

	Practice Units (Cont'd)		More
	Item	Domain	TEKS
17.	Writing Equations Using Data Points	2	G2B
18.	Transversals/Parallels	2	G2B; 6A
19.	Graphing Translations	2	G3A, B
20.	Graphing Rotations	2	G3A, D
21.	Graphing Dilations	2	G3B
22.	Graphing Reflections	2	G3D
23.	Parallel Lines Proportionality I	3	G5A; 6A; 4A
24.	Parallel Lines Proportionality II	3	G5A; 6A; 4A
25.	Parallel Proofs	3	G5A; 6A
26.	Vertical/Supplementary Angles	3	G4A; 6A, C
27.	Sum of Angles and Sides	3	G5A; 6D
28.	Hypotenuse Leg	3	G5B
29.	Complimentary and Supplementary Angles	3	G6A
30.	Solving For Congruency (AAS, ASA)	3	G6B
31.	Solving For Congruency (SAS)	3	G6B
32.	Matching Exterior Angles	3	G6D
33.	Matching Interior Angles	3	G6D
34.	Matching the Sum of Interior Angles	3	G6D
35.	Parallel Lines and Proportional Segments	3	G6D; 4C
36.	Proving the Pythagorean Theorem	3	G6D
37.	Diagonals of a Rhombus	3	G6E; 5A
38.	Diagonals of a Square	3	G6E; 4A; 5A
39.	Diagonals of a Rectangle I	3	G6E; 4A; 5A
40.	Diagonals of a Rectangle II	3	G6E; 4A; 5A

	Practice Units (Cont'd)		More
	Item	Domain	TEKS
41.	Calculating Proportions	3	G7A
42.	Calculating Distance on a Coordinate Plane	4	G2A, B
43.	Dilation of Circles	4	G7A
44.	Dilation of Rectangles	4	G7A
45.	Similar Triangles Scale Factor	4	G7a; 8A
46.	Similar Triangles Using Scale Factor I	4	G7a; 8A
47.	Similar Triangles Using Scale Factor II	4	G7a; 8A
48.	Similarity of Proportions	4	G8A
49.	Trigonometric Ratios	4	G9A
50.	Solving the Pythagorean Theorem	4	G9B
51.	Using Pythagorean Theorem	4	G9B
52.	Solving For Angles ($30^{\circ}, 60^{\circ}, 90^{\circ}$)	4	G9B
53.	Solving For Angles (45 ${ }^{\circ}, 45^{\circ}, 90^{\circ}$)	4	G9B
54.	Dilation of Shapes	5	G7A
55.	Dilation of Shapes II	5	G12B
56.	Cylinder Scale Factors	5	G10B, 11C
57.	Sphere and Half Sphere	5	G11C, D
58.	Perimeter and Area of Trapezoids	5	G11A, B
59.	Triangles Apothem	5	G11A; 9B
60.	Apothem Hexagons	5	G11B
61.	Area of Two Dimensional Figures	5	G11B
62.	Surface Area	5	G11C
63.	Geometric Volume I	5	G11D
64.	Geometric Volume II	5	G11D

Practice Units (Cont'd)			
	Item	Domain	TEKS
65.	Geometric Volume III	5	G11D
66.	Chords I	5	G12A
67.	Chords II	5	G12A
68.	Chords and Arcs	5	G12A
69.	Chords, Secants, Tangents	5	G12A
70.	Circle Basics	5	G12A
71.	Secant and Tangent Segments	5	G12A
72.	Area Sector/Arc Length	5	G12B,C; 11B
73.	Combinations/Possibilities	6	G13A
74.	Factorials	6	G13A
75.	Permutations/Possibilities	6	G13A
76.	Probability With/Without Replacement	6	G13A
77.	Determining Probabilities (Sectors)	6	G13B, C
78.	Calculating Probabilities I	6	G13B
79.	Calculating Probabilities II	6	G13C
80.	Probabilities	6	G13D
81.	Predictions and Solutions	6	G13E

Two and Three Dimensional Figures Teacher Key

Page Number	Unit Number	Answer	Domain	$\begin{gathered} \text { TX } \\ \text { Codes } \end{gathered}$
1.	1.	C	5	G11B
1.	2.	D	5	G11C
2.	3.	D	5	G11D
2.	4.	C	5	G11F
3.	5.	B	5	G11D
3.	6.	C	5	G11C
4.	7.	B	5	G11D

Print Today's Date and Your Name Below:

