Additive Property of Equality

Angle

Area (A)

Axis

Best Fit Straight Line

The same quantity can be added to both sides of an equation.

$$
\text { Example: If } a=b \text { then } a+c=b+c
$$

The space or shape made by two straight lines is an \qquad .

At this level, usually measured in degrees $\left({ }^{\circ}\right)$.

The surface contained within a geometric figure, measured in square units of length is the \qquad .

A central line around which things are arranged is an \qquad .

A line which estimates (guesses at) the best line which characterizes the data points is the \qquad .

It is not the line that directly connects the points.

Circumference (c)

Coefficient

Conversion Factor

Delta (Δ)

The line bounding a circle is the \qquad , the length of that line.

A multiplier of a variable or unknown quantity, a number written in front of a variable, as 6 in $6 x$ is a \qquad .

A ratio with the value of 1 that can be used to change the name of a quantity is a \qquad .

A change, positive or negative, in the value of a variable; often used to describe a change from one condition to another is a \qquad -.

$$
\text { Example: } \Delta \mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}
$$

A straight line through the center of a circle from one side to the other is

Diameter

a \qquad .

Division Property of Equality

Equation

Equivalent

Equivalent Quantities

Evaluate
To find the value or amount is to \qquad .

Exponential Property of Equality

Expression

Form of a Solution

Function

Both sides of an equation can be raised to the same power and maintain the truth of equality.

Example: If $a=b$, then $a^{x}=b^{x}$ This is the \qquad .

Mathematical symbol or symbols that show meaning.

A mathematical sentence is considered solved when the variable is by itself on one side of the equation with a coefficient of +1 (Often the +1 is not written), and the number or symbols that make the sentence true on the other side of the equation.

A description of the relationship between numbers or groups of numbers is a \qquad .

There exists an element 1 , such that:
$\mathrm{a} \times 1=\mathrm{a}$, and $\mathrm{a} \div 1=\mathrm{a}$.

Identity Element of Addition and Subtraction

Identity Property of Equality

Intersect

Inverse, Invert

Inverse of Addition

There exists an element 0 , such that: $a+0=a$, and $a-0=a$.

If $a=b$ then $b=a$, is the \qquad .

To meet or cross is to \qquad .

To turn upside down, to reverse the order. For numbers, this is often thought of as a reciprocal.

Example: The reciprocal of x is $1 / \mathrm{x}$.

Subtraction, the process of undoing addition, often used to remove numbers when solving equations is the \qquad .

Inverse of Division

Inverse of Exponentiation

Inverse of Multiplication

Length

Multiplication, a process of undoing division and often used when solving equations, is the \qquad .

Taking a root, often used when solving equations, is the \qquad .

$$
\text { Example: } \sqrt{\mathrm{x}^{2}}=\mathrm{x}
$$

Division, a process of undoing multiplication and often used when solving equations, is the \qquad .

Addition, the process of undoing subtraction, often used to remove numbers when solving equations, is the \qquad .

$$
\text { Example: }-5+5=0
$$

The distance on a line between two points is a \qquad .
Often it is measured in centimeters (cm).

Like

Like Terms

Line

Having the same characteristics; equal.

Terms where the variable portions of the expression are alike are called
\qquad .

A thin threadlike mark, a row of things, as of number points across a page is a
\qquad .

Magnitude

Multiplicative Inverse

Greatness of size, importance.

A reciprocal is a \qquad .

Multiplicative Inverse or Reciprocal

Multiplicative Property of Equality

Origin

Percent (\%)

pi (π)

The number that gives a product of one when multiplied times another number is the \qquad .

Example: $\frac{1}{x y}$ is the ___ of $x y$.

The same quantity can be multiplied times both sides of an equation. \qquad .

Example: If $\mathrm{a}=\mathrm{b}$, then $\mathrm{ac}=\mathrm{bc}$

The source; the intersection of the x -axis and the y-axis; the point $(0,0)$ is the
\qquad .

In, to, or for every hundred is \qquad .

The symbol designating the ratio of the circumference of a circle to its diameter is \qquad .

$$
\pi=\frac{\mathrm{c}}{\mathrm{~d}}
$$

Proportion

Quantity

Radius (r)

Ratio or Fraction

Rise

An equation stating the equality of two ratios is a \qquad .

Example: $\frac{1}{2}=\frac{2}{4}$

A number or symbol expressing a thing that can be measured is a \qquad .

Any straight line from the center to the circumference of a circle is a \qquad .

A comparison of two numbers by division is a \qquad -.

Change in the vertical direction (Δy) is called the \qquad .

$$
\Delta \mathrm{y}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)
$$

Root

Run

Simplify

The \qquad of an equation is a value for the variable that makes the equation a true statement.

