Consistent Compliance Using PCMP

Marvin Gnagy, P.E., Owner

pmg PMG Consulting, Inc.

OTCO Compliance Workshop for Water and Wastewater Treatment

October 13, 2022

Agenda

- What is PCMP
- PCMP Responsibilities
- PCMP Procedures
- Key Control Parameters
- Key Performance Indicators
- PCMP Tracking and Limits
- PCMP Reports and Forms
- Unit Process Strategies
- Summary

What is PCMP?

What is PCMP?

- Process Control Management
 Plan for Water or Wastewater
 Operations
- Documented procedures to control process operations and performance
 - Meet regulatory compliance
 - Improve reliability, resiliency, performance
 - Based on best practice metrics
 - Control operating costs

- Comprehensive approach to manage treatment plant operations
- Assessment of process control using established target parameters and best practice metrics
- Better means to track performance and meet regulatory compliance
 - Much more than just checking effluent quality for MOR's
- Verify data input from multiple sources (lab, operations, contractors)

- Track process performance that could result in non-compliance issues
- Track performance to control operating costs
- Report performance exceptions signaling abnormal operations
- Identify corrective actions before non-compliance arises
- Provide operator guidance on expected performance and operating adjustments

- Scientific approach to operational control of unit processes
 - Evaluations and study data suggest performance improvements
 - Benchmark metrics used to track performance against best practices
 - Trending and forecasting from historical data
 - Means to establish flags for parameters monitored

- Plan development is detailed process and procedures
 - Outlines responsibilities and tasks
 - Defines data collection and key control parameters
 - Requires tracking and reporting
 - Uses key operational targets based on science and benchmarking metrics
 - Establishes written <u>Unit Process</u>
 <u>Strategies</u> to follow when tracking suggests abnormal operations
 - Encourages comprehensive review of operations performance and corrective actions

- Management
- Process control directors
- Process control specialists
- Plant operators
- Lab analysts
- Maintenance personnel
- Consultants

- Management Responsibilities
 - Establish PCMP documentation and procedures
 - Review key control parameters (KCPs) and key performance indicators (KPIs)
 - Review overview / compliance reports
 - Review UPRs/exceptions reports
 - Review operating trends/graphical data
 - Review other customs reports
 - Define assistance where needed
 - Define investigations and special studies where necessary

Process Control Director

- Establishes PCMP targets, limits, and parameters
- Establishes process control database and data collection procedures
- Implements PCMP
- Manages Process Control meetings
- Assigns tasks from meeting minutes
- Ensures PCMP procedures are followed
- Prepares/submits PCMP reports
- Assigns follow-up investigations or studies
- Suggests changes to PCMP or targets

- Process Control Specialists
 - Participate in Process Control meetings
 - Conduct investigations or special assignments
 - Work with lab analysts and operators to control process performance
 - Help define corrective actions and adjustments
 - Ensure data collection is accurate and accountable
 - Review and analyze process performance

Plant Operators

- Follow established PCMP guidance
- Control process performance within established target parameters and limits
- Input data to selected database system
- Verify data collection and input values
- Participate in Process Control meetings
- Conduct assigned tasks from PCMP
- Follow SOPs and suggested adjustment procedures
- Make necessary operating adjustments

Lab Analysts

- Follow established PCMP guidance
- Manage sample collection and sample analyses
 - Includes contract lab services
- Input data to selected database system
- Verify data collection and input values
- Participate in Process Control meetings
- Maintain lab QA/QC
- Maintain chain-of-custody
- Maintain process control records
- Maintain database

- Maintenance Personnel
 - Participate in Process Control meetings
 - Maintain process equipment to meet performance expectations
 - Understand role in PCMP procedures
 - Conduct investigations and special studies as assigned
 - Maintain energy consumption records
 - Electric utility or generated power
 - Water/sewer
 - Natural gas or biogas
 - Petroleum or diesel

Consultants

- Participate in Process Control meetings if requested
- Review process performance when assigned
- Conduct special studies and investigations
- Report on process performance capabilities from studies and investigations
- Suggest process control parameters, target, limits from special studies and investigations

Select a database software

- Microsoft Access
- Hach Wims
- Operator 10
- WaterTrax
- Locus Technologies
- Lablite (LIMS)
- Versa
- fluenceTM
- Brightly
- Cartegraph
- Samswater
- Customized Microsoft Excel sheets

