

	Practice Units (Cont'd)		More
	Item	Domain	CC Codes
17.	Writing Equations Using Data Points	2	G-C0. 12
18.	Transversals/Parallels	2	G-CO. 9
19.	Graphing Translations	2	G-C0. 5
20.	Graphing Rotations	2	G-CO. 3
21.	Graphing Dilations	2	G-SRT. 1
22.	Graphing Reflections	2	G-C0.5
23.	Parallel Lines Proportionality I	3	G-CO.5, . 12
24.	Parallel Lines Proportionality II	3	G-CO.5, . 12
25.	Parallel Proofs	3	G-C0.9
26.	Vertical/Supplementary Angles	3	G-C0.9
27.	Sum of Angles and Sides	3	G-C0.9
28.	Hypotenuse Leg	3	G-C0.8
29.	Complimentary and Supplementary Angles	3	G-C0.9
30.	Solving For Congruency (AAS, ASA)	3	G-C0.8
31.	Solving For Congruency (SAS)	3	G-C0.8
32.	Matching Exterior Angles	3	G-C0.9
33.	Matching Interior Angles	3	G-C0.9
34.	Matching the Sum of Interior Angles	3	G-C0.9
35.	Parallel Lines and Proportional Segments	3	G-CO. 10
36.	Proving the Pythagorean Theorem	3	G-SRT. 4
37.	Diagonals of a Rhombus	3	G-CO.7, 9
38.	Diagonals of a Square	3	G-CO.7, . 9
39.	Diagonals of a Rectangle I	3	G-C0.7, 9
40.	Diagonals of a Rectangle II	3	G-C0.7, . 9

	Practice Units (Cont'd)		
	Item	Domain	CC Codes
41.	Calculating Proportions	3	G-SRT. 2
42.	Calculating Distance on a Coordinate Plane	4	G-C0.1
43.	Dilation of Circles	4	G-SRT.1b
44.	Dilation of Rectangles	4	G-SRT.1b
45.	Similar Triangles Scale Factor	4	G-SRT.2, . 3
46.	Similar Triangles Using Scale Factor I	4	G-SRT.1b, . 5
47.	Similar Triangles Using Scale Factor II	4	G-SRT.1b, . 5
48.	Similarity of Proportions	4	G-SRT. 5
49.	Trigonometric Ratios	4	G-SRT. 8
50.	Solving the Pythagorean Theorem	4	G-SRT. 8
51.	Using Pythagorean Theorem	4	G-SRT. 8
52.	Solving For Angles ($30^{\circ}, 60^{\circ}, 90^{\circ}$)	4	G-SRT. 2
53.	Solving For Angles ($45^{\circ}, 45^{\circ}, 90^{\circ}$)	4	G-SRT. 8
54.	Dilation of Shapes	5	G-SRT.1b
55.	Dilation of Shapes II	5	G-SRT.1b
56.	Cylinder Scale Factors	5	G-GMD. 1
57.	Sphere and Half Sphere	5	G-GMD.1, . 3
58.	Perimeter and Area of Trapezoids	5	G-SRT. 8
59.	Triangles Apothem	5	G-SRT. 8
60.	Apothem Hexagons	5	G-SRT. 8
61.	Area of Two Dimensional Figures	5	G-SRT. 6
62.	Surface Area	5	G-GMD. 1
63.	Geometric Volume I	5	G-GMD. 3
64.	Geometric Volume II	5	G-GMD. 3

Practice Units (Cont'd)

Item	Domain		CC Codes
Geometric Volume III	5	G-GMD.3	
Chords I	5	G-C.2	
Chords II	5	G-C.2	
Chords and Arcs	5	G-C.2, .5	
Chords, Secants, Tangents	5	G-C.2, .4	
Circle Basics	5	G-C.2	
Secant and Tangent Segments	5	G-C.4	
Area Sector/Arc Length	5	G-C.2, 5	

