\qquad
\qquad
Notes: Solving and Graphing Radical Equations
Do Now: ALGEBRAICALLY solve each equation.

$$
\begin{aligned}
& \sqrt{x}=3^{2} \\
& x=9
\end{aligned}
$$

Why did you choose to do the first step you did to solve this equation?
\qquad
15 squaring.

$$
\begin{aligned}
& \sqrt{x+7}^{2}=3^{2} \\
& x+7=9 \\
& -7-7
\end{aligned}
$$

$$
x=2
$$

Why did you choose to do the first step you did to solve this equation?
Because I have to get the x alone and the inverse operation of square rooting
is squaring.
\qquad
What Should I Be Able to Do?

- I can solve equations with a radical on one side of the equation.
- I can solve equations with a radical on both sides of the equation.
- I can solve equations with two radicals on one side of the equation.
- I can graph radical equations.
- I can explain why the graph of a radical equation ends where it does.

$$
\text { 1) } \begin{aligned}
\sqrt{2 x+7} & -5=6 \\
& +5+5
\end{aligned}
$$

$$
\sqrt{2 x+7}^{2}=11^{2}
$$

$$
2 x+7=121
$$

$$
-7 \quad-7
$$

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{114}{2} \\
& x=57
\end{aligned}
$$

Check:

$$
\begin{array}{r}
\sqrt{2(57)+7}-5=6 \\
\sqrt{121}-5=6 \\
6=6
\end{array}
$$

2) $\begin{aligned} & \sqrt{4 x-6}+12=8 \\ &-12-12\end{aligned}$

$$
\begin{array}{lr}
\sqrt{4 x-6}^{-12}=(-4)^{-12} \quad \text { Extraneous } \\
4 x-6=16 \\
+6+6 \\
\frac{4 x}{4}=\frac{22}{4} \\
\because x=5 \cdot 5
\end{array} \quad \text { Solution }
$$

Check:

$$
\sqrt{4(5.5)-6}+12 \neq 8
$$

$$
\begin{aligned}
& \sqrt{22-6}+12 \neq 8 \\
& 16 \neq 8
\end{aligned}
$$

Do Now Part II: Solve the following equation.

$$
\begin{gathered}
n g \text { equation. } \\
\sqrt{8 x-1}=\sqrt{3 x+4} \\
8 x-1=3 x+4 \\
-3 x+1=3 x+1 \\
-5 x=\frac{5}{5} \\
\frac{5}{5} \\
x=1
\end{gathered}
$$

Check:

$$
\begin{aligned}
\sqrt{8(1)-1} & =\sqrt{3(1)+4} \\
\sqrt{7} & =\sqrt{7}
\end{aligned}
$$

Why did you choose to do the first step you did to solve this equation?
I chose to square both sides of the equation because the entirety of both sides of the equation are under a square root.

Do Now Part III: Solve the following equation.
WHAT NOT TO DO! $\sqrt{3 x+5}-\sqrt{7 x-3}=0$

$$
\begin{aligned}
& (\sqrt{3 x+5}-\sqrt{7 x-3})^{2}=0^{2} \\
& +\sqrt{7 x-3}+\sqrt{7 x-3} \\
& (\sqrt{3 x-5}-\sqrt{7 x-3})(\sqrt{3 x-5}-\sqrt{7 x-3})=0 \\
& \sqrt{3 x+5}^{2}=\sqrt{7 x-3}^{2} \\
& \begin{array}{l}
3 x-5-\sqrt{(7 x-3)(3 x-5)}-\sqrt{(7 x-3)(3 x-5)}+7 x-3=0 \\
3 x-5-\sqrt{21 x^{2}-44 x+15}-\sqrt{21 x^{2}-44 x+15}+7 x-3=0
\end{array} \\
& 3 x+5=7 x-3 \\
& -3 x+3-3 x+3 \\
& \frac{8}{4}=\frac{4 x}{4} \\
& 2=x \\
& 10 x-8-2 \sqrt{21 x^{2}-44 x+15}=0 \\
& \text {.... and it keeps going... } \\
& \text { and going... and going... }
\end{aligned}
$$

Why did you choose to do the first step you did to solve this equation?
I added $\sqrt{7 x-3}$ to both sides of the equation in order to get the square roots alone on either side of the equation.