- Develop written plan and documentation, forms and reports
- Establish tracking parameters and sample frequencies
 - Regulatory limits, guidance limits, benchmark metrics
- Set targets and limits
- Develop data collection activities
 Include validation and QA/QC
- Hold regular Process Control meetings and prepare minutes

- Develop reports and documentation
 - Exceptions, Process control
 - Compliance review
 - Unit process, change authorization
 - Consumables (if needed)
- Develop Unit Process Strategies
 - Process design data
 - Typical performance data
 - Suggested corrective actions for abnormal operations
- Develop trending parameters and protocols

- Select <u>Key Control Parameters</u> (KCPs) for plant operations
 - Track the most important data
 - What could produce non-compliance?
 - What could create plant upsets?
 - What could increase operating costs?
- Define Key Performance Indicators (KPIs) that suggest compliance with establish metrics
 - Industry standards
 - Best practices
 - Published data metrics

- Key Control Parameters (KCPs) for may have required calculations
 - Document the calculations to be used
 - Define the parameters needed for calculations
- Key Performance Indicators (KPIs) may have required calculations
 - Document the calculations to be used
 - Define the parameters needed for calculations

$$\frac{In-out}{In}*100 = \%$$

- Every treatment plant will have 25 to 40 key parameters that evidence process performance
 - May include several process variables (PVs)
 - Directly influence process performance
 - Meet compliance or permit limits
 - Track targeted process control
 - Performance driven management of unit processes
 - Cost control
 - Critical components that make the biggest impact
 - Data for calculated tracking and trending

- Selected to provide a snapshot of process performance
 - Control of unit processes
 - Control of contaminant removal (special studies)
 - Enhancement of unit processes
 - Specific data indicating how overall treatment is performing
 - Some KCPs and used to track Key Performance Indicators (KPIs)

Water Treatment Examples

Pre-oxidant residual	CFE NTU	Free NH ₃ residual
CO_2 efficiency	Log Giardia	Solids capture
LACR	Log Crypto	Cake solids
Settled NTU	Permeate ratio	Recycle ratio
Sand dose (Actiflo)	Membrane integrity	Lime per dry ton
CO_3/OH ratio	Membrane TMP	Overflow solids
CO_3/HCO_3 ratio	GAC breakthrough	Overflow pH
Salt dose (regen)	Finished pH	Overflow Cl ₂ residual
Filtration rate	PO4 residual	Sludge generated
GWP	CT ratio	
Filtration efficiency	kwh/#O3 generated	
Washwater usage	Cl ₂ :N ratio	

Wastewater Treatment Examples

Pre grit VS	ST blanket depth	ST Anox pH	$D-Cl_2 Eff$ residual
Pre recycle BOD	ST RAS flow	ST Anox NH ₃ -N	UV dose
Pre recycle TSS	ST WAS TSS	TF organic loading	DW solids loading
Pre recycle NH ₃ -N	ST WAS lbs	TF NH ₃ -N	DW capture
Pre recycle P	ST Anox ORP	TF hydraulic load	DW cake solids
PT SOR	ST Anox NO_3	TF recycle ratio	DW centrate TSS
PT blanket depth	ST NO ₃	TER Filter loading	DG loading
PT sludge generated	ST pH	TER NTU	DG VA:Alk ratio
ST SOUR	ST RAS %influent	TER run time	DG VS reduction
ST DO	ST F/M ratio	Cl ₂ contact time	
ST MLSS	ST Aeration HDT	Cl ₂ residual	
ST MCRT	ST MLVSS invent.	D-Cl ₂ bisulf #/MG	

- Published best practice indicators for process performance
 - Established by trade organizations
 - Established by optimized treatment systems
 - Data from plant studies
 - Research projects data
 - Manufacturer's performance data
 - Best practice efforts to control key processes
 - Gauge performance against known metrics
 - Indicate progress toward expected process treatment
 - Control operating costs

- Provide objective evidence towards treatment goals
- Measure performance to aid in decision-making
- Compare actual metrics against other best practices
- Track effectiveness and compliance
- Balance between process behaviors and expectations
- Example
 - All filters should operate for more than 72 hours run time
 - May only be true if applied water is properly pre-conditioned and the filter media meet specific standards

