$\qquad$
Notes: Change of Base Formula and Solving Exponential Equations
Do Now: Solve each of the following equations.

1) $3^{2 x-1}=27^{4 x-7}$
2) $125^{8 x+9}=25^{7 x+16}$
3) $3^{x}=7$
4) $4^{x-20}=18$

## What Should I Be Able to Do?

- I can use the change of base formula to evaluate any logarithm.
- I can mathematically show how to obtain the change of base formula for any logarithm.
- I can solve exponential equations without getting common bases.

Solve:

$$
20(4)^{0.1 x}+2=18
$$

Solve, rounding your answer to the nearest thousandth:

$$
35 e^{8 x}-11=25
$$

Solve:

$$
14^{x}=29
$$

(Hint: Try to do the inverse operation of an exponential to both sides of the equation)

## Change of Base Formula:

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

If you are using common logarithms for the change of base formula:

$$
\log _{b} x=\frac{\log x}{\log b}
$$

Solve each of the following:

1) $5^{x}=4$
2) $44^{x}=21$
3) $e^{x}=1024$

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest thousandth.
4) $\log _{2} 6$
5) $\log _{\frac{1}{2}} 12$
6) $\log _{106} 23$

Solve:

$$
3^{2 \mathrm{x}+9}=4^{3 x-1}
$$

Solve the following exponential equations:

1) $5^{x}=8^{3 x+10}$
2) $12^{2 x+11}=7^{5 x-19}$

## Success Criteria

- I can use the change of base formula to evaluate any logarithm.

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest hundredth.

1) $\log _{\frac{1}{4}} 9$
2) $\log _{3} 15$
3) $\log _{87} 31$

- I can mathematically show how to obtain the change of base formula for any logarithm.

Explain how you can solve $6^{x}=19$ to prove the change of base formula.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

- I can solve exponential equations without getting common bases.

1) $3^{x-1}=2^{x+1}$
2) $14^{3 x-3}=17^{8 x-13}$

By taking the $\log$ of both sides of the equation, how does that help us solve an exponential equation?
$\qquad$
$\qquad$

## Classwork: Change of Base Formula and Solving Exponential Equations

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest hundredth.

1) $\log _{5} 2$
2) $\log _{44.5} 18$
3) $\log _{0.3} 0.95$

Solve each of the following exponential equations.
4) $2(6)^{4 x}-17=65$
5) $e^{x-4}=4^{5 x-1}$
6) $6 e^{3 x-1}+14=35$
7) $8^{2 x-5}=13^{x+1}$
8) Solve for $t$ in the equation $A=B+C e^{-k t}$.
9) Solve the following equation:

$$
a^{1 / \log a}=8
$$

Explain why your solution is true.

