Phosphorus Removal Methods

Presented by
Amanda Shane
Zinkan Enterprises, Inc
OTCO Training, Spring 2019

Phosphorus

IS A MACRONUTRIENT ESSENTIAL TO ALL BIOLOGICAL LIFE!!

P is needed to form cell membrane and DNA

P demand of organisms due to special role It plays in their energy metabolism

WHY THE CONCERN?

Use it before you remove it!!!

Control of Eutrophication

Control Nutrient Load

Control of Eutrophication

Rate is increased by human activities

Phosphorus

Wastewater Discharges

USUALLY LIMITED IN MOST STATES TO 1 mg/L OR LESS IN DISCHARGES TO SURFACE WATER

(Many Have Pounds Limit)

Limits Getting More Restrictive

Forms and Sources of Phosphorus

Polyphosphate (condensed phosphate)

- chained molecules
- soluble
- home, industrial detergents
- potable water treatment
- decomposes to Ortho-P

Forms and Sources of Phosphorus

Orthophosphate

- Simple Phosphate, PO₄
- soluble
- household cleaning agents
- industrial cleaners;
- phosphoric acid
- conversion of organic and poly phosphate

Phosphorus Ratios Needed

- Content of wastewater should correspond to the needs of the bacteria in the activated sludge
- Need a balanced relationship between C, N and P
- Need right pH
- Need enough alkalinity
- Need magnesium

During aerobic treatment C:N:P should be in range of 100:10:1 to 100:5:1

ALL of which are crucial to the biodegradation process

Phosphorus Ratios Today

- Content of wastewater do not always meet the needs of the bacteria in the activated sludge
- Many plants are lacking enough alkalinity

During aerobic treatment C:N:P typically is closer to 100:20:5

Excess P and N can be removed without great difficulty using modern methods

Phosphorus Removal

Biological Wastewater Treatment Systems Will Remove Phosphorus

100:5:1 (C:N:P)

Primary and TF 20 - 30 %

Primary and AS 30 - 50 %

Total Influent P Ranges from 2.5 to 20 mg/L

NPDES Permits Limit Effluent P @ 1 mg/L and Lower

Most Facilities Will Require Additional Process for Phosphorous Removal

Phosphorus Removal

Removal of Solids Provides Some Phosphorus Removal

Primary Sedimentation 5 - 15 %

Conversion to Ortho-P

Phosphorus Removal

Removal of Ortho-P may Occur:

1. Enhanced Biological Uptake

2. Chemical Precipitation

Phosphorus Removal

Removal of Ortho-P may Occur Through:

Often Just Called
BIOLOGICAL P REMOVAL

Enhanced Biological Uptake

(EBPR)

All Biological Systems Take Up P

100:5:1

C:N:P

Some Facilities Removed More P Than 1P:100BOD

The MLSS in Those Facilities Cycled From Anaerobic to Aerobic

The MLSS in Those Facilities Cycled From Anaerobic to Aerobic

This Promoted the Accumulation of Bacteria that Uses P as an **Energy Storage Mechanism**

Acinetobacter (Assin Eato Back Ter)
& Other
Phosphate Accumulating Organisms (PAO)

Anaerobic Conditions

Heterotrophic Bacteria Break Down Organics Fermentation

Volatile Fatty Acids (VFAs) Acetate (Acetic Acid)

Also

Selection of PAO - Phosphate Accumulating Organisms (Able to Out-Compete Other Aerobic Heterotrophic Bacteria for Food When Anaerobic)

Anaerobic Conditions

PAO Able to <u>store soluble organics</u> as Polyhydroxybutyrate (PHB)

PAO <u>Break</u> Energy-Rich <u>Poly-P Bonds</u> To Produce Energy Needed for the Production of PHB

Ortho-P is Released Into Solution

Aerobic Conditions

Rapid Aerobic Metabolism of Stored Food (PHB) Producing New Cells

PO₄ Used in Cell Production Excess Stored as Polyphosphate ("Luxury Uptake")

Phosphorus Accumulating Bacteria (PAO)

Anaerobic

Fermentation

Acetate Production

Selection of Acinetobacter/PAO

P Released to Produce Energy

Aerobic

Stored Food Consumed Excess P Taken Up Sludge Wasted

Most often Used Processes:

