$\qquad$
$\qquad$

## Notes: Sequences

Do Now:

1) Consider the sequence below.

$$
4,7,10,13,16,19, \ldots
$$

What are the next 4 terms?

What is the pattern of the sequence?
2) At Mount Morris Elementary School, the auditorium has thirty-five rows of seats. The front row has 12 seats and each subsequent row has two more seats than the previous row. How many seats are in the fourteenth row?

## What Should I Be Able to Do?

- I can define sequence.
- I can create a sequence of my own.
- I can write a recursive formula given a context.
- I can interpret a recursive formula and state any term in the sequence.
- I can graph a sequence.
- I can define an arithmetic sequence.
- I can decipher whether a sequence is arithmetic or not arithmetic and provide reasoning.


## Vocab Breakdown

## Sequence: An ordered list of numbers that often has a pattern.

The first term is denoted $a_{1}$, second term $a_{2}$, third term $a_{3}$, etc...

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, \ldots, a_{n}, \ldots
$$

(Other common notations are $a(1)$ or $f(1)$ for the first term, $a(2)$ or $f(2)$ for the second term, etc...)

Example:

$$
3,9,15,21,27,33,39, \ldots
$$

1) What is the pattern in the sequence above?
2) What is $a_{5}$ ?
3) What is a(1)?
4) What is $f(10)$ ?

Create your own sequence!!!
Step 1: State the first term.
Step 2: State the pattern of your sequence.
Step 3: State the first 5 terms of your sequence.

The sequence I created started with a first term of 5 and then added 10 to the previous term to get the next term. Let's list as many terms a will fit on the page.

This sequence would go on forever! There is a better way of representing sequences and that is by using a RECURSIVE FORMULA.

## Vocab Breakdown

Recursive Formula: A way of writing sequences that relates each term of the sequence to the previous term.

* You must always state the first term to specify where the sequence starts!

Let's look at how I would write my sequence in a recursive formula:

$$
\begin{gathered}
a_{1}=5 \\
a_{n}=a_{n-1}+10
\end{gathered}
$$

Put this recursive formula into words.

How else could you write this recursive formula using different notation?

Interpret each recursive formula. Then find the first 5 terms of each sequence.

1) $a_{1}=3$
$a_{n}=a_{n-1}-2$
2) $a_{1}=-4$

$$
a_{n}=2 a_{n-1}
$$

3) $a(1)=1$

$$
a(n)=-3 a(n-1)-2
$$

Simon is saving up for a new pair of soccer cleats. He has $\$ 15$ dollars saved from his first week and then saves $\$ 10$ dollars each week from mowing lawns.
a) Write a recursive formula to represent the how much money Simon has saved in $n$ weeks.
b) Fill in the following table for the first five terms.

| $\boldsymbol{n}$ | $\boldsymbol{a}(\boldsymbol{n})$ |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |

c) Graph the sequence below.


What quadrant(s) should not be included in our graph? Explain your reasoning.

How does the graph of a sequence differ from graphs of other equations?

## Checkpoint:

1) $a_{1}=\frac{1}{2}$

$$
a_{n}=4 a_{n-1}-2
$$

a) Interpret the recursive formula.
b) Find the first 5 terms of each sequence.
2) $a(1)=2$

$$
a(n)=a(n-1)+n
$$

a) Interpret the recursive formula.
b) Find the first 5 terms of each sequence.
c) Graph the first 5 terms of the sequence


Vocab Breakdown
Arithmetic Sequence: A sequence that has a common difference between terms.

Examples:
$3,9,15,21,27,33,39, \ldots$
$4,0,-4,-8,-12,-16,-20, \ldots$

General Recursive Formula for Arithmetic Sequence:

$$
\begin{gathered}
a_{1}=\text { first term } \\
a_{n}=a_{n-1}+d
\end{gathered}
$$

Write the recursive formula for each of arithmetic sequence above.

