

Technology Solutions to Improve QC and Efficiency in Production Area Processes

Technology is Key to Quality Control

SPEDE WiFi Solutions integrate a wide variety of technologies:

- Production Machine PLCs
- Vision Sensors
- Conveyors/ Diverters
- Weigh / Count Scales
- USB Cameras
- OCR
- 2D Encoders, Etchers, Scanners
- Label Printers
- Touchscreen PC browser
- WiFi and Wired networks
- Interfaces to Host ERP, EDI, RAS, OEE systems

Vision Technology can ensure that Finished Parts are accurately Identified, Counted and Packed

Key Reasons to Automate

- 1. Eliminate or control manual tasks that cause errors due to confusion, boredom, distraction
- 2. Simplify procedures to reduce labor, inefficiency
- 3. Enforce Standard Operating Procedures (SOPs) via software controls to ensure consistent performance and accountability
- Real-time 20/20 visibility into operations, including WIP tracking, Production, Packing, Labeling, Shipping
- 5. Automatically create detailed Traceability records from final end item back to its raw parts / components, and forward through production and final shipment to customer

SPEDE Solutions Automate These Processes

- 1. WIP Components Tracking
- 2. Parts Identification
- 3. Parts Counting
- 4. Parts Tracking
- 5. Serialized Parts Labeling
- 6. Detecting Good Parts vs. Scrap
- 7. Production Reporting
- 8. Packing of Containers/ Dunnage
- 9. Container Labeling
- 10. Shipping
- 11. Traceability RAW, WIP, FIN
- 12. For Honda Small Lot Store, Honda Batch

Diagram of SPEDE Automated Functionality

SPEDE reads the Part and ...

- Verifies the Part for correctness
- Diverts wrong or bad part
- Counts good parts toward pack count
- Weigh-counts the Parts Container
- Prints the Customer Container Label
- Collects OEE Data / Updates host apps
- Collects Track &Trace Data

Phase-in Your Functionality

- Automate Container Labeling
- Automate Piece Counts
- Serialize Individual Parts
- Validate Tools / Components
- Validate Parts for correctness, defects
- o Control Partials at end of run /shift
- Display real-time Piece Counts, Label Status, Machine Data, etc. on Touchscreen PC
- Export Label Data to EDI / Shipping
- Export Production Data to ERP / OEE
- Trace Serialized Parts by Part Number, Lot, Container, Line, Run Date, etc.
- Trace Parts Forward to Customer;
 Back to Production/ Suppliers
- Create a History of Individual Parts including Rework
- Confirm Processes / Accountability
- o Honda MPR Compliance

1. Error Prevention

- Distinguish good parts vs. scrap / divert scrap
- Validate the correctness of a part at packing
- Validate the correctness of a machine tool at set-up
- Ensure part is correctly routed through sequence of operations
- Prevent mis-labeling of parts /containers
- Prevent scrap parts from being shipped
- Prevent incorrect parts / quantities in shipments
- Prevent dunnage and kitting errors under/ over packed

A Vision Sensor can detect the missing parts in this Jack Kit

2. Real-time Production Data

- For analyzing efficiency, monitoring actuals vs scheduled
- Use TouchScreen PC at line-side to view / edit
- Real-time piece counts, label status and run data
 - Automatically counts both Good and Scrap pieces
 - Automatically sends production data to your host systems

Real-time Parts Counting Data at Lineside

3. Accurate Packing and Labeling

Using Weigh Scales to:

- Receive Accurate Piece Counts / Weights
- Trigger a container label when count/ weight is correct

Using Vision Sensors to:

- Count and verify the manufactured part is "good"
- Verify dunnage layer is correct
- Verify all components are in a Kit

Using USB Cameras to:

- Count parts as they are placed in dunnage
- Read a 1D/2D barcode or OCR characters on the part
- Verify part via image, serial nbr, and/or OCR on part
- Direct the operator to fill slots in sequence
- Verify all dunnage slots are filled with the correct part
- Provide video proof that dunnage was filled correctly
- Verify Pack Count in dunnage is correct

Prints serialized label automatically

- When pack count/dunnage is correct
- Host ERP / EDI supplies label data

Weigh Scale Can Trigger Labels to Print

PC screen shot shows I slot missing a part. Container label won't print until slot is filled.

