\qquad

Notes: Solving and Graphing Radical Equations

Do Now: ALGEBRAICALLY solve each equation.

$$
\sqrt{x}=3
$$

Why did you choose to do the first step you did to solve this equation?
\qquad
\qquad
\qquad
\qquad

$$
\sqrt{x+7}=3
$$

Why did you choose to do the first step you did to solve this equation?
\qquad
\qquad
\qquad
\qquad

What Should I Be Able to Do?

- I can solve equations with a radical on one side of the equation.
- I can solve equations with a radical on both sides of the equation.
- I can solve equations with two radicals on one side of the equation.
- I can graph radical equations.
- I can explain why the graph of a radical equation ends where it does.

Solve the following equations.

1) $\sqrt{2 x+7}-5=6$
2) $\sqrt{4 x-6}+12=8$

Vocab Corner

Extraneous Solution: A solution that is found when solving an equation but is not a valid solution to the equation.

Do Now Part II: Solve the following equation.

$$
\sqrt{8 x-1}=\sqrt{3 x+4}
$$

Why did you choose to do the first step you did to solve this equation?

Do Now Part III: Solve the following equation.

$$
\sqrt{3 x+5}-\sqrt{7 x-3}=0
$$

Why did you choose to do the first step you did to solve this equation?

Checkpoint:

Solve each of the following equations.

1) $-4 \sqrt{2 x+10}-2=-10$
2) $\sqrt{2 x+8}+\sqrt{6 x+16}=0$
3) $\sqrt{\frac{1}{2} x+1}=\sqrt{\frac{2}{3} x-4}$

Graph the equation $y=\sqrt{x}$.

Why does the graph of $y=\sqrt{x}$ behave in the way you are seeing? Talk about both the left-end behavior and the right-end behavior.

Graph the equation $y=\sqrt{x}+2$.

Success Criteria

- I can solve equations with a radical on one side of the equation.

Solve the following equations.

1) $-2 \sqrt{12 x-8}-4=-10$
2) $\sqrt{2 x-1}+4=2$

- I can solve equations with a radical on both sides of the equation.

Solve the following equations.

1) $\sqrt{-3 x+15}=\sqrt{4 x+24}$
2) $\sqrt{\frac{1}{5} x+9}=\sqrt{5 x-2}$

- I can solve equations with two radicals on one side of the equation.

Solve the following equations.

1) $\sqrt{6 x-2}-\sqrt{2 x+14}=0$
2) $\sqrt{3 x+6}+\sqrt{6 x+12}=0$

- I can graph radical equations.
- I can explain why the graph of a radical equation ends where it does.

Graph the equation $y=\sqrt{x}$.

Why does the graph of $y=\sqrt{x}$ behave in the way you are seeing? Talk about both the left-end behavior and the right-end behavior.
\qquad

Classwork: Solving and Graphing Radical Equations

 Solve each of the following equations.1) $\sqrt{-x+17}-\sqrt{-9 x-11}=0$
2) $\sqrt{-0.45 x-1}=\sqrt{41+0.3 x}$
3) $\frac{\sqrt{3-x}}{6}+10=18$
4) $\sqrt{6 x+4}+\sqrt{3 x+12}=0$
5) $20 \sqrt{2 x}-2=-12$
6) $\sqrt{13 x+32}=\sqrt{13 x+21}$
7) Graph the equation $y=\sqrt{x-1}$.

8) Solve the following equation:

$$
\left(\frac{1}{4 x+1}\right)^{-1 / 2}=\frac{\left(\frac{x}{3}+5\right)^{-7 / 2}}{\left(\frac{x}{3}+5\right)^{-4}}
$$

