Name:		
i vuille:		

Date:_____

Notes: Laws of Exponents

Do Now: Simplify each expression in the left column, then explain in words the exponent law in the middle column. Lastly, in the right column, write a general rule using mathematical symbols.

Simplify:

Explain:

Generalize:

$$\frac{x^9}{x^3} =$$

When dividing terms with the same base,

 $\frac{x^a}{x^b} =$

_____ the exponents.

$$w^7(w^8) =$$

When multiplying terms with the same base,

 $x^a(x^b) =$

the exponents.

$$(h^3)^4 =$$

To raise a power to a power, _____

 $(x^a)^b =$

.....

 $(mn)^7 =$

To raise a product to a power, _____

 $(xy)^a$

 $\left(\frac{c}{d}\right)^3 =$

To raise a fraction to a power, _____

 $\left(\frac{x}{y}\right)$

What Should I Be Able to Do?

- I can simplify any expression that raises a base to the power of zero.
- I can explain the reasoning behind rule for simplifying any base that is raised to the power of zero.
- I can simplify any expression with negative exponents.
- I can explain the reasoning behind the rule for simplifying an expression with negative exponents.
- I can simplify expressions that raises a base to a rational exponent.
- I can explain how to simplify expressions that involve raising a base to a rational exponent.

Zero Exponent:

How can I simplify 3⁰ ? Hmmmmmm...

Let's simplify $\frac{3^2}{3^2}$ two different methods....

- a) Simplify $\frac{3^2}{3^2}$ by using the laws of exponents.
- b) Simplify $\frac{3^2}{3^2}$ by writing the expression out using all of its factors.

Then, $3^0 =$ _____.

Let's try that with a different value... simplify $\frac{m^6}{m^6}$ using two different methods.

Write $\frac{m^6}{m^6}$ in simplest exponential form and in standard form.

- a) Simplify $\frac{m^6}{m^6}$ by using the laws of exponents. b) Simplify $\frac{m^6}{m^6}$ by writing the expression out using all of its factors.

Then, $m^0 =$.

Negative Exponents:

How can I simplify 5^{-2} into a positive exponent? Hmmmmmm...

Let's simplify $\frac{5^4}{5^6}$ two different methods....

- a) Simplify $\frac{5^4}{5^6}$ by using the laws of exponents.
- b) Simplify $\frac{5^4}{5^6}$ by writing the expression out using all of its factors.

Then,
$$5^{-2} =$$
_____.

Let's try that with a different value... simplify $\frac{n^{10}}{n^{14}}$ using two different methods.

Write $\frac{n^{10}}{n^{14}}$ in simplest exponential form and in standard form.

- a) Simplify $\frac{n^{10}}{n^{14}}$ by using the laws of exponents. b) Simplify $\frac{n^{10}}{n^{14}}$ by writing the expression out
 - using all of its factors.

Then, $n^{-4} =$.

Generalized Rule: For any nonzero real number x, if n is a natural number,

Simplify the following expressions using only positive exponents.

2)
$$\frac{2^{-2}}{3}$$

$$(-10)^{0}$$

3)
$$(-10)^0$$
 4) $\frac{24x^{-7}y^5}{8x^{-8}y^7z^{-5}}$

Checkpoint:

Simplify the following expressions using only positive exponents.

$$1)\frac{18a^9b^{-7}}{27a^{11}b^{-3}}$$

2)
$$(3x^3y^{-2}z^7)^2$$

$$3) \left(\frac{-40ab^2c^{13}}{8ab^{-5}c^{12}} \right)^{-3}$$

4)
$$(2d^{-24}f^{16}g^0)^{-3} \left(\frac{1}{4}d\right)^{-2}$$

1) 2³

2) 14²

Do Now: Simplify each of the following expressions without using a calculator.

3) $9^{\frac{1}{2}}$

 $4)4^{\frac{3}{2}}$

But why does this make sense?

What does $(\sqrt{5})^2$ equal to?

What does $\left(5^{\frac{1}{2}}\right)^2$ equal to?

What does this tell you about $\sqrt{5}$ and $5^{\frac{1}{2}}$?

What does $(\sqrt[3]{8})^3$ equal to?

What does $\left(8^{\frac{1}{3}}\right)^3$ equal to?

