Notes: Functions

Do Now:

Given the functions g(x), f(x), and h(x) shown below:

 $g(x) = x^2 - 2x$

The correct list of functions ordered from greatest to least by average rate of change over the interval $0 \le x \le 3$ is

- (1) f(x), g(x), h(x)
- (2) h(x), g(x), f(x)
- (3) g(x), f(x), h(x)
- (4) h(x), f(x), g(x)

What Should I Be Able to Do?

- I can define relation, input, output, domain, range, and function.
- I can explain why a relation is a function or not a function.
- I can explain the similarities and differences between function notation and x-y notation.
- I can explain the advantages of using function notation.

Vocab Breakdown

y = 3x + 5

Relation: Any set of ordered pairs.

Input: A value of the independent variable.

Domain: All possible inputs.

Output: A value of the dependent variable

Range: All possible outputs.

Vocab Breakdown

Function: A relation in which each input only has one output.

Tell whether each of the relations is a function. If not, tell which input makes the relation not a function.

 $\{(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13)\}$

Real World Examples of Functions

1) Is the relation of player to jersey number on the 2019-2020 Los Angeles Lakers a function? Explain your reasoning.

2) Is the relation of person to ordered food from a most recent visit to Taco Bell a function? Explain your reasoning.

3) Think about typing on the computer, is the key you press and the letter/symbol that shows up on the screen a function?

A function is shown in the table below

X	y
-5	-3
-3	15
0	1
4	-4

If included in the table, which ordered pair, (2,15) or (0,7), would result in a relation that is no longer a function? Explain your answer.

What is the equation of the following line?

What can you say about the input of 4 in the relation below?

Vocab Breakdown

Vertical Line Test: If any vertical line intersects a relation in more than one point, the relation is not a function.

Are the following relations functions? Explain your reasoning.

1)

2)

3)

Explain why the vertical line test works for distinguishing whether the graph of a relation is a function or not.

Do Now: Graph the relation, y = -2x + 5.

- a) Find the value of y when x = 10.
- b) Find the value of x when y = 2.

Vocab Breakdown

Function Notation: To write a rule in function notation, you use the symbol f(x) in place of y.

Write y = -2x + 5 in function notation.

	Point	Relation	Solving	Solving
Equation	(x,y)	y = 2x - 3	Find y when $x = 4$	Find x when $y = 7$.
Notation				
	((())	2() 2 2		
Function	(x,f(x))	f(x) = 2x - 3	Find $f(4)$	Find x when $f(x) = 7$.
Notation				

Graph the relation, f(x) = -2x + 5.

- a) Find f(10).
- b) Find the value of x when f(x) = 2.

Make an observation of the graph above, making sure to identify the equation(s) you are speaking about.

Make an observation of the graph above, making sure to identify the equation(s) you are speaking about.

Checkpoint:

1)

If
$$f(x) = \frac{\sqrt{2x+3}}{6x-5}$$
, then $f(\frac{1}{2}) =$

(1) 1

(3) -1

(2) -2

 $(4) -\frac{13}{3}$

2)

The graph of y = f(x) is shown below.

Which point could be used to find f(2)?

$$(1)$$
 A

(3) (

(4) D

3)

Alex is selling tickets to a school play. An adult ticket costs 6.50 and a student ticket costs 4.00. Alex sells x adult tickets and 12 student tickets. Write a function, f(x), to represent how much money Alex collected from selling tickets.

4)

The cost of belonging to a gym can be modeled by C(m) = 50m + 79.50, where C(m) is the total cost for m months of membership.

State the meaning of the slope and y-intercept of this function with respect to the costs associated with the gym membership.

Success Criteria

- I can define relation, input, output, domain, range, and function.

- I can explain why a relation is a function or not a function.

Do each of the following relations represent a function? Explain your reasoning.

$$3) g(x) = 3x - 12$$

Х	f(x)
-2	<u>1</u>
-1	1/3
0	1
1	3
2	9
3	27

Define relation.

- I can explain the similarities and differences between function notation and x-y notation.
What are the similarities between using function notation and using x-y notation?
What are the difference between using function notation and x-y notation?
- I can explain the advantages of using function notation.
What are the advantages of using function notation?

