\qquad Date: \qquad
Notes: The Complex Plane
Do Now: 1) Simplify the following expression in $a+b i$ form.
$(1-i)(2-i)$
$(2+i)(2-i)$

$$
\frac{2-i-2 i+i^{2}}{4-2 i+2 i-i^{2}}
$$

$$
\frac{1-3 i}{5}
$$

$$
\begin{aligned}
& \frac{1-i}{2+i}+\frac{1+i}{1-2 i} \\
& \frac{1-3 i}{5}+\frac{-1+3 i}{5} \\
& 1-3 i+(-1)+3 i
\end{aligned}
$$

$(1+i)(1+2 i)$
$(1-2 i)(1+2 i)$
$\frac{1+2 i+i+2 i^{2}}{1+2 i-2 i-4 i^{2}}$
$\frac{-1+3 i}{5}$
2) Graph and label each of the following points.

A: $(0,5)$
B: $(-1,7)$
C: $(-5,-9)$
D: $(7,0)$

What Should I Be Able to Do?

- I can graph complex numbers on a complex plane.

The Complex Plane:

What do you notice is different about the complex plane than a coordinate plane?
The x-axis is now the R-axis for real. The y-axis is now the i-axis for imaginary.

Graph each complex number on the complex plane.
$z_{1}=1+5 i$

$$
z_{2}=-2+3 i
$$

$$
z_{3}=4-9 i
$$

$$
z_{4}=-7-i
$$

$$
z_{5}=10 i
$$

Success Criteria

- I can graph complex numbers on a complex plane.

1) Graph each complex number on the complex plane below.

$$
z_{1}=-3+6 i
$$

$$
z_{2}=2-3 i
$$

$$
z_{3}=4
$$

$$
z_{4}=-10+10 i
$$

$$
z_{5}=7 i
$$

2) Given a and b are positive real numbers, describe how you would plot $a-b i$ on a complex plane. I would start at $0+0 i$ and plot a point that is a units to the right and bunits down.
\qquad
\qquad
\qquad
\qquad
Classwork: The Complex Plane

1) Write $-\frac{1}{2} i^{3}(\sqrt{-9}-4)-3 i^{2}$ in simplest $a+b i$.

$$
\begin{aligned}
& \frac{-1}{2}(-i)(3 i-4)-3(-1) \\
& \frac{1}{2} i(3 i-4)+3 \\
& 1.5 i-2+3 \\
& 1+1.5 i
\end{aligned}
$$

2)

The expression $6-(3 x-2 i)^{2}$ is equivalent to
(1) $-9 x^{2}+12 x i+10$
(3) $-9 x^{2}+10$
(2) $9 x^{2}-12 x i+2$
(4) $-9 x^{2}+12 x i-4 i+6$

$$
\begin{array}{ll}
6-(3 x-2 i)(3 x-2 i) & 6-9 x^{2}+12 x i+4 \\
6-\left(9 x^{2}-6 x i-6 x i+4 i^{2}\right) & -9 x^{2}+12 x i+10 \\
6-\left(9 x^{2}-12 x i-4\right) &
\end{array}
$$

3) What is the product of the complex numbers $\left(2-6 i^{3}\right)$ and $\left(-9+2 i^{81}\right)$?

$$
\begin{gathered}
(2-6(-i))(-9+2 i) \\
(2+6 i)(-9+2 i) \\
-18+4 i-54 i+12 i^{2} \\
-18-50 i+(12)(-1) \\
{[-30-50 i]}
\end{gathered}
$$

4) What is the sum of the complex numbers $\left(12-3 i^{49}\right),\left(-1-i^{1,028,253}\right)$, and $\left(-11+i^{4}\right)$? $(12-3 i),(-1-i)$, and (-11)

$$
\begin{aligned}
& 12-3 i \\
+ & -1-i \\
+\quad & -11
\end{aligned}
$$

$$
1-4 i
$$

5) Graph each complex number on the complex plane below.
$z_{1}=2-9 i$
$z_{2}=5+5 i$
$z_{3}=-1+7 i$
$z_{4}=-7-i$
$z_{5}=3 i$

6) Given n is a positive integer and i is the imaginary unit, $i^{2}=-1$, such that $i^{n}=i$, which of the following statements about n must be true?
A. When n is divided by 4 , the remainder is 0 .
(B. When n is divided by 4 , the remainder is 1 .
C. When n is divided by 4 , the remainder is 2 .
D. When n is divided by 4 , the remainder is 3 .
E. Cannot be determined from the given information.
7) What is the multiplicative inverse of $-5 i$?