Checkpoint:
Solve each of the following equations.

1) $-4 \sqrt{2 x+10}-2=-10$

$$
+2+2
$$

$$
\frac{-4 \sqrt{2 x+10}}{-4}=\frac{-8}{-4}
$$

$$
\sqrt{2 x+10}=2^{2}
$$

$$
\begin{aligned}
& 2 x+10=4 \\
& -10=10
\end{aligned}
$$

$$
-10-10
$$

$$
\frac{2 x}{2}=\frac{-6}{2}
$$

$$
x=-3
$$

Check:

$$
\begin{aligned}
& \text { Check: } \\
& -4 \sqrt{2(-3)+10}-2=-10
\end{aligned}
$$

$$
\begin{aligned}
-4(2)-2 & =-10 \\
-10 & =-10 \mathrm{~s}
\end{aligned}
$$

$$
-10=-10 \mathrm{~V}
$$

2) $\sqrt{2 x+8}+\sqrt{6 x+16}=0$
$-\sqrt{6 x+16}-\sqrt{6 x+16}$
$(\sqrt{2 x+8})^{2}=(-\sqrt{6 x+16})^{2}$
$2 x+8=6 x+16$

$$
-2 x-16-2 x-16
$$

Check:

$\sqrt{2(-2)+8}+\sqrt{6(-2)+16} \pm 0$

$$
\begin{aligned}
& \sqrt{4}+\sqrt{4} \neq 0 \\
& 2+2 \neq 0
\end{aligned}
$$

3)

$$
\frac{-8}{4}=\frac{4 x}{4}
$$

$$
-x^{4}
$$

$$
\begin{aligned}
\sqrt{\frac{1}{2} x+1}^{2} & =\sqrt{\frac{2}{3}} x-4_{2}^{2} \\
\frac{1}{2} x+1 & =\frac{2}{3} x-4 \\
\frac{3}{6} x+1 & =\frac{4}{6} x-4 \\
-\frac{3}{6} x+4 & -\frac{3}{6} x+4 \\
(6) 5 & =\frac{1}{6} x(6) \\
30 & =x
\end{aligned}
$$

Check:

$$
2+270
$$

$$
4 \neq 0
$$

$$
\begin{aligned}
& \text { Check: } \\
& \begin{aligned}
\sqrt{\frac{1}{2}(30)+1} & =\sqrt{\frac{2}{3}(30)-4} \\
\sqrt{16} & =\sqrt{16}
\end{aligned}
\end{aligned}
$$

Graph the equation $y=\sqrt{x}$.

x	y
0	0
1	1
4	2
9	3
16	4

Why does the graph of $y=\sqrt{x}$ behave in the way you are seeing? Talk about both the left-end behavior and the right-end behavior.
Left-end Behavior: If x is being square rooted, then x cannot be negative and stay a real number. Therefore the lowest value x can be is 0 , thus making the left -most point of the graph of $y=\sqrt{x}(0,0)$.
Right-end Behavior: The graph continues to rise,
but at a slower rate as you go further right.

$$
\sqrt{x}=y, \underbrace{\sqrt{25}}_{+11}=5, \underbrace{\sqrt{36}}_{+1}=6, \underbrace{\sqrt{49}}_{+13}=7 \sqrt{\sqrt{64}}=8
$$

Graph the equation $y=\sqrt{x}+2$.

x	Y
0	2
4	4
9	5
16	6

Success Criteria

- I can solve equations with a radical on one side of the equation.