Phostrip
A2/O
Concentric Ring Oxidation Ditch
Sequencing Batch Reactor

Phostrip

Some Return Sludge Diverted to Anaerobic Stripper

Phosphorus Released

Elutriated (Washed) to a Precipitation Tank

Precipitated With Lime – Sludge Removed

A/O Process (Anaerobic/Oxic)

A2/O (Anaerobic/Anoxic/Oxic)

Head End of Aeration Tank Baffled and Mechanically Mixed

Primary Effluent and RAS Produce Anaerobic Conditions

Phosphorus Released

"Luxury Uptake" of Phosphorus in Aerated End

Concentric Ring Oxidation Ditch

Three Aeration Tanks in Concentric Rings

Wasting Aerobic the Bio-solids Removes Phosphorus

Sequencing Batch Reactor

Batch Treatment in Sequence of Steps

The MLSS Cycles From Anaerobic to Aerobic

This Promotes

Phosphate Accumulating Organisms (PAO)

Anaerobic

Fermentation
Acetate Production
P Released to Produce Energy

Aerobic

Stored Food Consumed Excess P Taken Up Sludge Wasted

Important Considerations

Adequate Influent **BOD**

(Enough O₂ demand to achieve anaerobic conditions)

BOD:P 20:1

Adequate **Anaerobic** Detention Time 1-3 hrs

(Not so long as to reduce sulfate to sulfide-septicity)

Adequate Aerobic Detention Time 4-5 hrs.

(Enough time for BOD removal & Nitrification)

Benefits

Lower Cost
Safer to Handle
No Tramp Metals
No Chemical Sludge Produced

Inhibits Growth of Filamentous Organisms (Cycling between Anaerobic & Aerobic)

Chemical Phosphorus Removal

Ortho Phosphate (Soluble)

PLUS

Metal Salts

(Soluble)

FORM

<u>Insoluble</u>

Phosphorus Compounds

Chemical Phosphorus Removal

Chemical Phosphorus Removal

$$M^{+3} + PO_4^{-3} \longrightarrow MPO_4$$
($M^{+3} = Metal in Solution$)

PRECIPITATION

Metals used are:

- Aluminum (Al)
- Iron (Fe)

FERRIC IRON - Fe⁺³

$$M^{+3} + PO_4^{-3} \longrightarrow MPO_4 \downarrow$$
 $Fe^{+3} + PO_4^{-3} \longrightarrow FePO_4 \downarrow$

Weight Ratio

 Fe^{+3} to P

1.8:1

 $FeCl_3: P$

5.2:1

Starting Dosage 20-25 mg/L

Aluminum Sulfate Dosage Rates

$$Al_2(SO_4)_3 + 2PO_4^{-3} \longrightarrow 2AIPO_4$$

Weight Ratio

 $AI^{+3} : P$

0.87:1

Alum to Phosphorus

9.6:1

Starting Dosage 40-50 mg/L

Chemical Dosage Rates

Ferric Iron – apx 20-25 mg/L

Aluminum Sulfate – apx 40-50 mg/L

Magnesium Hydroxide – apx 30-40 mg/L

What about when used in combination?

New studies currently being conducted.

Magnesium Hydroxide Case Study

Side by side treatment plants, only Aeration 3 and Final 5 and 6 received treatment with Magnesium Hydroxide.

A1/2 and F3/4 were untreated for a control. Incoming influent was split between the two plants.

Magnesium Hydroxide Case Study

Figure 2. Alkalinity (mg/L) for the Primary process effluent and the Final Clarifiers effluent.

Magnesium Hydroxide Case Study

Figure 3. Alkalinity (mg/L) for the Primary process effluent and the Final Clarifiers effluent.

P Removal

Important Considerations

Low Effluent Suspended Solids

Magnesium – needed for ATP process

Alkalinity – needed for nitrification process

Nitrification –Nitrate

Sludge Handling

References

Michigan DEQ - Operator Training and Certification Unit

Ian Miller, Chemist

Colorado State University, Research Center

US EPA, Phosphorous Removal Methodologies

Questions?

Please Contact:

Amanda Shane Twinsburg, OH

ashane@Zinkan.com PH: (800) 229-6801

