Assessing Ultrasound as a Source Water Reservoir Management Strategy to Control Cyanobacteria Blooms

C.R. Weaver, Linda Weavers, Zuzana Bohrerova, Jason Cheng, Yousuf Yousuf and Alex Viera

Can ultrasound in your reservoir ...

...turn this...

...into this?

Ultrasound

Cavitation Bubble

Thermolytic Center -

State: Gaseous

Collapse Temperature: ~3360 K

Collapse Pressure: ~313 atm

Resonant Radius: 5µm - 200 µm

Lifetime: ~O(10) µs

Thermolysis of water vapor and volatile compounds

$H_2O(g) \longrightarrow H^{\bullet} + {\bullet}OH$ $H^{\bullet} + O_2(g) \longrightarrow HO_2^{\bullet}$

Interfacial Region

State: Fluid under extreme conditions

Collapse Temperature: ~1900 K

Width: ~200 nm Lifetime: < 2µs

•OH Concentration: ~4 mM

Oxidation & thermolysis of non-volative

and ionic compounds

Bulk Region

State: Liquid

Temperature: Ambient

Survived •OH

Accumulation of H₂O₂

Physical Mechanisms

Microjets

Transient Collapse

Bubble increases and decreases in size—high shear stress

Stable Collapse

How Can Ultrasound Control Cyanobacteria Blooms?

Gas Vesicles in Anabaena

Microcystis Cell

Lyse Cells

Collapse Gas Vesicles

- a = atmospheric
- h = hydrostatic
- c = surface tension cell wall
- t = turgor pressure of cell
- s = surface tension vesicle wall
- g = gas
- ac = acoustic

$$P_{\text{net}} = P_{\text{a}} + P_{\text{h}} + P_{\text{c}} + P_{\text{t}} + P_{\text{s}} - P_{\text{g}} \pm P_{\text{ac}}$$

Sonoporation

Using Ultrasound to Control Cyanobacterial Blooms

Ultrasound has been shown to:

- Collapse gas vesicles in cells
- Break filamentous cyanobacteria
- Inhibit growth
- Reduce cell concentrations
- Inactivate cells
- Reduce photosynthetic activity
- Increase sedimentation rates
- Contribute to toxin release
- Negligible or detrimental effect on other organisms
- Decrease cell counts in reservoir

High Power Ultrasound

- Transient Cavitation present
- Lyse and inactivate cells
- High potential to release toxins

Low Power Ultrasound

- No cavitation or only stable cavitation present
- Collapse gas vesicles in cells
- Low potential to release toxins

Common Mechanism Cited by Manufacturers

https://www.lgsonic.com/ultrasonic-algae-control-technology/

https://www.environmental-expert.com/products/vor-algae-model-xxl-series-controller-248458

https://www.toscano.es/en/ultrasound/

https://www.lgsonic.com/ultrasonicalgae-control-technology/

Ultrasonic Device Manufacturers

- LG Sonic Algae Control
- DUMO Algacleaner
- Ultrasound Algae Killer
- VoR Algae Controller XXL
- Sonic Solutions LLC

Challenges

- Concern about toxin release
- Inconsistent results reported due to differences in
 - powers used in studies and
 - experimental design
- Potentially detrimental to other organisms
- Systematic studies in reservoirs lacking

Objectives of our study

- Provide systematic field study of effectiveness of ultrasound
- Bridging gap between lab studies and field studies
- Assess changes to physiology and numbers of cyanobacteria and non-target organisms
- Assess ability of ultrasound to release intracellular toxins

Cyanobacteria Targeted

- Found in Ohio waters
- Produce Microcystins
- Contain gas vesicles
- Have different critical pressures needed to collapse vesicles

Initial Experimental Plan

- 1. Deploy ultrasonic system at drinking water reservoir operated by City of Columbus
- 2. Characterize sound field by hydrophones
- 3. Set up control and test cells

- 4. Run tests with the presence of different organisms *Microcystis aeruginosa, Anabaena,* and *Planktothrix,* and possibly *Lyngbya,* and *Cylindrospermopsis*.
- 5. Monitor water quality along water column in each cell

Hoover Column Experiments Summer 2018

- Columns installed in July
- Analysis start 9/2 and end 9/20
- Lab Analysis (top column, last sample also bottom)
 - Total chlorophyll (mg/L), spectrometry method
 - OD 610 nm
 - Microcystin total and extracellular
 - Nitrogen and phosphorous
- Sondes temperature, DO, conductivity, pH, turbidity, chlorophyll A, phycocyanin

Transducer

Measured in June.

Column Study Results

- Hard to control large volume homogeneity
- Difficult to encourage cyanobacterial growth (other green algae and bacteria compete for growth)
- Difficult to control nutrients and rain/evaporative conditions
- Sondes maintenance and regular calibration needed

Column sample became dominated by Chlorella sp.

Controlling our system - jugs

- Analysis start 9/27 and end 10/04 (week)
- Lab Analysis
 - Total chlorophyll (mg/L), spectrometry method
 - OD 610 nm
 - Microcystin total and extracellular
 - Total Suspended Solids
 - pH, Conductivity, Turbidity
- Easier to achieve homogeneity
- Closed system (light penetration?) – possible direct use of cyanobacteria
- Controlling predation/competition of other organisms?

Measured in June

Measured in September

Cyanobacteria surrogate

- Serratia species BSL-1, ATCC 3009
- Freshwater non pathogenic bacteria
- Easy to grow and enumerate on general nutrient media
- Fast growth rate
- Gas vesicles with similar collapse pressure sensitivity as Microcystis (Serratia 0.4334 MPa, Microcystis sp. 0.468 MPa) – Tashiro et al. 2016

Serratia sp. Spring 2019 – vernal pool

- Experiment start 4/2 and end 4/8 (week)
- Samples in vernal pool and controls in adjacent stormwater pond
- Sample time 0, time 1 (1 day), time 7 (7 days)
- Lab Analysis
 - Enumeration (spot plate nutrient agar) measure of growth and/or decay
 - OD 610 nm
 - Live/dead stain measure of membrane integrity
 - TEM qualitative analysis of gas vesicles (presence and absence)

Hydrophone Measurement

Operation of Transducer

- A microcontroller was installed to measure and record the current pulled from the power supply by the transducer.
- Combining with the results from hydrophone measurements, the current monitoring indicate that the transducer maintained at operating condition throughout the testing period.

Results vernal pool – Serratia sp.

No significant difference in *Serratia* sp. growth between control and sample

Results
vernal pool —
Serratia sp.

No difference between Live/dead cells (membrane integrity changes)

Results vernal pool – Serratia sp.

TEM of *Serratia* sp. without vesicles

TEM of *Serratia* sp. not exposed to ultrasound 1 week

TEM of *Serratia* sp. exposed to ultrasound 1 week

No observable difference in gas vesicles under TEM

Continuing Work

- Repeat Serratia experiments to confirm results
- More controlled conditions jugs with more pressure sensitive species 116 WALSBY MICROBIOL. REV.

Work with reservoir.

FIG. 20. Critical pressure distributions of gas vesicles from various species of cyanobacteria and a halobacterium (230). Modified from Walsby and Bleything (254) with permission from the publisher.

So, can ultrasound in your reservoir ...

...turn this...

...into this?

...it is not an easy question to answer

- At present, we do not have evidence that ultrasound collapses gas vesicles or changes growth between exposed and control samples
- We did not look for all possibilities of effects of ultrasound. Possible other mechanisms related to sonoporation may be occurring.