Green Circles indicate slot has correct part.

4. Automatic Traceability by Component / Part / Container

- A serial number is linked to each Part's production data:
 - o Production Machine, Run Date, Shift, Operator, Lot, Location, etc.
 - Container Serial Number(s) in which the Part was packed
 - All other Serialized Parts in a generalized Container
- Provides Traceability by Part, Lot, Container, Line, Run Date, etc.
- Forward Traceability from Production out to Customer
- Backward Traceability from Production back to Receiving, Raw Components, Supplier

4. cont'd: Automatic Traceability

- Part Serialization
 - Etching, labeling or 2D at line-side
 - Reading Part serial nbrs at each station
- Container Label Serialization
- WiFi handheld and forklift scanners can scan label at Shipping for traceability from production to Customer
- Enables focused recalls to a specific Lot / Container / Part Serial Nbr

5. Process Control and Accountability

- All SPEDE operations require Associate sign-in
- All transactions are retained and accessible in the SQL Txn DB
- Ensures SOPs are followed

Sample Manufacuring Metrics Report

		OEE %	Earned DL Hrs	Actual DL Hrs	Net Var.	Labor Prdvty %	Mach. Util %	F.G. Scrap %	In-Proc. Scrap %
All Department	Total(s)	83.4%	853	1,013	(160)	84.2%	87.8%	2.0%	1.0%
Total Parts	Good Parts	Scrap Parts	Availa Tim		Unscheduled Down Time	Machine Hours Worked		Downtime Hours	Earned Machine Hours
28,304	27,583	721	26	1	20.05	229.42		66.02	223.53
Actual Man Hours	Man Hour Downtime				(S) Finished Scrap \$	(SM) Misc Scrap \$		In-Proc crap \$	<u>Total</u> Scrap \$
770	242				\$4,035.74	(\$59.51)	\$2,	076.35	\$6,052.58
		Utilizat	ion %	Goo	d Part %	Machine Efficiency %		1	Total Production \$
	OEE Factors:		*	ę	7.5%	97.49	.4%		\$205,285.19

		OEE %	Earned DL Hrs	Actual DL Hrs	Net Var.	Labor Prdvty %	Mach. Util %	F.G. Scrap %	In-Proc. Scrap %
5515 Crankshaft		95.2%	141	168	(27)	83.8%	82.3%	0.6%	0.2%
Total Parts	Good Parts	Scrap Parts	<u>Availab</u> <u>Time</u>		Unscheduled Down Time	Machine Hours Worked		<u>Downtime</u> Hours	Earned Machine Hours
885	880	5	21		2.92	17.28		6.72	20.11
Actual Man Hours	Man Hour Downtime		Shift Count		(S) Finished Scrap \$	(SM) Misc Scrap \$		In-Proc crap \$	Total Scrap \$
121	47		3.00		\$253.62	\$0.00	\$1	08.44	\$362.06
	Utilization OEE Factors: 82.3%		ion %	Goo	d Part %	art % Machine Effic		1	Total Production \$
			3% *	9	9.4% *	116.4	%		\$44,890.02

Typical Production Data stored in DB:

- Part Number
- Operator Nbr
- Shift, Date, Time
- WO Nbr
- Lot Nbr
- Machine Cycles, Cycle Timestamp
- Part Count: Good, Scrap, Re-work
- Machine Stats & Metrics, etc.

6. Enables and Simplifies Honda MPR Compliance

- Pre-production
- Process Set-up
- Production / WIP
- Re-pack / Re-label
- Small Lot
- Pass thru
- Shipping
- Accountability & Traceability

Meet a Few SPEDE Customers...

For More Information ...

Call or Email:

Bob Bunsey

bbunsey@SPEDE.com

440-808-8888 x22

www.spede.com

Enabling Automotive Suppliers to Increase Accuracy, Efficiency and Profitability with Innovative Automated Solutions, since 1980.

Simplifying Processes.... Standardizing Excellence.

