Name:	Date:
-------	-------

Notes: Sequences

Do Now:				
1) Consider the sequence below.				
4, 7, 10, 13, 16, 19,				
What are the next 4 terms?				
What is the pattern of the sequence?				
2) At Mount Morris Elementary School, the auditorium has thirty-five rows of seats. The front				
row has 12 seats and each subsequent row has two more seats than the previous row. How many seats are in the fourteenth row?				

What Should I Be Able to Do?

- I can define sequence.
- I can create a sequence of my own.
- I can write a recursive formula given a context.
- I can interpret a recursive formula and state any term in the sequence.
- I can graph a sequence.
- I can define an arithmetic sequence.
- I can decipher whether a sequence is arithmetic or not arithmetic and provide reasoning.

Vocab Breakdown

Sequence: An ordered list of numbers that often has a pattern.

The first term is denoted a_1 , second term a_2 , third term a_3 , etc...

$$a_1, a_2, a_3, a_4, a_5, a_6, a_7, \dots, a_n, \dots$$

(Other common notations are a(1) or f(1) for the first term, a(2) or f(2) for the second term, etc...)

Example:

1) What is the pattern in the sequence above?

2) What is a_5 ?

3) What is a(1)?

4) What is f(10)?

Create your own sequence!!!

Step 1: State the first term.

Step 2: State the pattern of your sequence.

Step 3: State the first 5 terms of your sequence.

The sequence I created started with a first term of 5 and then added 10 to the previous term to get the next term. Let's list as many terms a will fit on the page.

This sequence would go on forever! There is a better way of representing sequences and that is by using a **RECURSIVE FORMULA**.

Vocab Breakdown

Recursive Formula: A way of writing sequences that relates each term of the sequence to the previous term.

* You must always state the first term to specify where the sequence starts!

Let's look at how I would write my sequence in a recursive formula:

$$a_1 = 5$$

$$a_n = a_{n-1} + 10$$

Put this recursive formula into words.				
				

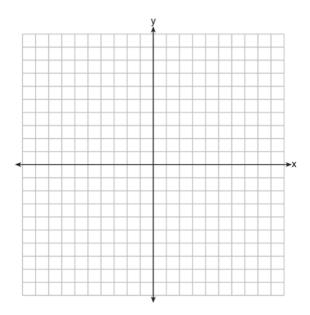
How else could you write this recursive formula using different notation?

Interpret each recursive formula. Then find the first 5 terms of each sequence.

1)
$$a_1 = 3$$

$$a_n = a_{n-1} - 2$$

2) $a_1 = -4$


$$a_n = 2a_{n-1}$$

3) a(1) = 1a(n) = -3a(n-1) - 2 Simon is saving up for a new pair of soccer cleats. He has \$15 dollars saved from his first week and then saves \$10 dollars each week from mowing lawns.

- a) Write a recursive formula to represent the how much money Simon has saved in n weeks.
- b) Fill in the following table for the first five terms.

n	a(n)
1	
2	
3	
4	
5	

c) Graph the sequence below.

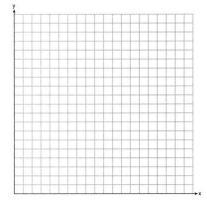
What quadrant(s) should not be included in our graph? Explain your reasoning.

How does the graph of a sequence differ from graphs of other equations?

Checkpoint:

1)
$$a_1 = \frac{1}{2}$$

$$a_n = 4a_{n-1} - 2$$


- a) Interpret the recursive formula.
- b) Find the first 5 terms of each sequence.

2)
$$a(1) = 2$$

$$a(n) = a(n-1) + n$$

- a) Interpret the recursive formula.
- b) Find the first 5 terms of each sequence.

c) Graph the first 5 terms of the sequence

Vocab Breakdown

Arithmetic Sequence: A sequence that has a common difference between terms.

Examples:

$$4, 0, -4, -8, -12, -16, -20, \dots$$

General Recursive Formula for Arithmetic Sequence:

$$a_1 = first term$$

$$a_n = a_{n-1} + d$$

Write the recursive formula for each of arithmetic sequence above.

Determine whether each of the following sequences is arithmetic. Explain your reasoning. Then, find the sequence's recursive formula.

Success Criteria

- I can define sequen	ce.
-----------------------	-----

Define sequence.

