

Notes: The Complex Plane

What Should I Be Able to Do?

- I can graph complex numbers on a complex plane.

The Complex Plane:

What do you notice is different about the complex plane than a coordinate plane? The X-axis is now the R-axis for real. The Y-axis is now the i-axis for imaginary.

Graph each complex number on the complex plane. $z_1 = 1 + 5i$ $z_2 = -2 + 3i$ $z_3 = 4 - 9i$ $z_4 = -7 - i$ $z_5 = 10i$

Classwork: The Complex Plane

1) Write
$$-\frac{1}{2}i^{3}(\sqrt{-9}-4) - 3i^{2}$$
 in simplest $a + bi$.
 $-\frac{1}{2}(-i)(3i-4) - 3(-1)$
 $\frac{1}{2}i(3i-4) + 3$
 $1.5i-2+3$
 $(1+1.5i)$

2)

The expression
$$6 - (3x - 2i)^2$$
 is equivalent to
(1) $-9x^2 + 12xi + 10$ (3) $-9x^2 + 10$
(2) $9x^2 - 12xi + 2$ (A) $-9x^2 + 12xi - 4i + 6$
 $6 - (3x - 2i)(3x - 2i)$ $6 - 9x^2 + 12xi + 4$
 $6 - (9x^2 - 6xi - 6xi + 4i^2)$ $-9x^2 + 12xi + 10$
 $6 - (9x^2 - 6xi - 6xi + 4i^2)$ $-9x^2 + 12xi + 10$
 $6 - (9x^2 - 12xi - 4)$

3) What is the product of the complex numbers $(2 - 6i^3)$ and $(-9 + 2i^{81})$? (2-6(-i))(-9+2i) (2+6i)(-9+2i) $-18 + 4i - 54i + 12i^2$ -18 - 50i + (12)(-1)-30-50i

4) What is the sum of the complex numbers $(12 - 3i^{49})$, $(-1 - i^{1,028,253})$, and $(-11 + i^{4})$? $(12 - 3i)_{1}(-1 - i)_{1}$, and $(-11 + i^{4})$?

5) Graph each complex number on the complex plane below.				
$z_1 = 2 - 9i$	$z_2 = 5 + 5i$	$z_3 = -1 + 7i$	$z_4 = -7 - i$	$z_{5} = 3i$

6) Given *n* is a positive integer and *i* is the imaginary unit, $i^2 = -1$, such that $i^n = i$, which of the following statements about *n* must be true?

A. When n is divided by 4, the remainder is 0.

B. When n is divided by 4, the remainder is 1.

 $\overrightarrow{\mathbf{C}}$. When *n* is divided by 4, the remainder is 2.

- **D.** When n is divided by 4, the remainder is 3.
- E. Cannot be determined from the given information.

7) What is the multiplicative inverse of -5i?

 $-\frac{5i(x)}{-5i} = \frac{1}{-5i}$ $\chi = \frac{-1}{5c}$

 $\frac{1}{5i} \cdot \frac{1}{5i}$

Simplify each of the following expressions in
$$a + bi$$
 form.
8) $(12 - \sqrt{-112}) - (45 + \sqrt{-28})$
(12 $-i\sqrt{16}\sqrt{17}) - (45 + i\sqrt{17}\sqrt{7})$
(12 $-4i\sqrt{7}) - (45 + 2i\sqrt{7})$
(12 $-3i\sqrt{2} + 18xi$
(11) $(2-i)^{-3}$
(12 $-i\sqrt{2} + 18xi$
(1

$$\frac{1}{i-2} \left(\frac{i+2}{i+2}\right) = \frac{i+2}{i^2+2i-2i-4} = \frac{i+2}{-1-4} = \frac{i+2}{-5} = \begin{bmatrix} -i-2\\ -5\\ 5 \end{bmatrix}$$

