
Check out AirSwap, our implementation of the Swap protocol! 

Swap: A Peer-to-Peer 
Protocol for Trading 

Ethereum Tokens 

Michael Oved, Don Mosites
Published June 21, 2017 

Abstract 
We present a peer-to-peer methodology for trading ERC20 
tokens on the Ethereum blockchain. First, we outline the 
limitations of blockchain order books and offer a strong 
alternative in peer-to-peer token trading: off-chain 
negotiation and on-chain settlement. We then describe a 
protocol through which parties are able to signal to others 
their intent to trade tokens. Once connected, counterparties 
freely communicate prices and transmit orders among 
themselves. During this process, parties may request prices 
from an independent third party oracle to verify accuracy. 
Finally, we present an Ethereum smart contract to fill orders 
on the Ethereum blockchain.

Table of Contents

• Introduction

EN CN JP KR RU UA



◦ Order Books
◦ Peer-to-Peer (P2P)
◦ Introducing Swap

• Peer Protocol
• Indexer Protocol
• Oracle Protocol
• Smart Contract
• Summary

Introduction
The number of digital assets on Ethereum over the past
twelve months has increased aggressively as more and more 
use cases are implemented as smart contracts. It is our thesis 
that this trend will continue into the future; as such we believe 
this growth will augment the demand to swap into and out of 
assets as users move between use cases or rebalance their 
tokenized portfolios. Exchanges based on blockchain order 
books are not without inherent limitations, many of which can 
be mitigated by the design decisions outlined in this paper. 
We seek to provide an alternative to blockchain order books 
by specifying a set of protocols that unlock asset liquidity and 
free the Ethereum ecosystem to progress without such 
limitations.

Order Books

Order books offer a highly automatable way to match supply
and demand of a given tradeable asset. Traditionally, these 
are centralized and are combined with order execution, which 
allows orders to be created, executed, and canceled at a 
central source of truth. In the spirit of decentralization, order 
books have been redesigned for blockchains. However, 
deploying an order book on a blockchain presents several 
constraints.



Blockchain order books do not scale. Executing code on a 
blockchain incurs a cost, so an automated order-cancel-order 
cycle quickly becomes expensive and defeats the strength of 
an order book as a high performance, automatable matching 
system. Indeed, if that matching algorithm is running on the 
blockchain, a party placing orders will incur an execution cost 
that increases substantially with the size of the order book.

Blockchain order books are public. Because the transaction to
create an order on the blockchain is processed by miners, 
those miners are privy to an order before it’s posted to the 
book. This creates an opportunity for front-running that could 
materially affect the original order. Additionally, because the 
order is published publicly, the order price is the same for 
everyone, removing a supplier’s ability to tailor liquidity.

Blockchain order books are unfair. Physically distributed
systems inherently suffer latency between their nodes. As 
miners are geographically distributed, sophisticated parties 
may be able to colocate, detect orders, and outperform 
blockchain latency, effectively acting on order information 
before other parties. This information asymmetry may very 
well dishearten less sophisticated parties from taking part in 
the ecosystem at all.

Peer-to-peer (P2P)

Alternatively, peer-to-peer trading enables individual parties
to trade with each other directly. Most of the transactions we 
make day to day are peer-to-peer: buying coffee at a cafe, 
selling shoes on eBay, or buying cat food on Amazon. Because 
these are private transactions between people or businesses, 
each party knows and ultimately chooses with whom they 
transact.



Peer-to-peer trading scales. Orders are transmitted between
individual parties and are “one and done” as opposed to 
orders on a public exchange with no guarantee to completely 
fill. This makes cancels on an order book a regular occurrence, 
whereas peer-to-peer orders are likely filled because they are 
provided to parties that have already expressed interest. 
Additionally, peer-to-peer supply and demand matching can 
be solved through lightweight peer discovery as opposed to 
expensive algorithmic matchmaking–regardless of whether on 
or off chain.

Peer-to-peer trading is private. Once two parties have found
and chosen to trade with each other, no third parties are 
required to negotiate. The communication between these 
parties remains private for the duration of the negotiation, 
removing the opportunity for other parties to act on order 
request behavior. Only when the order is submitted to be 
filled will it become public knowledge.

Peer-to-peer trading is fair. Because orders are created and
transmitted directly between two parties, no outside 
participants can have an advantage. As long as they are 
working with multiple independent parties, participants can 
get prices that are comparable to or better than what they 
would achieve on an exchange. Additionally, those pricing 
orders can do so aggressively without fear of being taken 
advantage of by automated, low-latency trading strategies.

The scalability, privacy, and fairness constraints imposed by
blockchain order books have necessitated an alternative. 
Today’s Ethereum ecosystem needs an open peer-to-peer 
solution for asset exchange.



Introducing Swap

Swap is a protocol to facilitate a true peer-to-peer ecosystem
for trading tokens on the Ethereum blockchain. The following 
is an extensible specification that supports efficient 
counterparty discovery and negotiations. These protocols are 
intended to become a foundation for the asset trading 
ecosystem and to accelerate Ethereum ecosystem growth. By 
publishing this paper and opening for discussion, we seek 
comments from ecosystem stakeholders with the aim to 
produce high-quality protocols to enable a wide variety of 
real-world applications.