The change in the horizontal direction ($\Delta \mathrm{x}$) is the \qquad .

$$
\Delta \mathrm{x}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)
$$

To make simpler or less complex is to \qquad .
$\frac{\text { rise }}{\text { run }}=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{X}_{2}-\mathrm{x}_{1}}$ where ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) are an ordered pair of coordinates, indicating points in the plane is the \qquad .

When a linear equation is solved for y it is in the form: $\mathrm{y}=\mathrm{mx}+\mathrm{b} ; \mathrm{m}$, the coefficient of x, is the slope and b is the y intercept (where the line crosses the y -axis). \qquad .

Slope Intercept Form of an
 Equation

Solution

Solving Process

Straight

Substitute

Substitution Assumption

If a mathematical sentence contains a variable, a value for the variable that makes the sentence true is called a
\qquad .

In general, for simple equations the solving process reverses the normal order of operations (PEMDAS); addition and subtraction are reversed first and multiplication or division second and dealing with exponents last. \qquad .

Having the same direction throughout its length, not crooked or bent is \qquad .

To put in place of another is to \qquad .

We will assume that if quantities are defined as equal, the number system allows us to substitute the symbols and the numbers for the quantities interchangeably.

The same quantity can be subtracted from both sides of an equation.

Example: If $\mathrm{a}=\mathrm{b}$ then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$

A symbol indicating a relationship between two variables. \qquad .

A line touching a curved surface at one point, but not intersecting it is a \qquad .

A letter or symbol that stands for a

 number that can be changed is a \qquad .A point where two lines or planes intersect and form an angle is a \qquad .

x -axis

x -axis

$$
y \text {-axis }
$$

The horizontal line on a graph, usually indicating an independent variable is the \qquad .

The line $\mathrm{y}=0$ is the \qquad .

The vertical line on a graph, usually indicating a dependent variable is the \qquad .

The line $\mathrm{x}=0$ is the \qquad .

The point where a line crosses the y axis is the \qquad .

y-intercept

Absolute value (\mid |)

Add and Subtract Fractions

Addition (+)

The value for y when $\mathrm{x}=0$ in a linear equation is the \qquad .

Value of a number without a sign \qquad .

The bottom numbers (denominators) of fractions must be the same to \qquad .

Often fractions must be changed to equivalent fractions

Example: $\frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$

The process used to combine things or numbers is \qquad .

Additive Inverse

The sum of a number and its is zero.

Associative Property of Addition

Associative Property of Multiplication

Base

Combine

Commutative Property of Addition

Changing the groupings does not change the sum of addition. \qquad .

Example: $\mathrm{a}+(\mathrm{b}+\mathrm{c})=(\mathrm{a}+\mathrm{b})+\mathrm{c}$.

Changing the groupings does not change the product of multiplication. \qquad .

Example: $a(b c)=a b(c)$.

The number that is raised to an exponent.
Example: in $\mathrm{x}^{3}, \mathrm{x}$ is a \qquad .

To join into one using some defined pattern or rule is to \qquad .

The justification for changing the order of addition is the \qquad .

Example: $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$

Commutative Property of Multiplication

Commute

Complex fraction

Composite number

Decimal Equivalent

The justification for changing the order of multiplication is the \qquad .

Example: $\mathrm{abc}=\mathrm{bca}=\mathrm{cab}=\mathrm{acb}=\mathrm{bac}=\mathrm{cba}$

To change, exchange or interchange is to \qquad .

A fraction with a fraction or a mixed number in the numerator (top) or denominator (bottom) or both is
a \qquad .

A whole number that has factors other than 1 and itself is a \qquad .

The form of a fraction obtained by dividing a numerator by a denominator, as from a calculator is the \qquad .

Degree $\left({ }^{\circ}\right)$

Denominator

Distribute

Distributive Property of Multiplication

A unit of measure for angles and arcs; $1 / 360$ of a circle is a \qquad .

The term below the line in a fraction is the \qquad .

To spread out is to \qquad .

Multiplication spreads out over addition.
Example: $\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$

Invert (turn upside down) the second fraction and change the division sign to a multiplication is the process to

$$
\begin{aligned}
& \frac{\text { top }}{\text { bottom }} \div \frac{\text { top }}{\text { bottom }}=\frac{\text { top }}{\text { bottom }} \times \frac{\text { bottom }}{\text { top }} \\
& \text { Example : } \frac{1}{5} \div \frac{2}{3}=\frac{1}{5} \times \frac{3}{2}=\frac{3}{10}
\end{aligned}
$$

Dividend

Division ($/,-,-, \stackrel{,}{ }$)

Divisor

Equivalent Fractions

Exponent

The number that is divided; the part of a fraction that is above the line (numerator) is the \qquad .

The inverse of multiplication is \qquad .