- I can create a sequence of my own.

Create your own sequence. Write the recursive formula of your sequence and find the first five terms.

- I can write a recursive formula given a context.

Find the recursive formula for each scenario.

$$1) -8, -28, -48, -68, -88, \dots$$

2) A store sells packages of apples that have a dozen apples in each package. How many apples are sold after n packages are sold?

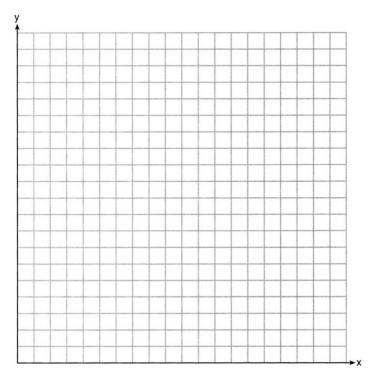
- I can interpret a recursive formula and state any term in the sequence.

Interpret each recursive formula. Then find the first 5 terms of each sequence.

1)
$$a_1 = 7$$

$$a_n = a_{n-1} + 9$$

2) f(1) = 10


$$f(n) = 10f(n-1) - 100$$

	_						
-	I	can	gra	ph	a	seq	uence.

Graph the first seven terms of the following sequence.

$$a(1) = 10$$

$$a(n) = a(n-1) + 20$$

- I can define an arithmetic sequence.

Define arithmetic sequence.

- I can decipher whether a sequence is arithmetic or not arithmetic and provide reasoning. Determine whether each of the following sequences is arithmetic. Explain your reasoning.

$$3)\frac{1}{3},\frac{5}{3},3,\frac{13}{3}...$$

Name:	
1 101110	

Date:_____

Classwork: Sequences

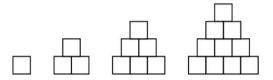
Interpret each recursive formula. Then find the first 5 terms of each sequence.

1)
$$a_1 = -8$$

$$a_n = a_{n-1} - 7$$

2)
$$f(1) = -1$$

$$f(n) = -2f(n-1) + n$$


3) What is the common difference of the arithmetic sequence 5, 8, 11, 14?

4) What is the common difference of the arithmetic sequence -7x, -4x, -x, 2x, 5x?

5) In a sequence, the first term is 7 and the common difference is 6. What is the sixth term of the sequence?

6) In 2014, the cost to mail a letter was 49 cents for up to one ounce. Every additional ounce cost 21 cents. Write a recursive formula that can be used to determine the cost of an *n*-ounce letter, in cents.

7) A sequence of blocks is shown in the diagram below

This sequence can be defined by the recursive function $a_1 = 1$ and $a_n = a_{n-1} + n$. Assuming the pattern continues, how many blocks will there be when n = 7?

8)

Given the following three sequences:

I. 2, 4, 6, 8, 10...

II. 2, 4, 8, 16, 32...

III. a, a + 2, a + 4, a + 6, a + 8...

Which ones are arithmetic sequences?

- (1) I and II, only
- (3) II and III, only
- (2) I and III, only
- (4) I, II, and III

9)

Given the recursive formula:

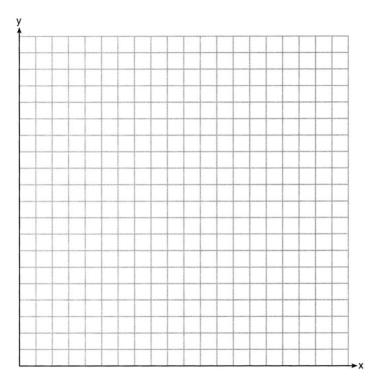
$$a_1 = 3$$

 $a_n = 2(a_{n-1} + 1)$

State the values of a_2 , a_3 , and a_4 for the given recursive formula.

10) Write a sequence using a recursive formula that has a sixth term of 3.

11) Given the sequence


$$a(1) = 3$$

$$a(n) = 2a(n-1) - 1$$

a) Fill in the following table for the first five terms of the sequence.

n	a(n)
1	
2	
3	
4	
5	

b) Graph the sequence on the interval $1 \le n \le 5$.

c) Kent states the domain of the sequence graphed is [1,5] and the range of the sequence is [3,33]. Is Kent correct or incorrect? Explain your reasoning.