Coordinate and Transformational Geometry
S/N 3127
Teacher Key

Page Number	Unit Number	Answer	Domain	CC Codes
1.	1.	A	2	G-SRT. 8
2.	2.	B	2	G-SRT.6, . 8
3.	3.	A	2	G-SRT.1.1
4.	4.	C	2	G-SRT. 8
5.	5.	B	2	G-CO. 8
6.	6.	B	2	G-C. 5
6.	7.	D	2	G-MG. 1
7.	8.	A	2	G-CO.3, .4, . 5

Print Today's Date and Your Name Below:

Date : \qquad

Student Name : \qquad
 REFERENCES

CIRCUMFERENCE

Circle
$C=2 \pi r$
or
$C=\pi d$

AREA

Triangle	$A=\frac{1}{2} b h$
Rectangle or parallelogram	$A=b h$
Rhombus	$A=\frac{1}{2} d_{1} d_{2}$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Regular polygon	$A=\frac{1}{2} a P$
Circle	$A=\pi r^{2}$

SURFACE AREA

Lateral

Total

Prism	$S=P h$	$S=P h+2 B$
Pyramid	$S=\frac{1}{2} P l$	$S=\frac{1}{2} P l+B$
Cylinder	$S=2 \pi r h$	$S=2 \pi r h+2 \pi r^{2}$
Cone	$S=\pi r l$	$S=\pi r l+\pi r^{2}$
Sphere		$S=4 \pi r^{2}$

VOLUME

Prism or cylinder

$$
V=B h
$$

Pyramid or cone
Sphere
$V=\frac{1}{3} B h$
$V=\frac{4}{3} \pi r^{3}$ REFERENCES

COORDINATE GEOMETRY

Midpoint	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Slope of a line	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope-intercept form of a linear equation	$y=m x+b$
Point-slope form of a linear equation	$y-y_{1}=m\left(x-x_{1}\right)$
Standard form of a linear equation	$A x+B y=C$

RIGHT TRIANGLES

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

Trigonometric ratios

$$
\begin{aligned}
& \sin A=\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& \cos A=\frac{\text { adjacent leg }}{\text { hypotenuse }} \\
& \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}
\end{aligned}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Continue
 \square

4. Within a square section of land, a paved area will be built, as shown by the shaded part in the figure below.

Which answer is closest to the measure of \boldsymbol{y} ?

A $\quad 11 \mathrm{ft}$

B $\quad 44 \mathrm{ft}$

C $\quad 22 \mathrm{ft}$

D $\quad 19 \mathrm{ft}$

		Continue to Page 5	7
CC Codes $\quad \square$	Q 4. G-SRT. 8		S/N 3127

Continue

5. Lines s, t, u, and v intersect as shown to form isosceles trapezoid $A B C D$.

Which expression below represents the measure of angle 1 in degrees?

A $\quad 180 \div 2(7 y-2)$

B 180-2(7y-2)

C $180-2(7 y+2)$

D 2(7y-2)
${ }^{\mathrm{A}}$

| CC Codes | Continue to Page 6 | | |
| :--- | :--- | :--- | :--- | :--- |

S/N 4139
Teacher Key

Page Number	Unit Number	Answer	Domain	CC Codes
1.	1.	D	3	G-CO. 1
1.	2.	B	4	G-GM. 3
2.	3.	B	2	G-SRT. 8
3.	4.	A	4	G-MD.1, . 2.3
3.	5.	D	2	G-SRT.6, . 8
4.	6.	D	4	G-SRT. 8
5.	7.	D	4	G-SRT. 8
5.	8.	D	4	G-C. 2
6.	9.	C	5	G-SRT.1b
6.	10.	B	2	G-SRT.1.1
7.	11.	A	5	G-SRT. 11
8.	12.	D	4	G-GPE. 5
9.	13.	A	1	G-CO.1, . 2
9.	14.	D	5	G-C0.6
10.	15.	A	1	G-CO.7, 8
11.	16.	A	4	G-SRT. 8
12.	17.	A	5	G-CO. 6
12.	18.	B	5	G-SRT.1b
13.	19.	D	4	G-GMD.1.3
13.	20.	A	3	G-CO.1, . 2
14.	21.	B	1	G-SRT.1.1
15.	22.	D	2	G-SRT. 8
16.	23.	C	5	G-SRT. 5
17.	24.	B	3	G-GPE. 6
18.	25.	A	3	G-SRT. 11
18.	26.	D	4	G-MG. 1
19.	27.	C	2	G-CO.8
20.	28.	C	1	G-C0.9
21.	29.	B	2	G-C. 5
21.	30.	B	5	G-C0.6
22.	31.	B	1	G-C0. 12
23.	32.	A	3	G-PE. 5