Date : \qquad

Student Name : \qquad

Two and Three Dimensional Figures REFERENCES

CIRCUMFERENCE

Circle
$C=2 \pi r$
or
$C=\pi d$

AREA

Triangle	$A=\frac{1}{2} b h$
Rectangle or parallelogram	$A=b h$
Rhombus	$A=\frac{1}{2} d_{1} d_{2}$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Regular polygon	$A=\frac{1}{2} a P$
Circle	$A=\pi r^{2}$

SURFACE AREA

Lateral
Total

Prism	$S=P h$	$S=P h+2 B$
Pyramid	$S=\frac{1}{2} P l$	$S=\frac{1}{2} P l+B$
Cylinder	$S=2 \pi r h$	$S=2 \pi r h+2 \pi r^{2}$
Cone	$S=\pi r l$	$S=\pi r l+\pi r^{2}$
Sphere		$S=4 \pi r^{2}$

VOLUME

Prism or cylinder

$$
V=B h
$$

Pyramid or cone
$V=\frac{1}{3} B h$
Sphere
$V=\frac{4}{3} \pi r^{3}$

Two and Three Dimensional Figures REFERENCES

COORDINATE GEOMETRY

Midpoint	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Distance formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Slope of a line	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope-intercept form of a linear equation	$y=m x+b$
Point-slope form of a linear equation	$y-y_{1}=m\left(x-x_{1}\right)$
Standard form of a linear equation	$A x+B y=C$

RIGHT TRIANGLES

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

Trigonometric ratios

$$
\begin{aligned}
& \sin A=\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& \cos A=\frac{\text { adjacent leg }}{\text { hypotenuse }} \\
& \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}
\end{aligned}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Two and Three Dimensional Figures

Begin

1. The top of a work table has a length of 6 ft and a width of $\mathbf{2} \mathrm{ft}$. A second work table is similar to the first work table.
The top of the second work table is 3 ft wide. What is the length of the top of the second work table?
A $\quad 9 \mathrm{ft}$
C $\quad 9 \mathrm{ft}$
B $\quad 11 \mathrm{ft}$
D $\quad 12 \mathrm{ft}$

2. On the map below, Main Street, 10th Street, and Highway 1 intersect to form a right triangle.

The distance between 10th Street and Main Street along Highway 1 is 9.4 miles.
Which answer is the closest to the length of Main Street from Highway 1 to 10th Street?
A $\quad 15.6 \mathbf{~ m i}$
C $\quad 17.6$ mi
B $\quad 12.6 \mathbf{m i}$
D $\quad 14.6 \mathbf{~ m i}$

		Continue to Page 2	ᄃ
TX Codes $\quad \longrightarrow$	Q 1. G11B	Q 2. G11C	S/N 4224

Triangle ABC is congruent to triangle DEF. Determine the congruency statement and answer the ensuing questions.

> (Not to scale)

Given: side $A C=4 x+3$ and side $D F=3 x+6$.

1. What is the value of x ?
2. The length of sides $A C, D F=$

Given: side $B C=3 y-1$, and side $E F=y+5$.
3. What is the value of y ?
4. The length of sides $\mathrm{BC}, \mathrm{DE}=$
5. The two triangles are congruent by:
6. The $\mathrm{m}<\mathrm{E}=\mathbf{4 a}+\mathbf{1 0}$
7. The length of sides side $A B, D E=$

Teacher Key

TEKS G5B
Domain 3

Triangle ABC is congruent to triangle DEF. Determine the congruency statement and answer the ensuing questions.

(Not to scale)

Given: side $A C=4 x+3$ and side $D F=3 x+6$.

1. What is the value of x ?

3
2. The length of sides $\mathrm{AC}, \mathrm{DF}=$ 15 units

Given: side $B C=3 y-1$, and side $E F=y+5$.
3. What is the value of y ?
4. The length of sides $\mathrm{BC}, \mathrm{DE}=$
5. The two triangles are congruent by:
6. The $\mathrm{m}<\mathrm{E}=4 \mathrm{a}+10$
7. The length of sides side $A B, D E=$