Water Treatment Examples

Production versus Raw pumpage ratio	Fin MG/Raw MG
Production versus plant capacity ratio	Fin MG/Design MG
Electric consumption versus raw water ratio	kwh/MG pumped (raw)
Electric consumption versus plant production	kwh/MG produced (fin)
Coagulant to turbidity ratio	mg/L/MG/NTU
Coagulant to TOC ratio	mg/L/MG/TOC
Polymer consumption (dewatering)	lbs polymer /dry ton solids

Wastewater Treatment Examples

Pump efficiency, Influent	kwh/MG
Pump efficiency, RAS	kwh/MG
Electric consumption Aeration	kwh/lb BOD (COD) removed
Blower efficiency	kwh/scfm/ft depth
Carbon source versus nitrogen removed	lbs COD/lb N removed
Chlorine consumed for disinfection	lbs chlorine/MG
UV power required	kwh/MG
Biogas production	cf gas versus dry lbs VS fed
Dewatered sludge solids	% solids

Wastewater Treatment Examples

Polymer usage (dewatering)	lbs active polymer /dry ton solids
Fuel consumption incineration	kwh (net caloric value) /dry ton
Electric self-sufficiency from digestion	% total power used
Electric consumption versus volume treated	kwh/MG
Electric consumption versus treated loading	kwh/lbs BOD (COD) treated
Coagulant versus phosphorus removed	lbs metal ion per lb P removed
Production versus design capacity	%
BOD removal versus Design BOD capacity	%

- Selected parameters for PCMP are agreed upon by the PCMP team and management
 - Guidance exists from technical staff, PCMP experts, benchmarking metrics, etc.
 - Each process should have a dedicated process control scheme that suggests monitoring parameters
 - Monitoring frequencies should be made at a minimum daily
 - Some parameters may need to be monitored multiple times per day or by automated equipment and sensors
 - Calculated values should be defined by equation and labels
 - Actual PVs and details how to calculate the value along with the proper units
 GWP, gal/sf/run = run time hours * 60 * filtration rate, gpm/sf

Targets Values

- Target values should be established using average historical performance parameters
 - Settled turbidity averaged 0.84 NTU from the clarifier for the period evaluated
 - Total chlorine residuals from disinfection averaged 1.81 mg/L for the period evaluated

Limits or flags

- Each target value should have limits or flags established that trigger process control actions
 - Upper Alarm Limit (UAL) critical action needed to avoid non-compliance
 - Upper Warning Limit (UWL) action needed to regain process control
 - Lower Warning Limit (LWL) action needed to regain process control
 - Lower Alarm Limit (LAL) critical action needed to avoid non-compliance

- Different methods of setting limits
 - Average based limits
 - Standard deviation (1 for warnings, 2 for alarms)
 - Historical data and percentile occurrence
- Method selection is not important, be consistent
 - Avoid setting limits too close to regulatory levels
 - Avoid setting limits that constantly result in warnings or alarms
 - Avoid changing limits setting just to stop warnings or alarms
 - PCMP team and management must approve each parameter and limits established
 - Use <u>Change Authorization Form</u> if limits need to be re-established due to a change in regulations or a significant change in process

Average based limits example

Daily chlorine resid	duals, mg/L	Average and limit settings						
2.35	1.57	Average value of the data is 1.81 mg/L						
2.14	2.08	Setting the UAL						
1.47	1.72	1.81 mg/L * 1.25 = 2.26 mg/L						
1.31	1.83	Setting the UWL						
1.78	1.46	1.81 mg/L * 1.15 = 2.08 mg/L						
2.51	1.69	Setting the LWL						
2.08	2.21	1.81 mg/L * 0.85 = 1.54 mg/L						
1.50	1.58	Setting the LAL						
1.65	1.73	1.81 mg/L * 0.75 = 1.36 mg/L						

Standard Deviation limits example

Daily chlorine resid	duals, mg/L	Average and limit settings
2.35	1.57	1 STDEV of the data is 0.34 mg/L
2.14	2.08	Setting the UAL
1.47	1.72	1.81 mg/L + (2 *0.34) = 2.49 mg/L
1.31	1.83	Setting the UWL
1.78	1.46	1.81 mg/L + 0.34 mg/L = 2.15 mg/L
2.51	1.69	Setting the LWL
2.08	2.21	1.81 mg/L - 0.34 mg/L= 1.47 mg/L
1.50	1.58	Setting the LAL
1.65	1.73	1.81 mg/L - (2 * 0.34) = 1.13 mg/L