What does this tell you about $\sqrt[3]{8}$ and $8^{\frac{1}{3}}$?

Rational Exponents: For any rational exponent $\frac{m}{n}$, where m and n are integers and $n \ge 2$,

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

equivalently written

$$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$$

1) Explain how $(27)^{4/3}$ can be evaluated using properties of rational exponents to result in an integer answer.
2) Explain how $\left(8^{\frac{1}{7}}\right)^2$ can be written as the equivalent radical expression $\sqrt[7]{64}$.

3) Write each in simplest radical form. Then completely simplify, without a calculator.

- a) $64^{\frac{1}{3}}$
- b) $625^{\frac{1}{4}}$

- c) $(-8)^{\frac{2}{3}}$
- $d) 36^{-\frac{1}{2}}$

Success Criteria

- I can simplify any expression that raises a base to the power of zero.
- 1) 12^0

$$(-2abc)^0$$

3)
$$[(-3a^{45}b^{-5}c^7)^0]^4$$

- I can explain the reasoning behind rule for simplifying any nonzero real number raised to the power of zero.

- I can simplify any expression with negative exponents.

$$1) \left(\frac{1}{9}a^{-101}b^{41}c^{-1}\right)^{-2} (3c^4)^{-3}$$

$$2) \left(\frac{-48xy^{-12}z^{21}}{-36x^{-2}z^{-5}} \right)^{-3}$$

- I can explain the reasoning behind the rule for simplifying an expression with negative exponents.

1) $144^{\frac{1}{2}}$	2) $32^{\frac{4}{5}}$	3) $\left(-\frac{27}{8}\right)^{-\frac{2}{3}}$	
		(8)	
T 1. 1 . 1 4 .		1	4
F yn lain how (81) ^{3/4} c	an be evaluated using properties	lve raising a base to a rational expone of rational exponents to result in an inte	ent.
answer.	an be evaluated using properties	of factorial exponents to result in an inc	oger

Classwork: Laws of Exponents

Simplify each expression.

$$1)\frac{17x^6y^{-7}}{68x^9y^{-9}}$$

$$2) \left(x^{\frac{1}{3}} y^{\frac{3}{4}} \right)^{-12}$$

$$3) \left(3x^{\frac{3}{2}}y^{-\frac{7}{4}}z^2\right)^0$$

4)
$$\left(\frac{-46xy^{-12}z^{50}}{12x^4y^{-9}z^{21}}\right)^{-2}$$

$$5) \left(\frac{81x^8}{y^{-44}} \right)^{1/4}$$

6)
$$\left(\frac{4}{3}c^{-43}d^{43}\right)^{-2} \left(\frac{4}{5}c^{-43}d^{20}\right)^2$$

7) Explain how $(25)^{5/2}$ can be evaluated using properties of rational exponents to result in an integer answer.

Write each in simplest radical form. Then completely simplify, without a calculator.

8)
$$(-216)^{\frac{1}{3}}$$

9)
$$(-32)^{\frac{2}{5}}$$

10)
$$\left(\frac{16}{625}\right)^{\frac{3}{4}}$$

11)
$$\left(-\frac{64}{27}\right)^{-\frac{5}{3}}$$

12) If $\left(n^{\frac{1}{2}}\right)$	$\left(\frac{3}{4}\right)^{x} = \frac{1}{3}$	what is	the val	ue of x ?
12) 11 (1	') ${n^3}$	wiiat is	tiic vai	uc or x.

(1) - 2

(3) -4

(2) 2

(4) 4

13) Which equation is equivalent to $y = 11^x$?

(1) $y = 11^{-x}$

(2) $y = \left(\frac{1}{11}\right)^x$

(3) $y = -11^x$ (4) $y = \left(\frac{1}{11}\right)^{-x}$

14) Write $\sqrt[3]{x} \cdot \sqrt[4]{x^3}$ as a single term with a rational exponent.

15) Which number is the largest?

 $(1)\left(\frac{1}{5}\right)^{-1}$

 $(3) \left(\frac{1}{5}\right)^{1/2}$ $(4) \left(\frac{1}{5}\right)^3$

 $(2) \left(\frac{1}{5}\right)^0$

16) Explain how $\left(3^{\frac{2}{5}}\right)^2$ can be written as the equivalent radical expression $\sqrt[5]{81}$.