8 units

HL

20

6 units

Teacher Key
S/N 5583

Page Number	Unit Number	Answer	Domain	TX Codes
1.	1.	A	3	G7C
1.	2.	B	4	G8D
2.	3.	B	2	G5D
3.	4.	C	4	G8D
3.	5.	C	2	G5D
4.	6.	A	4	G8A
5.	7.	C	4	G8C
5.	8.	A	4	G8B
6.	9.	D	5	G11B
6.	10.	B	2	G5A
7.	11.	A	5	G11C
8.	12.	C	4	G8A
9.	13.	A	1	G3A
9.	14.	B	5	G11D
10.	15.	C	1	G3B
11.	16.	A	4	G8C
12.	17.	D	5	G11F
12.	18.	A	5	G11D
13.	19.	C	4	G8D
13.	20.	A	3	G7B
14.	21.	D	1	G11C
15.	22.	B	2	G5D
16.	23.	C	5	G11C
17.	24.	D	3	G7A
18.	25.	C	3	G11C
18.	26.	B	4	G9D
19.	27.	B	2	G4H
20.	28.	A	1	G2B
21.	29.	B	2	G5A
21.	30.	B	5	G11D
22.	31.	D	1	G2A
23.	32.	C	3	G7C

S/N 5583

Teacher Key

Page Number	Unit Number	Answer	Domain	TX Codes
24.	33.	C	4	G10B
25.	34.	C	3	G7B
26.	35.	C	4	G10B
27.	36.	C	4	G10A
28.	37.	A	2	G5B
28.	38.	C	3	G7C
29.	39.	D	4	G8A
30.	40.	C	2	G5C
31.	41.	D	1	G3C
31.	42.	D	4	G9C
32.	43.	D	3	G7C
32.	44.	B	4	G9A
33.	45.	C	4	G9B; 12A
34.	46.	A	1	G5A
34.	47.	C	3	G6A
35.	48.	B	3	G7B
35.	49.	B	1	G6D
36.	50.	A	1	G3D
36.	51.	A	1	G6D
37.	52.	C	1	G6E

Print Today's Date and Your Name Below:

Date : \qquad

Student Name : \qquad

REFERENCES

CIRCUMFERENCE

Circle
$C=2 \pi r$
or
$C=\pi d$

AREA

Triangle	$A=\frac{1}{2} b h$
Rectangle or parallelogram	$A=b h$
Rhombus	$A=\frac{1}{2} d_{1} d_{2}$
Trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
Regular polygon	$A=\frac{1}{2} a P$
Circle	$A=\pi r^{2}$

SURFACE AREA

Lateral
Total

Prism	$S=P h$	$S=P h+2 B$
Pyramid	$S=\frac{1}{2} P l$	$S=\frac{1}{2} P l+B$
Cylinder	$S=2 \pi r h$	$S=2 \pi r h+2 \pi r^{2}$
Cone	$S=\pi r l$	$S=\pi r l+\pi r^{2}$
Sphere		$S=4 \pi r^{2}$

VOLUME

Prism or cylinder

$$
V=B h
$$

Pyramid or cone
$V=\frac{1}{3} B h$
Sphere
$V=\frac{4}{3} \pi r^{3}$

REFERENCES

COORDINATE GEOMETRY	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Midpoint	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Distance formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope of a line	$y=m x+b$
Slope-intercept form of a linear equation	$y-y_{1}=m\left(x-x_{1}\right)$
Point-slope form of a linear equation	$A x+B y=C$

Standard form of a linear equation
$A x+B y=C$

RIGHT TRIANGLES

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

Trigonometric ratios

$$
\begin{aligned}
& \sin A=\frac{\text { opposite leg }}{\text { hypotenuse }} \\
& \cos A=\frac{\text { adjacent leg }}{\text { hypotenuse }} \\
& \tan A=\frac{\text { opposite leg }}{\text { adjacent leg }}
\end{aligned}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Continue
19. The pyramid below is 64 feet tall, and has a slant angle height of appoximately 86 feet. Each side of the square base measures 102 feet.

Which of the answers is closest to the lateral surface area of the pyramid?

A $\mathbf{3 5 , 0 8 8} \mathbf{f t}^{\mathbf{2}}$

B $\quad \mathbf{8 , 7 7 2} \mathbf{f t}^{\mathbf{2}}$

C $\quad \mathbf{1 7 , 5 4 4} \mathrm{ft}^{\mathbf{2}}$

D $\quad \mathbf{1 , 6 3 2} \mathbf{f t}^{\mathbf{2}}$

20. What is the equation of the line that is perpendicular to $y=(1 / 2 x)$ passing through points $(4,-5)$?

A $\quad y=(-2 x+3)$

B $\quad y=(1 / 2 x-4)$

C $\quad y=(-1 / 2 x+3)$

D $\quad y=(-2 x+4)$