Expressed in simplest
$$a + bi$$
 form, $(7 - 3i) + (x - 2i)^2 - (4i + 2x^2)$ is
(1) $(3 - x^2) - (4x + 7)i$ (3) $(3 - x^2) - 7i$ $(x - 2i)(x - 2i)$
(2) $(3 + 3x^2) - (4x + 7)i$ (4) $(3 + 3x^2) - 7i$ $(x^2 - 2xi - 2xi + 4i)^2$
 $(x^2 - 4xi - 4)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$
 $(x^2 - 4xi - 4) - (4i + 2x^2)$

15) The modulus of the complex number a + bi is given by $\sqrt{a^2 + b^2}$. Which of the complex numbers z_1, z_2, z_3, z_4 , and z_5 below has the greatest modulus?

16) Given *i* is the imaginary unit, find $(2 - yi)^2$ in simplest form.

1 1

 $(2-\gamma i)(2-\gamma i)$ $(2-\gamma i)(2-\gamma i)(2-\gamma i)$ $(2-\gamma i)(2-\gamma i)(2-\gamma i)$ $(2-\gamma i)(2-\gamma i)(2-\gamma$ (-V²+

17) If A = -2 + 7i, B = -3 - 5i and C = 1 + 8i where *i* is the imaginary unit, find A - BC in a + bi form.

$$(-2 + 7c) - (-3 - 5c)(1 + 8c)$$

$$(-2 + 7c) - (-3 - 24c - 5c - 40c^{2})$$

$$(-2 + 7c) - (-3 - 29c + 40)$$

$$(-2 + 7c) + (+37 + 29c)$$

$$(-3 - 5c) + (-3 - 29c + 40)$$

$$(-3 + 7c) + (-3 - 29c)$$

18) If x = 4i, y = 2i, and z = m + i, find the expression x^3y^3z in a + bi form.

 $(4i)^{3}(2i)^{3}(mti)$ $64i^{3}(8i^{3})(mti)$ $512i^{6}(mti)$ 5(2(-1)(mti)) -512(mti)

2-512m-512 c

19) Write two complex numbers with a product 18.

22) Is the sum of two irrational numbers always irrational? Justify your answer.

No $\pi + (-\pi) = 0$

23) Completely simplify the following expression:

$$(\sqrt[3]{-8})^2 = (-2)^2 = 4$$

 $\sqrt[3]{-8} = 10i$
 $4^{3/2} = (\sqrt{4})^3 = 2^3 = 8$
 $\sqrt{(-2)^5} = \sqrt{-32} = i\sqrt{16}\sqrt{2}$
 $4i\sqrt{2}$

4 - 5Jz + 10i + 2iJz12

$$\frac{2^{2}3 + (-100)^{1/2}}{(4 + 10i)} = \frac{(4 + 10i)}{(8 - 4i\sqrt{2})} (8 + 4i\sqrt{2}) \\ (8 - 4i\sqrt{2}) (8 + 4i\sqrt{2}) \\ 32 + 16i\sqrt{2} + 80i + 40i^{2}\sqrt{2} \\ 64 + 32i\sqrt{2} - 32i\sqrt{2} - 16i^{2}(2) \\ 32 + 16i\sqrt{2} + 80i + 40(-1)\sqrt{2} \\ 64 - 16(-1)(2) \\ 32 - 40\sqrt{2} + 80i + 16i\sqrt{2} \\ \frac{96}{7} \\ - 3\frac{4-5\sqrt{2}}{12} + \frac{10i+2i\sqrt{2}}{7} \\ \frac{4-5\sqrt{2}}{12} + \frac{2(5i+i\sqrt{2})}{12} \\ \frac{4-5\sqrt{2}}{12} + \frac{5i+i\sqrt{2}}{6} = \frac{4-5\sqrt{2}}{12} + \frac{5i}{6} + \frac{10}{6} = \frac{4-5\sqrt{2}}{12} + \frac{5i}{6} = \frac{1}{12} + \frac{5i}{6}$$