The number by which a dividend is divided, The bottom number of a fraction (denominator) is the \qquad .

Ratios that have the same value but have different names (denominators) are \qquad .

The number written as a superscript, that indicates how many times a number is to be multiplied times itself is an \qquad . In $x^{3}, 3$ is an \qquad .

Factors

Ratio or Fraction

Fraction Bar (-)

Greater than sign (>)

Irrational Number

Larger

Least Common Multiple (LCM)

A non-terminating, non-repeating decimal number; a number that cannot be expressed as a quotient of two integers is an \qquad .

Examples: π and $\sqrt{2}$

Going to the right on the number line, the value of the numbers get \qquad .

The smallest number that is a multiple of two numbers is the \qquad .
$<$
The sign that indicates the number on the left of the sign is smaller is the \qquad .

$$
\text { smaller }<\text { larger. }
$$

A number that has a part that is an integer and a part that is a fraction is a \qquad .

$$
\text { Example: } 2 \frac{1}{3}
$$

Multiplication

Multiply Fractions

Natural number

Negative (-) numbers

A number and a variable written together " 5 x " or variables written together "xy" means \qquad .

Top times top = new top;
Bottom times bottom = new bottom, is the process to \qquad .

Example: $\frac{\text { top }}{\text { bottom }} \times \frac{\text { top }}{\text { bottom }}=\frac{\text { new top }}{\text { new bottom }}$ $\frac{2}{5} \times \frac{2}{3}=\frac{4}{15}$

The number 1 or any number obtained by continually adding 1 to that number is a \qquad .

Numbers less than 0 , that decrease in value as the numbers get larger are \qquad .

The opposite of +4 is \qquad .

Numerator

Numerical

One

Real numbers are defined by the \qquad .

The part of a fraction above the division bar is the \qquad .

Something involving or expressed in numbers is \qquad .

The product of a number and its multiplicative inverse is \qquad .

The order in which operations are performed to evaluate expressions; acronym PEMDAS (parenthesis, exponents, multiplication and division, addition and subtraction). \qquad .

PEMDAS

Please Excuse My Dear Aunt Sally

$\underline{\text { Parenthesis, Exponents, }} \underline{\text { Multiplication, }}$ Division $\underline{\text { Adddition, }}$ Subtraction
\qquad .

Memory trick for PEMDAS. \qquad .

Positive (+) Numbers

Positive (+) Number

Prime Factors

Factors of a whole number that are prime numbers are \qquad .

Example: \qquad of 6 are 2 and 3 .

Prime Number

Product

Proper Fraction

Quotient

A whole number whose only factors are 1 and itself is a \qquad .

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23...

The result obtained when multiplying two or more numbers together is the \qquad .

Any number that can be written as a ratio of real numbers that "sits" between 1 and 0 and 0 and -1 is a \qquad .

The quantity obtained when one number is divided by another is a \qquad .

A number that can be expressed as a ratio of two integers (whole numbers)is a
\qquad .

Real Numbers

Reciprocal

Example: The \qquad of 7 is $1 / 7$.

Often a negative exponent is used to indicate a \qquad .

$$
\text { Example: } 7^{-1}=\frac{1}{7}, 7^{-2}=\frac{1}{7^{2}}
$$

The product of a number and its \qquad is 1 .

$$
\text { Example: } \frac{2}{3} \times \frac{3}{2}=1
$$

Going to the left on the number line, the value of the numbers gets \qquad .

Subtraction

Finding the difference between things or numbers is \qquad .

Sometimes thinking "take away" is useful.

Undefined, division by zero is not permitted
$\frac{7}{0}=$ \qquad .

Zero divided by any number (except zero) is \qquad .

Zero

The point marked 0 from which quantities are reckoned on a graduated scale is \qquad .

The sum of a number and its additive inverse is \qquad .

Common

Deductive Reasoning

Inductive Reasoning

A statement universally accepted as true is an \qquad .

Belonging to or shared by all.

\qquad .

Reasoning that uses logic based on rules and definitions to establish principles is \qquad .

Reasoning based on experimental evidence is \qquad .

To assign (arbitrary assumption) is to
\qquad .

Magnitude

Multiplication

Multiplication

Transitive Property of Equality

Undefined

Size, importance. \qquad .

The process of finding the quantity obtained by adding a specified quantity to itself a specified number of times is \qquad -.

$$
\text { Example } 3(5)=5+5+5=15
$$

The symbols: x, \times, a dot " \cdot ", the parenthesis "()", a vertical line " | "can all be used to indicate \qquad .

Things equal to the same thing are equal to each other. \qquad .

Example: If $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$, then $\mathrm{a}=\mathrm{c}$.

The opposite of defined, not possible to describe exactly is \qquad .