Historical Data percentile limits example

Daily residua	lls, mg/L	Percentiles	Average and limit settings
2.35	1.57	95% - 2.37	Average value of the data is 1.81 mg/L
2.14	2.08	85% - 2.17	Setting the UAL
1.47	1.72	75% - 2.08	95 th percentile = 2.37 mg/L
1.31	1.83	65% – 1.84	Setting the UWL
1.78	1.46	55% - 1.75	$75^{\text{th}} \text{ percentile} = 2.08 \text{ mg/L}$
2.51	1.69	45% – 1.71	Setting the LWL
2.08	2.21	35% - 1.65	35^{th} percentile = 1.65 mg/L
1.50	1.58	25% – 1.57	Setting the LAL
1.65	1.73	15% - 1.49	$15^{\text{th}} \text{ percentile} = 1.49 \text{ mg/L}$

PCMP Report Forms

- Reports generated each week for management review and approval
 - Process Overview Reports overall plant performance
 - Treatment Stream influent, effluent, key unit processes
 - Consumables chemical and utility usage
 - Production water quality overview
 - Compliance Reports monitoring and sampling record
 - Unit Process Reports key unit process performance
 - Report by Exception exceedance of flag limits
 - Change Authorization Form change in target values or flag values

PCMP Report Forms - Overview

				PROCESS	STREAM RE	PORT O	VERVII	EW						
									REPORT					
	START DATE	8/25/13							DATE		9/4/13			
	END DATE	8/31/13	_											
VARIABLE							-	FORFOLOT						N. OF
NUMBER	PARAMETER	UNITS	AVERAGE	MINIMUM	MAXIMUM	TREND	FLAG	FORECAST	TARGET	LAL	LWL	UWL	UAL	No. OF
1	DAW/W/ATED ELOW/ (DW/E)	(9 702	46 105	90.919		-		65.000	20.000	42 000	85.000	05 000	SAMPLES	
2	RAW WATER FLOW (RWF)	MGD	68.705	46.195	80.818		TIW/T		5.000	30.000	43.000 NIA	85.000	95.000	7
12	COACHLATION -IL (TREATED-II)	NIU	34.06	6.20	99.91		UwL		5.00 - 10.00	1NA (20	1NA (50	20.00	7.20	7
12	COAGULATION pH (TREATEDPH)	50	6.67	6.55	6./5		TAT		6.70	6.30	6.50	6.90	7.20	/
							LAL,							
14		NTTT	0.08	0.76	1.52		LWL,		1.50	0.55	0.70	1 75	2.25	7
40	BASING IN SERVICE (# BASIN IN)	NUMBER	0.98	4.0	1.55				1.50	3.0	3.5	1.75 NIA	NIA	7
49 50	SLUDCE DEMOVAL (EM 5)		4.0 512 506	4.0	4.0				500.000	250.000	425.000	650.000	1NA 800.000	7
52	CLARIER ELEVATION (CE ELEVA	GAL/DAI	766.60	766.25	766.95				766.9	766.2	766.5	767.0	767.2	7
53	PIVER ELEVATION (ALCH ELEV)	FEET (MSL)	700.00	700.33	700.83				700.0 NIA	700.5	700.5	707.0	720.0	7
	RIVER ELEVATION (ALGH ELEV)	TEET (MSL)	/23.30	/22.40	/24.39				18/1	/22.0	/23.0	/20.0	730.0	/
12		MCD	59 917	47.162	69 522				65.000	20.000	42 000	85.000	05.000	7
15	FILTERED WATER FLOW (FWF)	SU	8.50	47.102 9.26	08.555 8.50				8.50	9.10	43.000 9.20	8.65	93.000	7
15		50	8.30 8.42	8.30	8.59				8.50	8.10 8.10	8.30 8.20	8.05	0.60	7
10	FINISHED PH (FINPH)	<u> </u>	8.43	6.28	8.55		-		8.50	0.90	0.00	0.05	1.40	7
43	FILTERED CHLORINE RES. [FREE] (FIL	mg/L	0.62	1.07	1.14		I IW/I		1.10	0.80	0.90	1.50	0.75	7
44	FINISHED CHLORINE RES. [FREE] (F	MTU	0.03	0.50	0.80				0.50	0.50	0.35	0.00	0.75	7
172	NO. CALLERY TURDIDITY (ICTURD)	NTU	0.092	0.059	0.155				0.030	INA NIA	INA NIA	0.070	0.100	7
172	NO. GALLERY TURBIDITY (NGTURB)	NTU	0.085	0.051	0.155		UAL		0.030	INA	INA	0.050	0.070	7
173	BACKWASH ELOW/ (BWELOW)		0.098	0.008	0.152				0.030	1NA 200.000	1NA 450.000	0.050	1 000 000	7
170	EUTEDED ELIME LEVEL (EE ELEV)	GAL/DAI	922,075	554,505	7(2.0		UwL		7(2.4	7(2.0	450,000	7(27	7(2.0	7
1/0	FILTERED FLOWIE LEVEL (FF ELEV)	TEET (MSL)	703.3	/03.3	/03.9				/03.4	/03.0	/03.2	/03./	/03.9	/
51	EINISHED WATER ELOW (EIN DIMD)	MCD	56 226	44 502	66 550				65.000	20.000	42 000	85.000	05.000	7
52	CLEARWELL LEVEL (CW ELEV)	EFET (MSL)	747.15	746.53	748.08				747.0	744.8	745.3	748.5	749.0	7
52	CLEARWELL LEVEL (CWELLEV)	THEFT (MISL)	/4/.15	/40.55	740.00				747.0	/44.0	745.5	740.5	749.0	/
COMMENTS	ļ													I
COMMENTS	Clarified water turbidity I.W.L. of 0.70 NTU she	uld trigger close	r monitoring	of turbidity lavel	s and a reduction	in primary	nolymer ((Clarifloc) dosaga						
	If the clarified water turbidity falls to 0.55 NTU	(LAL) it should	d alarm a low t	urbidity value ar	ad the primary po	lymer (Cla	rifloc) sho	uld be turned off						
	Clarified water turbidity UAL of 2.25 NTU sho	uld trigger close	r monitoring	of turbidity lovel	s and an increase	in primary	nolymer (Clarifloc) docare						
	Claimed water turbidity 0712.01 2.25 1110 silo	ulu trigger close	a monitoring o	SI turbidity level	s and an increase	in prinary	polymer (Claimoc) dosage.						
	Plant Manager	Date		Process Contro	al Director		Date							
	- min minger	Zate		100000 00000	2 Director		2 410							
			-						-					

