\qquad

Notes: Graphing Logarithmic Functions

Do Now: What is the inverse of $y=2^{x}$?

On the set of axes, graph $y=2^{x}$ and its inverse.

What Should I Be Able to Do?

- I can describe how a logarithmic equation is being transformed.
- I can graph a logarithmic equation that is undergoing multiple transformations.
- I can determine the asymptote of a logarithmic equation.
- I can determine the domain and range of a logarithmic equation.
- I can determine the x-intercept of a logarithmic equation.
- I can determine the end behavior of a logarithmic equation.
- I can graph a logarithmic equation with a base such that $0<b<1$.

Let's look deeper into the graph of $f(x)=\log _{2} x$.

x	$f(x)$
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2
8	3

Domain: \qquad Range: \qquad Asymptote: \qquad X-Intercept: \qquad
End Behavior:

Left-end Behavior -

Right-end Behavior-

Now let's graph the following three equations and see how the graph of $f(x)=\log _{2} x$ is changed:
$g(x)=\log _{2}(x+4)$
Describe each transformation:

Domain: \qquad
Range: \qquad
Asymptote: \qquad
X-Intercept: \qquad
Left-end Behavior:

Right-end Behavior:
Right-end Behavior:
$h(x)=\log _{2} x+3$

Domain:
Range:
Asymptote:
X-Intercept:
Left-end Behavior:
$k(x)=-\log _{2} x$
\qquad Domain: \qquad
\qquad
\qquad
Range: \qquad
Asymptote: \qquad
\qquad X-Intercept: \qquad
Left-end Behavior:

Right-end Behavior:

Describe how $f(x)=\log x$ changes to form each of the following equations:

1) $g(x)=\log (x-6)$
2) $h(x)=\log x-9$
3) $j(x)=\log (x+1)+10$
4) $k(x)=-\log x$
5) $m(x)=\log (x-14)-21$
6) $n(x)=-\log (x-1)+2$

Graph $y=\log _{2}(x+4)-3$ on the set of axes below. Use an appropriate scale to include both intercepts.

Describe the behavior of the given function as x approaches -4 and as x approaches positive infinity.

Let's take a look at when the bases of logarithm equations $\left(f(x)=\log _{b} x\right)$ are different...

Base Greater Than $1(b>1)$

$$
f(x)=\log _{2} x
$$

Why do the ends of the graph behave like this? Left-End:

Right-End:

Base Between 0 and $1(0<b<1)$

$f(x)=\log _{\frac{1}{2}} x$

Right-End:

Success Criteria

- I can describe how a logarithmic equation is being transformed.
- I can graph a logarithmic equation that is undergoing multiple transformations.
- I can determine the asymptote, domain, range, x-intercept, and end behavior of a logarithmic equation.

Graph $y=\log _{2}(x-2)-3$ on the set of axes below.

Describe the transformation from the parent function, $y=\log _{2} x$:
\qquad
Domain: \qquad Range: \qquad Asymptote: \qquad X-Intercept: \qquad End Behavior:

Left-end Behavior -

As $x \longrightarrow$ \qquad
$f(x) \longrightarrow \longrightarrow$

Right-end Behavior-
As $x \longrightarrow$
$f(x) \longrightarrow$
\qquad
\qquad

- I can graph a logarithmic equation with a base such that $0<b<1$.

$$
\text { Graph } y=\log _{\frac{1}{3}}(x) \text { on the set of axes below. }
$$

End Behavior:

Left-end Behavior -
As $x \longrightarrow$ \qquad
$f(x) \longrightarrow$ \qquad

Right-end Behavior-
As $x \longrightarrow$
$f(x) \longrightarrow$ \qquad

Describe why each end behavior behaves the way it does.
\qquad

Classwork: Graphing Logarithmic Functions

1) Using $f(x)=\log x$ as the parent function, fill in the following for each of the functions below:
$a(x)=\log x-3$
Describe each transformation:

Domain: \qquad
Range: \qquad
Asymptote: \qquad
X-Intercept: \qquad
Left-end Behavior:
Domain: \qquad
Range: \qquad
Asymptote: \qquad
X-Intercept: \qquad
Left-end Behavior:
Left-end Behavior:
2) Find the inverse of the following functions.
a) $y=5^{x}$.
b) $y=10^{3 x-5}$.
3) Evaluate the following logarithmic expressions without using a calculator.
a) $\log _{2} \frac{1}{32}$
b) $4 e^{\ln 7}$
c) $\log _{81} 3$
4) $\log \sqrt{10}$
4) Graph $y=\log _{\frac{1}{4}} x$ on the set of axes below.

Domain: \qquad Range: \qquad Asymptote: \qquad X-Intercept: \qquad

End Behavior:
Left-end Behavior -
Right-end Behavior-
As $x \longrightarrow$
As $x \longrightarrow$
$f(x) \longrightarrow \longrightarrow$

