Homework: Laws of Exponents

Simplify each expression using only positive exponents.

$$1) \left(\frac{a^3}{a^{\frac{1}{4}}}\right)^{-\frac{1}{3}}$$

2)
$$\left(\frac{1}{16}w^{50}x^{-24}y^{0}\right)^{\frac{1}{2}}\left(\frac{1}{2}xy^{4}\right)^{-2}$$

$$3) \left(\frac{-30a^{19}b^{-15}c^{20}}{72b^{-1}c^{10}} \right)^{-3}$$

4) Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate (9)^{5/2}.

5) Write $\sqrt[3]{x} \cdot \sqrt{x}$ as a single term with a rational exponent.

6)

For $x \ge 0$, which equation is *false*?

(1)
$$\left(x^{\frac{3}{2}}\right)^2 = \sqrt[4]{x^3}$$
 (3) $\left(x^{\frac{3}{2}}\right)^{\frac{1}{2}} = \sqrt[4]{x^3}$ (2) $\left(x^3\right)^{\frac{1}{4}} = \sqrt[4]{x^3}$ (4) $\left(x^{\frac{2}{3}}\right)^2 = \sqrt[3]{x^4}$

(3)
$$\left(x^{\frac{3}{2}}\right)^{\frac{1}{2}} = \sqrt[4]{x^3}$$

$$(2) \ \left(x^3\right)^{\frac{1}{4}} = \sqrt[4]{x^3}$$

(4)
$$\left(x^{\frac{2}{3}}\right)^2 = \sqrt[3]{x^4}$$

Write each in simplest radical form. Then completely simplify, without a calculator.			
7) $343^{\frac{1}{3}}$	8) $10000^{\frac{1}{4}}$	9) $\left(\frac{49}{36}\right)^{\frac{3}{2}}$	10) $\left(-\frac{125}{729}\right)^{-\frac{4}{3}}$
11) Write the following expression in standard forms			
11) Write the following expression in standard form: $(2x + c)^2 - 3(x - c) + 9$			
	$(2x+c)^2$	-3(x-c)+9	
10) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
12) Which statement is <i>not</i> always true?			
(1) The product an irrational number and a nonzero rational number is irrational.(2) The product of two rational numbers is rational.			
(3) The product of two integers is a whole number.(4) The product of two real numbers is a real number.			
13) Explain how $(8)^{3/4}$ can be evaluated using properties of rational exponents. Then determine if $(8)^{3/4}$ is rational or irrational. Explain your reasoning.			
$(8)^{3/4}$ is rational or	rirrational. Explain your reason	ning.	