$$
\begin{array}{ll}
\frac{-5 i(x)}{-5 i} & =\frac{1}{-5 i}
\end{array} \quad \frac{-1}{5 i} \cdot i
$$

Simplify each of the following expressions in $a+b i$ form.

$$
\begin{gathered}
\text { 8) }(12-\sqrt{-112})-(45+\sqrt{-28}) \\
(12-i \sqrt{16} \sqrt{7})-(45+i \sqrt{4} \sqrt{7}) \\
(12-4 i \sqrt{7})-(45+2 i \sqrt{7}) \\
12-4 i \sqrt{7}-45-2 i \sqrt{7} \\
-33-6 i \sqrt{7}
\end{gathered}
$$

$$
\text { 9) }(x+3 i)^{2}-(2 x-3 i)^{2}
$$

$$
\begin{aligned}
& 9)(x+3 i)^{-}-(2 x-3 i)^{2} \\
& (x+3 i)(x+3 i)-(2 x-3 i)(2 x-3 i)
\end{aligned}
$$

$$
\left(x^{2}+3 x i+3 x i+9 i^{2}\right)-\left(4 x^{2}-6 x i-6 x i+9 i^{2}\right)
$$

$$
\left(x^{2}+6 x i-9\right)-\left(4 x^{2}-12 x i-9\right)
$$

$$
x^{2}+6 x i-9-4 x^{2}+12 x i+9
$$

$$
-3 x^{2}+18 x i
$$

12) Completely simplify the expression $(x-4 i)^{3}$.

$$
\begin{aligned}
&(x-4 i)(x-4 i)(x-4 i) \\
&\left(x^{2}-4 x i-4 x i+16 i{ }^{2}\right)(x-4 i) \\
&\left(x^{2}-8 x i-16\right)(x-4 i) \\
& x^{3}-4 x^{2} i-8 x^{2} i+32 x i^{2}-16 x+64 i \\
& \text { notati } i x \\
& \text { form but } x^{3}-4 x^{2} i-8 x^{2} i-32 x-16 x+64 i \\
& x^{3}-12 x^{2} i-48 x+64 i \quad x^{3}-48 x-\left(12 x^{2}-64\right) i
\end{aligned}
$$

13) What is the multiplicative inverse of $i-2$?

$$
\frac{1}{i-2(i+2)}\left(\begin{array}{l}
\text { What is the multiplicative inverse of } i-2 ? \\
i-2
\end{array}=\frac{i+2}{i^{2}+2 i-2 i-4}=\frac{i+2}{-1-4}=\frac{i+2}{-5}=\frac{-i-2}{5}\right.
$$

14)

Expressed in simplest $a+b i$ form, $(7-3 i)+(x-2 i)^{2}-\left(4 i+2 x^{2}\right)$ is
(1) $\left(3-x^{2}\right)-(4 x+7) i$
(3) $\left(3-x^{2}\right)-7 i$
$(x-2 i)(x-2 i)$
(2) $\left(3+3 x^{2}\right)-(4 x+7) i$
(4) $\left(3+3 x^{2}\right)-7 i$

$$
\begin{aligned}
& (7-3 i)+\left(x^{2}-4 x i-4\right)-\left(4 i+2 x^{2}\right) \\
& 7-3 i+x^{2}-4 x i-4-4 i-2 x^{2} \\
& -x^{2}+3-4 x i-7 i \\
& -x^{2}+3-(4 x+7) i
\end{aligned}
$$

15) The modulus of the complex number $a+b i$ is given by $\sqrt{a^{2}+b^{2}}$. Which of the complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$, and z_{5} below has the greatest modulus?
(A.) z_{1}
B. z_{2}
C. z_{3}
D. z_{4}
E. z_{5}

16) Given i is the imaginary unit, find $(2-y i)^{2}$ in simplest form.

$$
\begin{aligned}
& (2-y i)(2-y i) \\
& 4-2 y i-2 y i+y^{2} i^{2} \\
& 4-4 y i-y^{2}
\end{aligned}
$$

17) If $A=-2+7 i, B=-3-5 i$ and $C=1+8 i$ where i is the imaginary unit, find $A-B C$ in $a+b i$ form.