Determine whether each of the following sequences is arithmetic. Explain your reasoning. Then, find the sequence's recursive formula.

1) $-1,6,13,20,27, \ldots$
2) $2,4,8,16,32,64, \ldots$
3) $10,2,-6,-14, \ldots$

## Success Criteria

- I can define sequence.

Define sequence.

## - I can create a sequence of my own.

Create your own sequence. Write the recursive formula of your sequence and find the first five terms.

## - I can write a recursive formula given a context.

Find the recursive formula for each scenario.

1) $-8,-28,-48,-68,-88, \ldots$ 2) A store sells packages of apples that have a dozen apples in each package. How many apples are sold after $n$ packages are sold?

- I can interpret a recursive formula and state any term in the sequence.

Interpret each recursive formula. Then find the first 5 terms of each sequence.

1) $a_{1}=7$

$$
a_{n}=a_{n-1}+9
$$

2) $f(1)=10$

$$
f(n)=10 f(n-1)-100
$$

- I can graph a sequence.

Graph the first seven terms of the following sequence.

$$
\begin{gathered}
a(1)=10 \\
a(n)=a(n-1)+20
\end{gathered}
$$



- I can define an arithmetic sequence.

Define arithmetic sequence.

- I can decipher whether a sequence is arithmetic or not arithmetic and provide reasoning.

Determine whether each of the following sequences is arithmetic. Explain your reasoning.

1) $1,3,7,13, \ldots$
2) $-15,-18,-21,-24, \ldots$
3) $\frac{1}{3}, \frac{5}{3}, 3, \frac{13}{3} \ldots$

Name: $\qquad$
$\qquad$

## Classwork: Sequences

Interpret each recursive formula. Then find the first 5 terms of each sequence.

1) $a_{1}=-8$

$$
a_{n}=a_{n-1}-7
$$

2) $f(1)=-1$

$$
f(n)=-2 f(n-1)+n
$$

3) What is the common difference of the arithmetic sequence $5,8,11,14$ ?
4) What is the common difference of the arithmetic sequence $-7 x,-4 x,-x, 2 x, 5 x$ ?
5) In a sequence, the first term is 7 and the common difference is 6 . What is the sixth term of the sequence?
6) In 2014, the cost to mail a letter was 49 cents for up to one ounce. Every additional ounce cost 21 cents. Write a recursive formula that can be used to determine the cost of an $n$-ounce letter, in cents.
7) A sequence of blocks is shown in the diagram below


This sequence can be defined by the recursive function $a_{1}=1$ and $a_{n}=a_{n-1}+n$. Assuming the pattern continues, how many blocks will there be when $n=7$ ?
8)

Given the following three sequences:
I. $2,4,6,8,10 \ldots$
II. $2,4,8,16,32 \ldots$
III. $\quad a, a+2, a+4, a+6, a+8 \ldots$

Which ones are arithmetic sequences?
(1) I and II, only
(3) II and III, only
(2) I and III, only
(4) I, II, and III
9)

Given the recursive formula:

$$
\begin{aligned}
& a_{1}=3 \\
& a_{n}=2\left(a_{n-1}+1\right)
\end{aligned}
$$

State the values of $a_{2}, a_{3}$, and $a_{4}$ for the given recursive formula.
10) Write a sequence using a recursive formula that has a sixth term of 3 .
11) Given the sequence

$$
\begin{gathered}
a(1)=3 \\
a(n)=2 a(n-1)-1
\end{gathered}
$$

a) Fill in the following table for the first five terms of the sequence.

| $\boldsymbol{n}$ | $\boldsymbol{a}(\boldsymbol{n})$ |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |

b) Graph the sequence on the interval $1 \leq n \leq 5$.

c) Kent states the domain of the sequence graphed is $[1,5]$ and the range of the sequence is $[3,33]$. Is Kent correct or incorrect? Explain your reasoning.