S/N 4139

Teacher Key

Page Number	Unit Number	Answer	Domain	CC Codes
24.	33.	A	4	G-CO. 10
25.	34.	D	3	G-GPE.6, . 7
26.	35.	B	4	G-SRT.4, 5
27.	36.	D	4	G-CO. 2
28.	37.	A	2	G-MG. 1
28.	38.	C	3	G-GPE. 5
29.	39.	C	4	G-C.2, . 4
30.	40.	C	2	G-CO.3, .4, . 5
31.	41.	C	1	G-CO. 6
31.	42.	C	4	G-C. 5
32.	43.	A	3	G-PE. 4
32.	44.	C	4	G-SRT. 11
33.	45.	A	4	G-C. 2
34.	46.	D	1	G-C. 10
34.	47.	C	3	G-CO. 9
35.	48.	D	3	G-PE. 5
35.	49.	D	1	G-CO. 10
36.	50.	D	1	G-MG. 2
36.	51.	C	1	G-CO. 10
37.	52.	D	1	G-CO. 10

Print Today's Date and Your Name Below:

Date : \qquad

Student Name : \qquad

REFERENCES

CIRCUMFERENCE

Circle
$C=2 \pi r$
or
$C=\pi d$

AREA

Triangle	$A=\frac{1}{2} b h$
Rectangle or parallelogram	$A=b h$
Rhombus	$A=\frac{1}{2} d_{1} d_{2}$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Regular polygon	$A=\frac{1}{2} a P$
Circle	$A=\pi r^{2}$

SURFACE AREA

Lateral
Total

Prism	$S=P h$	$S=P h+2 B$
Pyramid	$S=\frac{1}{2} P l$	$S=\frac{1}{2} P l+B$
Cylinder	$S=2 \pi r h$	$S=2 \pi r h+2 \pi r^{2}$
Cone	$S=\pi r l$	$S=\pi r l+\pi r^{2}$
Sphere		$S=4 \pi r^{2}$

VOLUME

Prism or cylinder

$$
V=B h
$$

Pyramid or cone
$V=\frac{1}{3} B h$
Sphere
$V=\frac{4}{3} \pi r^{3}$

REFERENCES

COORDINATE GEOMETRY

Midpoint	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Slope of a line	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope-intercept form of a linear equation	$y=m x+b$
Point-slope form of a linear equation	$y-y_{1}=m\left(x-x_{1}\right)$

Standard form of a linear equation
$A x+B y=C$

RIGHT TRIANGLES

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

Trigonometric ratios

$$
\begin{aligned}
& \sin A=\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& \cos A=\frac{\text { adjacent leg }}{\text { hypotenuse }} \\
& \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}
\end{aligned}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ triangle

$45^{\circ}-45^{\circ}-90^{\circ}$ triangle

Continue

29. What is the arc, measured in degrees, for 29/36 of a circle?

A $\quad 295^{\circ}$

B $\quad 290^{\circ}$

C $\quad 145^{\circ}$

D $\quad 300^{\circ}$

30. In a $\mathbf{3 0 ^ { \circ }}, \mathbf{6 0 ^ { \circ }}$, right triangle each dimension is multiplied by a scale factor of 3 . The hypotenuse of the original triangle is $\mathbf{2 4}$ units. What is the perimeter of the new triangle?

