Notes: Change of Base Formula and Solving Exponential Equations

Do Now: Solve each of the following equations. 2) $125^{8x+9} = 25^{7x+16}$ 1) $3^{2x-1} = 27^{4x-7}$ 3) $3^x = 7$ 4) $4^{x-20} = 18$ What Should I Be Able to Do? - I can use the change of base formula to evaluate any logarithm. - I can mathematically show how to obtain the change of base formula for any logarithm. - I can solve exponential equations without getting common bases.

$$20(4)^{0.1x} + 2 = 18$$

Solve, rounding your answer to the nearest thousandth:

 $35e^{8x} - 11 = 25$

Solve:

(Hint: Try to do the inverse operation of an exponential to both sides of the equation)

Change of Base Formula:

$$\log_b x = \frac{\log_a x}{\log_a b}$$

If you are using common logarithms for the change of base formula:

$$\log_b x = \frac{\log x}{\log b}$$

Solve each of the following:

1)
$$5^x = 4$$
 2) $44^x = 21$ 3) $e^x = 1024$

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest thousandth.

4)
$$\log_2 6$$
 5) $\log_{\frac{1}{2}} 12$ 6) $\log_{106} 23$

Solve the following exponential equations:

1) $5^x = 8^{3x+10}$

2) $12^{2x+11} = 7^{5x-19}$

Success Criteria - I can use the change of base formula to evaluate any logarithm. Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest hundredth.					
			1) $\log_{\frac{1}{4}} 9$	2) log ₃ 15	3) log ₈₇ 31
- I can mathematically show how to obtain the change of base formula for any logarithm. Explain how you can solve $6^x = 19$ to prove the change of base formula.					
- I can solve exponenti	al equations without getting cor	nmon bases.			
1) $3^{x-1} = 2^{x+1}$		2) $14^{3x-3} = 17^{8x-13}$			
By taking the log of both sides of the equation, how does that help us solve an exponential equation?					
]					

Date:_____

Classwork: Change of Base Formula and Solving Exponential Equations

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest hundredth.

1) $\log_5 2$ 2) $\log_{44.5} 18$ 3) $\log_{0.3} 0.95$

Solve each of the following exponential equations.

4) $2(6)^{4x} - 17 = 65$ 5) $e^{x-4} = 4^{5x-1}$

6) $6e^{3x-1} + 14 = 35$

7) $8^{2x-5} = 13^{x+1}$

8) Solve for t in the equation $A = B + Ce^{-kt}$.

9) Solve the following equation:

 $a^{1/\log a} = 8$

Explain why your solution is true.