C1	$M_{\rm r} = 64.5$	D						
15										
16 17										
18										
19 20										
20										