PCMP Report Forms - Overview

				WATER TI	REATMENT F	PLANT								
				CONSUM	IABLES REF	PORT								
I	START DATE	8/25/13	-						REPORT		9/4/13			
	END DATE	8/31/13							DATE					
		1			<u>г г</u>			1						
VARIABLE NUMBER	PARAMETER	UNITS	AVERAGE	MINIMUM	MAXIMUM T	REND	FLAG	FORECAST	TARGET	LAL	LWL	UWL	UAL	# OF SAMPLES
28	CLARIFLOC (CATFLOC)	GAL/DAY	22.4	0.0	110.0		LAL		65.0	50.0	55.0	80.0	100.0	7
29	FERRIC CHLORIDE DOSAGE (FeCl3 DOSE)	mg/L	26.1	23.6	29.5				25.00	20.00	22.50	27.50	30.00	7
30	FERRIC CHLORIDE (FeCl3 TOT)	LBS/DAY	14759.2	11376.1	18009.0		UAL		1391.3	1113.1	1252.2	1530.4	1669.6	7
31	KMnO4 DOSAGE (KMnO4 DOSE)	mg/L	0.51	0.46	0.56				0.40 - 0.60	0.20	0.30	0.70	0.80	7
32	KMnO4 TOTAL (KMnO4 TOT)	LBS/DAY	291.6	178.0	354.4				200-300	125.0	150.0	350.0	375.0	7
34	LIME TOTAL (LIME TOT)	LBS/DAY	3880.0	0.0	4560.0				2600 - 3800	1800.0	2400.0	5000.0	6000.0	7
35	CARBON TOTAL (CARB TOT)	LBS/DAY	1482.1	1329.0	1606.0				500 - 1500	300.0	400.0	2500.0	>2500	7
			-		7									
37	FLUORIDE TOTAL (F TOT)	LBS/DAY	321.5	312.7	331.7		UAL		56.7	42.5	49.6	63.8	70.9	7
36	FLUORIDE DOSAGE (F DOSE)	mg/L	0.67	0.56	0.82		LWL		0.80	0.60	0.70	0.90	1.00	7
39	SODA ASH TOTAL (SA TOT)	LBS/DAY	17763.0	13651.5	23699.7		LWL		23000.0	14000.0	18000.0	28000.0	320000.0	7
40	PHOSPHATE (POLYP)	LBS/DAY	1.0	1.0	1.0				1.00	0.33	0.67	1.33	1.67	7
42	CAUSTIC SODA TOTAL (CAUS TOT)	LBS/DAY	185.6	0.0	1299.2				0.0	N/A	N/A	3000.0	4500.0	7
45	PRE CHLORINE (PREHYP)	GAL/DAY	0.0	0.0	0.0				0.0	N/A	N/A	1250.0	1500.0	7
46	PRE-FILTER CHLORINE (PREFHYP)	GAL/DAY	381.4	270.0	650.0				120-600	60	90	400	480	7
47	POST-FILTER CHLORINE (POSTFHYP)	GAL/DAY	638.6	300.0	900.0				240-720	180	210	840	900	7
200	ELECTRICAL CONSUMPTION (ELEC TOTAL)	KW								N/A	N/A			7
201	NATURAL GAS CONSUMPTION (GAS TOTAL)	CU FT								N/A	N/A			7
	•													
COMMENTS:														
	Plant Manager	Date		Process Con	trol Director		Date							