A $\quad 24+3 \sqrt{3}$

B $\quad 108+36 \mathrm{~V} 3$

C $\quad 72-36 \sqrt{ } 3$

D $\quad 108-\mathbf{2 4 V} 3$

| CC Codes \longrightarrow | Continue to Page 22 | |
| :--- | :---: | :---: | :---: |

Continue
 \square

31. The diagram below shows the arcs and segments used to construct isosceles triangle DEF. Segment EF is less than segment DG.

Based on the construction above, which statement is true?

A $\quad \mathrm{m}<\mathrm{GDF}=\mathrm{m}<\mathrm{FED}$

B $\quad m<$ DGF $=1 / 2(m<D E F)$
C $\quad \mathrm{m}<\mathrm{DGE}=\mathrm{m}<\mathrm{DFG}$

D $\quad \Delta \mathrm{DEF}=\Delta \mathrm{FGD}$

Determine if the three measures shown in each of the ten problems below form a triangle. If not a triangle type is NT.

Measures:

1. Sides measure $10,6,8=$ triangle?
2. Sides measure $3,17,16=$ triangle?
3. Sides measure $25,21,26=$ triangle?
4. Sides measure $35,40,36=$ triangle
5. Sides measure $40,50,49=$ triangle?
6. Sides measure $25,65,60=$ triangle
7. Sides measure $84,91,35=$ triangle?
8. Sides measure $99,90,70=$ triangle
9. Sides measure $\mathbf{5 0}, \mathbf{1 2 0}, 130=$ triangle?
10. Sides measure $350,500,420=$ triangle?
$\xrightarrow{\text { Yes/No }}$

Type:

Type:

Type:

Type:

Type:

Type:

Type:

Conjectures:

A.

If the sum of the $\mathbf{2}$ smaller sides is greater than the third side, then it is a triangle.
If the square of each of the $\mathbf{2}$ smaller sides added together is
B. greater than the square of the larger side, then it is an acute triangle.
If the square of each of the $\mathbf{2}$ smaller sides added together
C. equals the square of the larger side, then it is a right triangle.
D.

If the sum of the $\mathbf{2}$ smallest sides is less than or equal to the largest side, then it cannot form a triangle.

Legend: acute, obtuse, right, NT

Teacher Key

Determine if the three measures shown in each of the ten problems below form a triangle. If not a triangle type is NT.

Measures:

1. Sides measure $10,6,8=$ triangle?
2. Sides measure $3,17,16=$ triangle?
3. Sides measure $25,21,26=$ triangle
4. Sides measure $35,40,36=$ triangle?
5. Sides measure $40,50,49=$ triangle?
6. Sides measure $25,65,60=$ triangle?
7. Sides measure $84,91,35=$ triangle?
8. Sides measure $99,90,70=$ triangle
9. Sides measure $\mathbf{5 0}, \mathbf{1 2 0}, 130=$ triangle?
10. Sides measure $350,500,420=$ triangle?
$\xrightarrow{\text { Yes/No }}$

yes	Type:	right
no	Type:	NT
yes	Type:	acute
yes	Type:	acute
yes	Type:	acute
yes	Type:	right
yes	Type:	right
yes	Type:	acute
yes	Type:	right
yes	Type:	acute

Conjectures:

A.

If the sum of the $\mathbf{2}$ smaller sides is greater than the third side, then it is a triangle.
If the square of each of the $\mathbf{2}$ smaller sides added together is
B. greater than the square of the larger side, then it is an acute triangle.
If the square of each of the $\mathbf{2}$ smaller sides added together
C. equals the square of the larger side, then it is a right triangle.
D.

If the sum of the $\mathbf{2}$ smallest sides is less than or equal to the largest side, then it cannot form a triangle.

Legend: acute, obtuse, right, NT

