Sample undergraduate tutorial sheet

Module: Geotechnical Engineering

Tutorial - Consolidation - Solutions

1. A saturated sample of a normally consolidated clay gave the following results when tested in a consolidation apparatus (each loading increment was applied for 24 hours).

Consolidation pressure (kPa)	Thickness of sample (mm)
0	17.32
53.65	16.84
107.3	16.48
214.6	16.18
429.2	15.85
0	16.51

After the sample had been allowed to expand for 24 hours it was found to have a water content of 30.2 \%. The particle specific gravity of the soil was 2.65 .
(i) Plot the void ratio to effective pressure.
(ii) A 6.1 m layer of the soil is subjected to an existing effective over burden pressure at its centre of 107.3 kPa , and a foundation load will increase the pressure at the centre of the layer by 80.5 kPa .

Determine the probable total consolidation settlement of the layer.
$e=w G_{s}=0.302 \times 2.65=0.800$
$d e=(1+e) / 16.51=0.1090$

Pressure	H (mm)	dH (mm)	de	e
0	17.32	0.81	0.088	0.889
53.65	16.84	0.33	0.036	0.836
107.3	16.48	-0.03	-0.003	0.797
214.6	16.18	-0.33	-0.36	0.764
429.2	15.85	-0.66	-0.072	0.728
0	16.51	0	0.000	0.800

e-p plot:

Settlement by m_{v} :

e at $107.3 \mathrm{kPa}=0.797$
e at $187.8 \mathrm{kPa}=0.771$
$m_{v}=\frac{\left(\frac{0.797-0.771}{80.5}\right)}{1+0797}=0.000180 \mathrm{~m}^{2} / \mathrm{kN}$
Settlement, $\rho_{c}=m_{v} \times H \times d p=0.000180 \times 6.1 \times 80.5 \times 1000=88 \mathrm{~mm}$
2. A soil sample of thickness 19.1 mm in an oedometer test experienced 30% primary consolidation after 10 minutes. How long would it take the sample to reach 80 \% consolidation?
(80 min)

$$
T=\frac{c_{v} t}{H^{2}} \Rightarrow c_{v}=\frac{0.071 \times 9.55^{2}}{10}=0.6475 \mathrm{~mm}^{2} / \mathrm{min}
$$

From Fig 5.4: $\mathrm{T}_{80}=0.567$

$$
t_{80}=\frac{T_{80} H^{2}}{c_{v}}=\frac{0.567 \times 9.55^{2}}{0.6475}=80 \mathrm{mins}
$$

3. A 5 m thick clay layer has an average c_{v} value of $5.0 \times 10^{-2} \mathrm{~mm}^{2} / \mathrm{min}$. If the layer is subjected to a uniform initial excess pore pressure distribution, determine the time it will take to reach 90% consolidation (i) if drained on both surfaces and (ii) if drained on its upper surface only.

$$
\text { ((i) } 200 \text { years, (ii) } 800 \text { years) }
$$

(i) $\mathrm{T}_{90}=0.848: \mathrm{H}=2.5 \mathrm{~m}$

$$
t_{90}=\frac{0.848 \times 2500^{2}}{0.05}=106 \times 10^{6} \mathrm{mins} \approx 200 \text { years }
$$

(ii) $\mathrm{H}=5 \mathrm{~m}$

$$
t_{90}=\frac{0.848 \times 5000^{2}}{0.05}=424 \times 10^{6} \mathrm{mins} \approx 800 \text { years }
$$

4. In a consolidation test the following readings were obtained for a pressure increment:

Sample thickness (mm)	Time (min)
16.97	0
16.84	$\frac{1}{4}$
16.76	1
16.61	4
16.46	9
16.31	16
16.15	25
16.08	36
16.03	49
15.98	64
15.95	81

(i) Determine the coefficient of consolidation of the sample.
(ii) From the point for $U=90 \%$ on the test curve, establish the point for $U=$ 50% and hence obtain the test value for t_{50}. Check your value from the formula

$$
t_{50}=\frac{T_{50} H^{2}}{c_{v}}
$$

$$
\left(\mathrm{c}_{\mathrm{v}}=1.28 \mathrm{~mm}^{2} / \mathrm{min}, \mathrm{t}_{50}=10.4 \mathrm{~min}\right)
$$

Corrected zero value $=16.9 \mathrm{~mm}$
$V_{\text {tgo }}$ value (read from plot) $=6.7$ mins
$\mathrm{t}_{90}=44.9 \mathrm{mins}$
Mean thickness of sample $=(16.9+15.95) / 2=16.45$
$H=16.45 / 2=8.22 \mathrm{~mm}$
$c_{v}=\frac{0.848 \times 8.22^{2}}{44.9}=1.28 \mathrm{~mm}^{2} / \mathrm{min}$
$t_{50}=\frac{T_{50} H^{2}}{c_{v}}=\frac{0.197 \times 8.22^{2}}{1.28}=10.4 \mathrm{mins}$
5. A sample in a consolidation test had a mean thickness of 18.1 mm during a pressure increment of 150 to 290 kPa . The sample achieved 50% consolidation in 12.5 min . If the initial and final void ratios for the increment were 1.03 and 0.97 respectively, determine values for the coefficient of volume compressibility and of consolidation of the sample.

$$
\left(m_{v}=0.2113 \times 10^{-3} \mathrm{~mm}^{2} / \mathrm{kN} ; c_{v}=1.29 \mathrm{~mm}^{2} / \mathrm{min}\right)
$$

$$
\begin{gathered}
a=\frac{d e}{d p}=\frac{1.03-0.97}{290-150}=\frac{0.06}{140}=0.000429 \mathrm{~m}^{2} / \mathrm{kN} \\
m_{v}=\frac{a}{1+e_{1}}=\frac{0.000429}{2.03}=0.0002113 \mathrm{~m}^{2} / \mathrm{kN} \\
=0.2113 \times 10^{3} \mathrm{~mm}^{2} / \mathrm{kN}
\end{gathered}
$$

$$
c_{v}=\frac{T_{50} H^{2}}{t_{50}}
$$

From Fig 5.4: $\mathrm{T}_{50}=0.197$

$$
c_{v}=\frac{0.197 \times 9.05^{2}}{12.5}=1.29 \mathrm{~mm}^{2} / \mathrm{min}
$$