PCMP Report Forms - Overview

WATER TREATMENT PLANT														
				PRODUCT	ION REPOR	Г								
									REPORT					
	START DATE	8/25/13							DATE		9/4/13	-		
	END DATE	8/31/13												
				1	1									
VARIABLE	PARAMETER	UNITS	AVERAGE	MINIMUM	MAXIMUM	TREND	FLAG	FORECAST	TARGET	LAL	LWL	UWL	UAL	No. OF
NUMBER														SAMI LES
1	RAW WATER FLOW (RWF)	MGD	6.546	6.733	0.000		LAL		65.000	30.000	43.000	85.000	95.000	7
13	FILTERED WATER FLOW (FWF)	MGD	8 358	8 590	0.000		LAL		65,000	30,000	43,000	85,000	95,000	7
51	FINISH WATER FLOW (FINPUMP)	MGD	746.525	748.079	0.000		UAL		65.000	30.000	43.000	85.000	95.000	7
177	BACKWASH FLOW (BWFLOW)	GAL/DAY	763	764	0		LAL		600000	300000	450000	800000	1000000	7
														[
	INFLUENT CONCENTRATION													
10	RAW ALKALINITY [CaCO3] (RAWALK)	mg/L	45.90	42.00	49.00				35.00	15.00	20.00	55.00	60.00	7
5	RAW HARDNESS (RAW (CaCO3))	mg/L	111.81	88.00	128.00				100.00	N/A	N/A	130.00	150.00	7
2	RAW TURBIDITY (RAWTURB)	NTU	0.76	1.53	0.00				5.00 - 10.00	N/A	N/A	20.00	40.00	7
6	RAW IRON [TOTAL] (RAW Fe TOT)	mg/L	0.13	0.03	0.24				VARIABLE	N/A	N/A	150.0	170.0	7
8	RAW MANGANESE [TOTAL] (RAW Mn TOT)	mg/L	0.03	0.00	0.05				0.05 - 0.20	N/A	N/A	0.20	0.25	7
3	RAW pH (RAWpH)	SU	7.30	7.20	7.44				7.80	7.00	7.20	8.40	8.60	7
														İ
	EFFFLUENT CONCENTRATION													
25	FINISHED ALKALINITY [CaCO3] (FINALK)	mg/L	60.00	55.00	70.00				55.00	25.00	30.00	70.00	75.00	7
17	FINISHED HARDNESS [CaCO3] (FINHARD)	mg/L	116.00	100.00	138.00				100.00	N/A	N/A	130.00	150.00	7
174	SETTLED TURBIDITY (SETT TURB)	NTU	0.440	0.158	1.671				0.600	N/A	N/A	0.900	1.200	7
20	FINISHED IRON [TOTAL] (FIN Fe)	mg/L	0.008	0.00	0.03		·		<0.02	N/A	N/A	0.05	0.07	7
21	FINISHED MANGANESE [TOTAL] (FIN Mn)	mg/L	0.012	0.00	0.03				<0.02	N/A	N/A	0.03	0.04	7
16	FINISHED pH (FINpH)	SU	1.07	1.14	0.00		LAL		8.50	8.10	8.30	8.65	8.80	7
44	FINISHED CHLORINE RES. [TOTAL] (FIN CI)	mg/L	0.06	0.15			LAL		0.50	0.30	0.35	0.60	0.75	7
														í
COMMENTS:														
	Plant Manager	Date		Process Contr	al Director		Date							
	Tunt munuful	Dait		1 iocess Contro	Director		Dan							

