Notes: The Complex Plane

Do Now: 1) Simplify the following expression in a + bi form.

$$\frac{1-i}{2+i} + \frac{1+i}{1-2i}$$

2) Graph and label each of the following points.

What Should I Be Able to Do?

- I can graph complex numbers on a complex plane.

The Complex Plane:

What do you notice is different about the complex plane than a coordinate plane?

Graph each complex number on the complex plane.

$$z_1 = 1 + 5i$$

$$z_2 = -2 + 3i$$
 $z_3 = 4 - 9i$ $z_4 = -7 - i$ $z_5 = 10i$

$$z_3 = 4 - 9i$$

$$z_{A}=-7-i$$

$$z_5 = 10i$$

Success Criteria

- I can graph complex numbers on a complex plane.

1) Graph each complex number on the complex plane below.

$$z_1 = -3 + 6i$$
 $z_2 = 2 - 3i$

$$z_2 = 2 - 3i$$

$$z_3 = 4$$

$$z_3 = 4$$
 $z_4 = -10 + 10i$ $z_5 = 7i$

$$z_5 = 7i$$

2) Given a and b are positive real numbers, describe how you would plot a - bi on a complex plane.

Classwork: The Complex Plane

1) Write $-\frac{1}{2}i^3(\sqrt{-9}-4)-3i^2$ in simplest a + bi.

2)

The expression $6 - (3x - 2i)^2$ is equivalent to

$$(1) -9x^2 + 12xi + 10 (3) -9x^2 + 10$$

$$(3) -9x^2 + 10$$

(2)
$$9x^2 - 12xi + 2$$

(2)
$$9x^2 - 12xi + 2$$
 (4) $-9x^2 + 12xi - 4i + 6$

3) What is the product of the complex numbers $(2-6i^3)$ and $(-9+2i^{81})$?

4) What is the sum of the complex numbers $(12 - 3i^{49})$, $(-1 - i^{1,028,253})$, and $(-11 + i^4)$?

5) Graph each complex number on the complex plane below.

$$z_1 = 2 - 9i$$

$$z_2 = 5 + 5i$$

$$z_3 = -1 + 7i$$

$$z_4 = -7 - i \qquad \qquad z_5 = 3i$$

$$z_5 = 3i$$

- 6) Given n is a positive integer and i is the imaginary unit, $i^2 = -1$, such that $i^n = i$, which of the following statements about n must be true?
- **A.** When n is divided by 4, the remainder is 0.
- **B.** When n is divided by 4, the remainder is 1.
- C. When n is divided by 4, the remainder is 2.
- **D.** When n is divided by 4, the remainder is 3.
- **E.** Cannot be determined from the given information.

7) What is the multiplicative inverse of -5i?

Simplify each of the following expressions in a + bi form. 8) $(12 - \sqrt{-112}) - (45 + \sqrt{-28})$ 9) $(x + 3i)^2 - (2x - 3i)^2$

8)
$$(12 - \sqrt{-112}) - (45 + \sqrt{-28})$$

9)
$$(x+3i)^2-(2x-3i)^2$$

$$10)\,\frac{x+yi}{x-yi}$$

11)
$$(2-i)^{-3}$$

12) Completely simplify the expression $(x - 4i)^3$.

13) What is the multiplicative inverse of i - 2?

14)

Expressed in simplest a + bi form, $(7 - 3i) + (x - 2i)^2 - (4i + 2x^2)$ is

- $(1) (3 x^2) (4x + 7)i (3) (3 x^2) 7i$
- (2) $(3 + 3x^2) (4x + 7)i$ (4) $(3 + 3x^2) 7i$

15) The modulus of the complex number a + bi is given by $\sqrt{a^2 + b^2}$. Which of the complex numbers z_1, z_2, z_3, z_4 , and z_5 below has the greatest modulus?

- $\mathbf{A}. z_1$
- $\mathbf{B}. z_2$
- $\mathbf{C}. z_3$
- **D.** z_4
- \mathbf{E} . z_5

16) Given i is the imaginary unit, find $(2 - yi)^2$ in simplest form.

18) If
$$x = 4i$$
, $y = 2i$, and $z = m + i$, find the expression x^3y^3z in $a + bi$ form.

19) Write two complex numbers with a product 18.

Solve each of the following equations.

$$20)\sqrt{-4x+16}-\sqrt{3x-12}=0$$

$$21)\frac{4}{5}(2x - 15)^{5/3} - 12 = 807.2$$

22) Is the sum of two irrational numbers always irrational? Justify your answer.

23) Completely simplify the following expression:
$$\frac{(-8)^{2/3}+(-100)^{1/2}}{(\frac{1}{4})^{-3/2}-(-2)^{5/2}}$$