Peer Protocol
With only a few messages passed between counterparties, 
trades can be negotiated quickly, fairly, and privately. For the 
purposes of this document, a Maker is the party that provides 
an order, and a Taker is the party that fills it. Because each 
party is a peer, any party can assume the role of Maker or 
Taker at any time. Tokens in the following specification are 
ERC20 compliant and any token that implements the standard 
can be traded using this protocol.

The core protocol is sequenced in the following diagram. The 
Maker and Taker perform trade negotiation off-chain. The 
Contract below is an Ethereum smart contract, which the 
Taker calls when ready to fill an order on the blockchain.



1. Taker calls getOrder on the Maker.
2. Maker replies with an order.
3. Taker calls _fillOrder()_ on the Contract.

Order API

The following APIs are transport-agnostic remote procedure
calls (RPC) used to communicate among peers and services. 
Examples use token tickers instead of addresses, but the 
actual calls require addresses of ERC20 compliant tokens. The 
call signatures below are for discussion purposes as further 
technical details are to be published in a separate document.

The Order API is off-chain and specifies asynchronous calls
made between counterparties during trade negotiation. An 
implementor may choose to serve a request-provide cycle as 
a synchronous request-response. Because an order is signed 
by the Maker, the Taker is able to later submit it to the smart 
contract to be filled.

getOrder
getOrder(makerAmount, makerToken, takerToken, 
takerAddress)

Called by a Taker on a Maker, requesting an order to trade



tokens.

Example: “I want to buy 10 GNO using BAT.” 

getOrder(10, ‘GNO’, ‘BAT’, <takerAddress>) 

provideOrder
provideOrder(makerAddress, makerAmount, makerToken, 
takerAddress, takerAmount, takerToken, expiration, nonce, 
signature)

Called by a Maker on a Taker, providing a signed order for
execution.

Example: “I’ll sell you 10 GNO for 5 BAT.” 

provideOrder(<makerAddress>, 10, ‘GNO’, 

<takerAddress>, 5, ‘BAT’, <expiration>, <nonce>, 

<signature>) 

Quote API

Quotes are for indicating price information between parties
and are not executable. Quotes can be later turned into 
orders if the conditions are met for both counterparties.

getQuote
getQuote(makerAmount, makerToken, takerTokens)

Called by a Taker on a Maker, requesting a quote in specific
tokens.

Example: “How much would it cost to buy 10 GNO using 

BAT?” 

getQuote(10, ‘GNO’, [‘BAT’]) 

provideQuote
provideQuote(makerAmount, makerToken, takerAmounts)



Called by a Taker on a Maker, providing quotes in Taker
tokens.

Example: “It will cost you 5 BAT for 10 GNO.” 

provideQuote(10, ‘GNO’, { ‘BAT’: 5 }) 

Indexer Protocol
An Indexer is an off-chain service that aggregates and
matches peers based on their intent to trade: whether 
prospective Makers and Takers wish to buy or sell tokens. 
Indexers are off-chain services that aggregate this “intent to 
trade” and help match peers based on intent to buy or sell 
specific tokens. Many prospective Makers can signal intent to 
trade, and when a Taker asks the Indexer to find suitable 
counterparties, there may be multiple results. Once the Taker 
has found a Maker with whom they would like to trade, they 
proceed to negotiate using the Peer Protocol above. Once 
agreement is reached between a Maker and Taker, the order 
is filled on the smart contract.

The interactions between a Maker, Taker, and Indexer are 
illustrated in the following diagram. The Maker, Taker, and 
Indexer all operate away from the blockchain and 
communicate by any preferred messaging medium.



1. Maker calls addIntent on the Indexer.
2. Taker calls findIntent on the Indexer.
3. Indexer calls foundIntent(maker) on the Taker.
4. Taker calls getOrder on the Maker.
5. Maker replies with an order.
6. Taker calls fillOrder(order) on the Contract.

The interaction between several Makers, a Taker, and an 
Indexer is illustrated in the following diagram. Each Maker 
independently announces their intent. The Taker asks to find 
Makers with specific intent, and the Indexer returns a list of 
Ethereum addresses and details.



1. Several Makers call addIntent on the Indexer.
2. Taker calls findIntent on the Indexer.
3. Indexer calls foundIntent(maker) on the Taker.

Once a Taker has found suitable Makers, they may use the
Order API to request orders from each Maker to weigh them 
against each other. If the Taker has decided to fill a given 
order, they will make a fillOrder call on the smart contract.



1. Taker calls getOrder on several Makers.
2. Makers reply with orders.
3. Taker selects an order and calls fillOrder(order) on the 

Contract.

Indexer API

The Indexer API manages intent to trade, which is signalled
between peers. The following calls are made between peers 
and an Indexer.

addIntent
addIntent(makerToken, takerTokens)

Add an intent to buy or sell some amount of token.