PCMP Report Forms - Compliance

	Compliance Report Form												
77	DI												
Ireatm	ent Plant												
Year													
	Sample Description		Assigned to	Date Scheduled	Parameter	Sample Type	Number of samples	Visual Inspection of Sample	In-house or Contract laboratory	Person Collecting & Transferring Sample	Pickup Date	Chain of Custody review (initials)	QA/QC Review (initials)
Comme	ents												
Commit			(*) <u>NPD</u> I	ES, DWR, Sto	orm water, Dri	nking water, G1	ound water, S	olids, Special	studies, Proce	ess control, othe	r		
Signati	ures							·					
			-1					Date					
Regula	tory Review	QA/QC							-				
Labora	tom Suportio	0.*						Date	-				
Labora	nory supervis	UI.	ļ					Date					
Plant N	lanager							Date					
	0												

PCMP Report Forms - UPR

		UNIT PRO	VATER TREA	TMENT PLAN	NT 8- Eiltration						
		UNIT PRO	CESS REPOR	I - Clarification	α ritration	REPORT					
	START DATE	8/25/13				DATE		9/4/13			
	END DATE	8/31/13									
		-		-					-		
VARIABLE NUMBER	PARAMETER	UNITS	MINIMUM	MAXIMUM	AVERAGE	TARGET	LAL	LWL	UWL	UAL	No. OF
1	RAW WATER FLOW (RWF)	MGD	46,195	80.818	68,703	65,000	45,000	55,000	80.000	90.000	SAMPLES 7
29	FERRIC CHLORIDE DOSAGE (FeCl3 DOSE)	mg/L	23.63	29.53	26.14	25.000	20.00	22.50	27.50	30.00	7
	CLARIFLOC [POLYMER] DOSAGE	mg/L	0.00	1.65	0.38	0.00	n/a	n/a	n/a	n/a	7
	ACTIVATED CARBON DOSAGE	mg/L	2.23	3.75	2.67	1.00 - 3.00	0.60	0.80	3.50	5.00	7
33	LIME DOSAGE (LIME DOSE)	mg/L	0.00	11.52	7.16	6.0-10.0	4.00	5.00	11.00	12.00	7
	FeCl3 FEED PUMP SETTING; MOTOR/TRANS	%									7
63	CLARIFLOC FEED PUMP SETTING; (CAT SET)	%	0	10	3	0	n/a	n/a	n/a	n/a	7
64	PRE-FILTER CLARIFLOC PUMP SETTING; (PF CAT SET)	%	100	190	113	100	25	50	>100	>115	7
30	FERRIC CHLORIDE TOTAL	LBS/DAY	11376.1	18009.0	14759.2	14324.7	11459.7	12892.2	15757.1	17189.6	7
28	CLARIFLOC [POLYMER] (CATFLOC)	GAL/DAY	0.0	110.0	22.4	0.0	n/a	n/a	n/a	n/a	7
34	LIME TOTAL (LIME TOT)	LBS/DAY	0.0	4560.0	3880.0	2600 - 3800	1800.0	2400.0	5000.0	6000.0	7
41	CAUSTIC SODA DOSAGE RWF (CAUS DOSE RWF)	mg/L	0.00	2.10	0.30	6.00 -10.00	3.00	4.00	12.00	13.00	7
42	CAUSTIC SODA TOTAL RWF (CAUS TOT RWF)	GAL/DAY	0.0	203.0	29.0	450-800	350.0	450.0	800.0	900.0	7
27	PRE FILTER CLARIFLOC (FILT CAT)	GAL/DAY	20.0	31.0	26.1	30	10	15	35	40	7
35	CARBON TOTAL (CARB TOT)	LBS/DAY	1329.0	1606.0	1482.1	400.0 - 1000.0	300.0	375.0	1000.0	1750.0	7
12	COAGULATION pH (TREATEDpH)	SU	6.55	6.73	6.67	6.70	6.30	6.50	6.90	7.20	7
14	CLARIFIER TURBIDITY (CLARTURB)	NTU	0.76	1.53	0.98	1.50	0.55	0.70	1.75	2.25	7
49	BASINS IN SERVICE (#BASIN IN)	NUMBER	4	4	4	4	2	3	NA	NA	7
13	FILTERED WATER FLOW (FWF)	MGD	47.162	68.533	58.817	65.00	30.00	45.00	80.00	90.00	7
175	FILTERS IN SERVICE	NUMBER	16	17	16.4	18	14	16	NA	NA	7
176	FILTERS BACKWASHED AVERAGE/DAY	NUM/DAY	2	5	3.9	4 - 5	<3	3	6	>6	7
177	BACKWASH FLOW (BW FLOW)	GAL/DAY	534565	1192903	922075	600000	300000	450000	800000	1000000	7
26	FILTERED TURBIDITY (FILTTURB)	NTU	0.059	0.153	0.092	0.030	NA	NA	0.070	0.100	7
172	NORTH GALLERY TURBIDITY (NGTURB)	NTU	0.051	0.155	0.085	0.030	NA	NA	0.050	0.070	7
173	SOUTH GALLERY TURBIDITY (SGTURB)	NTU	0.068	0.152	0.098	0.030	NA	NA	0.050	0.070	7
174	SETTLED TURBIDITY (SETT TURB)	NTU	0.158	1.671	0.440	0.5 - 0.7	NA	NA	0.750	>1.0	7
50	SLUDGE REMOVAL; FM-5 (SLUDGE TOTAL)	GAL/DAY	496420	527275	513596	500000	350000	425000	650000	800000	7
COMMENTS	:										
	Plant Manager	Date		Process Contro	ol Director			Date			
1									-		