$$
\begin{aligned}
& (-2+7 i)-(-3-5 i)(1+8 i) \\
& (-2+7 i)-\left(-3-24 i-5 i-40 i^{2}\right) \\
& (-2+7 i)-(-3-29 i+40) \\
& (-2+7 i)+(+37+29 i) \\
& 35+36 i
\end{aligned}
$$

18) If $x=4 i, y=2 i$, and $z=m+i$, find the expression $x^{3} y^{3} z$ in $a+b i$ form.

$$
\begin{aligned}
& (4 i)^{3}(2 i)^{3}(m+i) \\
& 64 i^{3}\left(8 i^{3}\right)(m+i) \\
& 512 i^{6}(m+i) \\
& 5(2(-1)(m+i) \\
& -512(m+i)
\end{aligned}
$$

$$
9-512 m-512 i
$$

19) Write two complex numbers with a product 18.

$$
\begin{gathered}
(6 i)(-3 i) \\
-18 i^{2}
\end{gathered}
$$

18

Solve each of the following equations.

$$
\begin{aligned}
& \text { 20) } \sqrt{-4 x+16}-\sqrt{3 x-12}=0 \\
& +\sqrt{3 x-12}+\sqrt{3 x-12} \\
& \sqrt{-4 x+16}^{2}=\sqrt{3 x-12}^{2} \\
& -4 x+16=3 x-12 \\
& \begin{array}{l}
-4 x+16=3 x-12 \\
+4 x+12+4 x+12 \text { Check: } \\
\frac{28}{9}=\frac{7 x}{7} \quad \sqrt{-4(4)+16}-\sqrt{3(4)-12}=0
\end{array} \\
& \begin{array}{l}
{\left[(2 x-15)^{5 / 3}\right]^{3 / 3}=(1024)^{3 / 5} \quad \text { Check: }} \\
2 x-15=64 \quad \frac{4}{5}(2(39.5)-15)^{5 / 3} \cdot 12=80.2 \\
+15=15 \quad 807.2=807.2
\end{array} \\
& x=4 \\
& \text { 21) } \frac{4}{5}(2 x-15)^{5 / 3}-12=807.2 \\
& \text { (} \frac{5}{4} \text {) } \\
& \text { (5) } \frac{4}{4}(2 x-12=0 \\
& 2 x-15=64 \quad \frac{4}{5}(2(39.5)-15)^{5 / 3} \cdot 12=500.2 \\
& 807.2=807.2 \\
& \frac{2 x}{2}=\frac{79}{2} \\
& x=39.5
\end{aligned}
$$

22) Is the sum of two irrational numbers always irrational? Justify your answer.

No

$$
\pi+(-\pi)=0
$$

23) Completely simplify the following expression

$$
\begin{aligned}
& (\sqrt[3]{-8})^{2}=(-2)^{2}=4 \\
& \sqrt{-100}=10 i \\
& 4^{3 / 2}=(\sqrt{4})^{3}=2^{3}=8 \\
& \begin{aligned}
\sqrt{(-2)^{5}}=\sqrt{-32}=i \sqrt{16} \sqrt{2} \\
4 i \sqrt{2}
\end{aligned} \\
& \frac{(-8)^{2 / 3}+(-100)^{1 / 2}}{\left(\frac{1}{4}\right)^{-3 / 2}-(-2)^{5 / 2}} \\
& \underline{(4+10 i)}(8+4 i \sqrt{2}) \\
& \frac{(8-4 i \sqrt{2})}{(8+4 i \sqrt{2})} \\
& \frac{32+16 i \sqrt{2}+80 i+40 i^{2} \sqrt{2}}{64+32 i \sqrt{2}-32 i \sqrt{2}-16 i^{2}(2)} \\
& \frac{32+16 i \sqrt{2}+80 i+40(-1) \sqrt{2}}{64-16(-1)(2)} \\
& \frac{32-40 \sqrt{2}+80 i+16 i \sqrt{2}}{96} \\
& \frac{4-5 \sqrt{2}+10 i+2 i \sqrt{2}}{12} \\
& \rightarrow \frac{4-5 \sqrt{2}}{12}+\frac{10 i+2 i \sqrt{2}}{12} \\
& \frac{4-5 \sqrt{2}}{12}+\frac{2(5 i+i \sqrt{2})}{12} \\
& \frac{4-5 \sqrt{2}}{12}+\frac{5 i+i \sqrt{2}}{6}=\frac{4-5 \sqrt{2}}{12}+\frac{51 \sqrt{2} i}{6} i
\end{aligned}
$$