Homework: Functions

1) Evaluate the following expressions given the functions below:

$$g(x) = -4x + 3$$

$$f(x) = x^2 + 10$$

$$h(x) = \frac{5}{x}$$

$$g(x) = -4x + 3$$
 $f(x) = x^2 + 10$ $h(x) = \frac{5}{x}$ $j(x) = \frac{1}{3}x + 1$

a.
$$g(5) =$$

b.
$$f(-3) =$$

$$c. h(-2) =$$

d.
$$j(10) =$$

$$e$$
. $h(a)$

$$f. g(7+4)$$

2) Convert each of the following into coordinate points and then plot each.

a.
$$f(-2) = 3$$

b.
$$f(0) = 5$$

c.
$$f(-1) = -1$$

d.
$$f(8) = -7$$

3)

Faith wants to use the formula $C(f) = \frac{5}{9}(f - 32)$ to convert degrees Fahrenheit, f, to degrees Celsius, C(f). If Faith calculated C(68), what would her result be?

- (1) 20° Celsius
- (3) 154° Celsius
- (2) 20° Fahrenheit
- (4) 154° Fahrenheit

4)

If $f(n) = (n-1)^2 + 3n$, which statement is true?

$$(1) \, f(3) = -2$$

$$(3) f(-2) = -15$$

$$(2) \, f(-2) = 3$$

$$(4) f(-15) = -2$$

On the accompanying diagram, draw a mapping of a relation from set *A* to set *B* that is not a function. Explain why the relationship you drew is not a function.

Set A

1 •
2 •
3 •

6)

Which table represents a function?

х	2	4	2	4
f(x)	3	5	7	9
(1)				

x	0	-1	0	1
f(x)	0	1	-1	0
(2)				

х	3	5	7	9
f(x)	2	4	2	4
(3)				

х	0	1	-1	0
f(x)	0	-1	0	1
(4)				

7)

Which graph represents a function?

8)

Marcel claims that the graph below represents a function.

State whether Marcel is correct. Justify your answer.

9) On the graphs below, sketch a relation that is a function and one that is not a function.

Function

Not a Function

Explain why your relation on the right graph is not a function.

10)

Nora says that the graph of a circle is a function because she can trace the whole graph without picking up her pencil.

Mia says that a circle graph is not a function because multiple values of x map to the same y-value.

Determine if either one is correct, and justify your answer completely.

11)

A mapping is shown in the diagram below.

This mapping is

- (1) a function, because Feb has two outputs, 28 and 29
- (2) a function, because two inputs, Jan and Mar, result in the output 31
- (3) not a function, because Feb has two outputs, 28 and 29
- $\left(4\right)$ not a function, because two inputs, Jan and Mar, result in the output 31

Which representations are functions?

I	х	У
	2	6
	3	-12
	4	7
	5	5
	2	-6

II { (1,1), (2,1), (3,2), (4,3), (5,5), (6,8), (7,13) }

IV
$$y = 2x + 1$$

- (1) I and II
- (3) III, only
- (2) II and IV
- (4) IV, only

13)

The cost of airing a commercial on television is modeled by the function C(n) = 110n + 900, where n is the number of times the commercial is aired. Based on this model, which statement is true?

- (1) The commercial costs \$0 to produce and \$110 per airing up to \$900.
- (2) The commercial costs \$110 to produce and \$900 each time it is aired.
- (3) The commercial costs \$900 to produce and \$110 each time it is aired.
- (4) The commercial costs \$1010 to produce and can air an unlimited number of times.

14)

Sandy programmed a website's checkout process with an equation to calculate the amount customers will be charged when they download songs.

The website offers a discount. If one song is bought at the full price of \$1.29, then each additional song is \$.99.

State an equation that represents the cost, C, when s songs are downloaded.

Sandy figured she would be charged \$52.77 for 52 songs. Is this the correct amount? Justify your answer.

15) State whether the following statement is true or false. Explain your reasoning.

A relation has the students in class as the domain and the desks in the classroom as the range. This relation is a function.