PCMP Report Forms - Exceptions

	Report by Exception Memo				
Treatment Plant Date					
Parameter Exception	Flag Exception (LAL, LWL, UWL, UAL)	Actual	Value	Target	Value
1 Are Permit Contractual	or other Excursions a possibility in the next 7 days?				
2. Description of event(s) (a samples, QA/QC issues, misse	e.g., equipment failure, shock load, operator error, mi d analysis, missed reports, etc.)	issed			
3. What steps are being take or report(s)?	en to alleviate the Control Limit Exceedance, missed	sample(s)			
4. Is on -site assistance need	led?				
5. Are new contingency pla	ns needed? If so what?				
(Attach addi	tional sheets as necessary for each line item)				
Process Control Director		Date			
Project Manager		Date			

PCMP Report Forms - Change Auth.

Process Cont	trol - Alarm/Flag - Change Authorization Form
reatment Plant	
Index/Variable	e Number
neter Description/Name:	
rt Description:	
e of Change:	
Review Period:	from to
Review Average:	
Review Maximum:	
Review Minimum:	
Review Std. Deviation:	
ng Upper Alarm Limit	
ting Upper Warning Limit	New Upper Warning Limit
ting Lower Warning Limit	New Lower Warning Limit
ting Upper Warning Limit	New Upper Warning Limit
ge Requested By:	
× ± ×	Process Control Manager Signature
ge Approved By:	Diant Managar Signature
	riant manager signature

Unit Process Strategies

- Unit Process Strategies are written description of unit process and design characteristics (SOP) along with expected operating criteria
 - Scientific basis for process and control
 - Current target values and flags (LAL, LWL, UWL, UAL)
 - Compliance requirements
 - Troubleshooting guides
 - SOPs available for process control
 - Operator tool kit for process control adjustments
 - Expected water quality ranges
 - Adjustments necessary due to abnormal operation
 - Process operations to achieve water quality targets and compliance

Summary

- Proper deployment of PCMP provides a consistent means of regulatory compliance
 - Team approach to process control
 - Documented procedures and tasks
 - Verification and QA/QC
 - Tracking of KCPs and KPIs
 - Meetings and Reporting
 - Keyed in on regulatory limits and benchmarking metrics
 - Proven success at more consistent compliance efforts

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931