Example: “I want to trade GNO for BAT.” 

addIntent(‘GNO’, [‘BAT’]) 



removeIntent
removeIntent(makerToken, takerTokens)

Remove an intent to trade tokens.

Example: “I am no longer interested in trading GNO 

for BAT.” 

removeIntent(‘GNO’, [‘BAT’]) 

getIntent
getIntent(makerAddress)

List active intent associated with an address.

Example: “List the tokens that [makerAddress] wants 

to trade.” 

getIntent(<makerAddress>) 

findIntent
findIntent(makerToken, takerToken)

Find someone willing to trade specific tokens.

Example: “Find someone trading GNO for BAT.” 

findIntent(‘GNO’, ‘BAT’) 

foundIntent
foundIntent(makerAddress, intentList)

The Indexer found someone with intent to trade.

Example: “Found someone selling 10 GNO for BAT.” 

foundIntent(<makerAddress>, [{ makerAmount: 10, 

makerToken: 'GNO', takerTokens: ['BAT'] }) 



Oracle Protocol
An Oracle is an off-chain service that provides pricing
information to Makers and Takers. When pricing an order 
prior to delivering it to a Taker, a Maker may ask the Oracle 
for what it considers a fair price suggestion. Likewise, having 
received an order, a Taker may ask the Oracle to check the 
price on the order to verify that it’s fair. The Oracle provides 
this pricing information to help both the Maker and the Taker 
make more educated pricing decisions and to smooth the 
process of trade negotiation.

1. Taker calls getOrder on the Maker.
2. Maker calls getPrice on the Oracle.
3. Oracle returns a price to the Maker.
4. After analyzing price information, Maker replies with an 

order.
5. Taker calls fillOrder(order) on the Contract.

A very similar interaction happens between Taker and Oracle
when the Taker receives an order.



1. Taker calls getOrder on the Maker.
2. Maker replies with an order.
3. Taker calls getPrice on the Oracle.
4. Oracle returns a price to the Taker.
5. After analyzing price information, Taker calls fillOrder

(order) on the Contract.

Oracle API

The Oracle API is used by Makers and Takers to determine
order prices. Prices are suggestions and are not executable.

getPrice
getPrice(makerToken, takerToken)

Called by a Taker or a Maker on an Oracle to get a price.

Example: “What is the current price of GNO for BAT?” 

getPrice(‘GNO’, ‘BAT’) 



providePrice
providePrice(makerToken, takerToken, price)

Called by an Oracle on a Maker or Taker to give a price.

Example: “The current price of GNO for BAT is 0.5.” 

providePrice(‘GNO’, ‘BAT’, 0.5) 

Smart Contract
An Ethereum smart contract to fill or cancel orders.

fillOrder(makerAddress, makerAmount, makerToken, 
takerAddress, takerAmount, takerToken, expiration, nonce, 
signature)

An atomic swap of tokens called by a Taker. The contract
ensures that the message sender matches taker and ensures 
that the time indicated in expiration has not passed. To fill 
orders, peers must have already called approve on the 
specified tokens to allow the contract to withdraw at least the 
specified amounts. For token transfers, the contract calls 
transferFrom on the respective tokens. At the successful 
completion of this function a Filled event is broadcast to the 
blockchain.

Example: “I want to fill this order of 5 GNO for 10 

BAT.” 

fillOrder([maker], 5, ‘GNO’, [taker], 10, ‘BAT’, 

[expiration], [signature]) 

cancelOrder(makerAddress, makerAmount, makerToken, 
takerAddress, takerAmount, takerToken, expiration, nonce, 
signature)

A cancellation of an order that has already been 
communicated to a Taker but not yet filled. Called by the 
Maker of the order. Marks the order as already having been 



filled on the contract so a subsequent attempt to fill the order 
will fail. At the successful completion of this function a 
Canceled event is broadcast to the blockchain.

Example: “I want to cancel this order of 5 GNO for 10 

BAT.” 

cancelOrder([maker], 5, ‘GNO’, [taker], 10, ‘BAT’, 

[expiration], [signature]) 

Ether Orders

The smart contract supports trading ether (ETH) for tokens. If
the order includes a null takerToken address (0x0) the smart 
contract will check the value of ether that was sent with the 
function call and transfer that on behalf of the Taker to the 
Maker.

Summary
The Swap protocol serves a growing demand for a 
decentralized asset exchange on the Ethereum network. 
Blockchain-based order books, while novel and certainly 
within the ethos of our ecosystem, have limitations that we 
believe ultimately make it difficult for them to compete with 
currently available centralized solutions. Swap provides a 
method that is both decentralized and unaffected by these 
limitations.

By implementing the protocol, participants gain access to
liquidity in a scalable, private, and fair way, without sacrificing 
access to great pricing. The protocol and APIs are extensible 
and we encourage the community to build applications with 
us. We welcome feedback and look forward to pushing the 
Ethereum community forward with you.

For questions, comments, or feedback, please reach us at 



team@swap.tech.


