

Notes: Graphing Logarithmic Functions

What Should I Be Able to Do?

- I can describe how a logarithmic equation is being transformed.
- I can graph a logarithmic equation that is undergoing multiple transformations.
- I can determine the asymptote of a logarithmic equation.
- I can determine the domain and range of a logarithmic equation.
- I can determine the x-intercept of a logarithmic equation.
- I can determine the end behavior of a logarithmic equation.
- I can graph a logarithmic equation with a base such that 0 < b < 1.

Let's look deeper into the graph of $f(x) = \log_2 x$.

Describe how $f(x) = \log x$ changes to form each of the following equations:

1)
$$g(x) = \log(x - 6)$$
 2) $h(x) = \log x - 9$

3)
$$j(x) = \log(x+1) + 10$$

4) $k(x) = -\log x$

5)
$$m(x) = \log(x - 14) - 21$$

6) $n(x) = -\log(x - 1) + 2$

Graph $y = \log_2(x + 4) - 3$ on the set of axes below. Use an appropriate scale to include *both* intercepts.

Describe the behavior of the given function as x approaches -4 and as x approaches positive infinity.

Let's take a look at when the bases of logarithm equations $(f(x) = \log_b x)$ are different...

Base Greater Than 1 (b > 1)

$$f(x) = \log_2 x$$

Why do the ends of the graph behave like this?

Left-End:

Right-End:

Base Between 0 and 1 (0 < b < 1)

 $f(x) = \log_{\frac{1}{2}} x$

Why do the ends of the graph behave like this?

Left-End:

Right-End:

Success Criteria - I can describe how a logarithmic equation is being transformed. - I can graph a logarithmic equation that is undergoing multiple transformations. - I can determine the asymptote, domain, range, x-intercept, and end behavior of a logarithmic equation. Graph $y = \log_2(x - 2) - 3$ on the set of axes below. →x Describe the transformation from the parent function, $y = \log_2 x$: Domain: Range: Asymptote: X-Intercept: End Behavior: Left-end Behavior -Right-end Behavior-As $x \longrightarrow$ As $x \longrightarrow$ $f(x) \longrightarrow f(x) \longrightarrow f(x)$

Na	+0	•
υu	16	·

Classwork: Graphing Logarithmic Functions

1) Using $f(x) = \log x$ as the parent function, fill in the following for each of the functions below:

$a(x) = \log x - 3$	$b(x) = \log(x - 3)$	$c(x) = \log(x+2) - 4$	
Describe each transformation:			
Domain:	Domain:	 Domain:	
Range:	Range:	Range:	
Asymptote:	Asymptote:	Asymptote:	
X-Intercept:	X-Intercept:	X-Intercept:	
Left-end Behavior:	Left-end Behavior:	Left-end Behavior:	
Pight and Pahavior	Pight and Pahavior	Dight and Pahavior	

2) Find the inverse of the following functions.

a) $y = 5^x$. b) $y = 10^{3x-5}$.

3) Evaluate the following logarithmic expressions without using a calculator.

a) $\log_2 \frac{1}{32}$ b) $4e^{\ln 7}$ c) $\log_{81} 3$ 4) $\log \sqrt{10}$

Domain:	Range:	Asymptote:	X-Intercept:

End Behavior:

Left-end Behavior - Right-end Behavior-

$f(x) \longrightarrow$	$f(x) \longrightarrow$
------------------------	------------------------