Solve the following equations.

$$
\begin{aligned}
& \text { 1) }-2 \sqrt{12 x-8}+4+4=-10 \\
& \frac{-2 \sqrt{12 x-8}}{-2}=\frac{-6}{-2}-\frac{\text { Check: }}{-2 \sqrt{12\left(\frac{17}{12}\right)-8}-4}=-10 \\
& (\sqrt{12 x-8})^{2}=(3)^{2} \\
& 12 x-8=9 \\
& +8+8 \\
& 12 x=17 \\
& -10=-10 \mathrm{~V} \\
& x=\frac{17}{12}
\end{aligned}
$$

Check:

$$
\begin{aligned}
& \text { 2) } \sqrt{2 x-1}+4=2 \\
& (\sqrt{2 x-1})^{2}=(-2)^{2} \\
& \sqrt{2\left(\frac{5}{2}\right)-1}+4 \neq 2 \\
& \sqrt{4}+4 \neq 2 \\
& 6 \neq 2 \\
& 2 x-1=4 \\
& 2 x=5 \\
& x=\frac{5}{8} \\
& +1+1 \\
& \text { 4 } \\
& \varnothing \\
& \varnothing
\end{aligned}
$$

- I can solve equations with a radical on both sides of the equation. Solve the following equations.

1) $\sqrt{-3 x+15}^{2}=\sqrt{4 x+24}^{2}$
2) $\sqrt{\frac{1}{5} x+9}^{2}=\sqrt{5 x-2}^{2}$

$$
\begin{aligned}
& -3 x+15=4 x+24 \\
& +3 x-24+3 x-24 \\
& -\frac{-9=\frac{7 x}{7}}{} \begin{array}{l}
\text { Check } \\
x=\frac{-9}{7} \quad \sqrt{-3\left(-\frac{9}{7}\right)+15} \\
\frac{132}{7}
\end{array}=\sqrt{\frac{132}{7}} \mathrm{~V}
\end{aligned}
$$

$$
\begin{array}{ll}
\sqrt{\frac{1}{5}} x+9^{2}=\sqrt{5 x-2}^{2} & \underline{\text { Check: }} \\
\frac{1}{5} x+9=5 x-2 & \sqrt{\frac{1}{5}\left(\frac{55}{24}\right)+9}=\sqrt{5\left(\frac{55}{24}\right)-2} \\
-\frac{1}{5} x+2 \frac{-1}{5} x+2 \\
\left(\frac{5}{24}\right) 11=\frac{24}{5} x\left(\frac{5}{24}\right) & \sqrt{\frac{227}{24}}=\sqrt{\frac{227}{24}} \\
x=\frac{55}{24}
\end{array}
$$

- I can solve equations with two radicals on one side of the equation.

Solve the following equations.

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
& \sqrt{6 x-2}--\sqrt{2 x+14}=0 \\
&+\sqrt{2 x+14}^{2}+\sqrt{2 x+14} \\
& \sqrt{6 x-2}^{2}=\sqrt{2 x+14} 2
\end{aligned} \\
& 6 x-2=2 x+14 \\
& -2 x+2-2 x+2 \\
& \frac{4 x=16}{4} \quad \text { Check: } \\
& \begin{aligned}
& x=4 \sqrt{6(4)-2}-\sqrt{2(4)+14}=0 \\
& \sqrt{22}-\sqrt{22}=0
\end{aligned} \\
& \\
& 0
\end{aligned}
$$

- I can graph radical equations.

$$
\begin{aligned}
& \text { 2) } \begin{array}{rl}
\sqrt{3 x+6}+\sqrt{6 x+12}= & =\sqrt{6 x+12} \\
(\sqrt{3 x+6})^{2}=\sqrt{6 x+12} & -\sqrt{6 x+12})^{2} \\
3 x+6=6 x+12 & \text { Check } \\
-3 x-12-3 x-12 & \sqrt{3(-2)+6}+\sqrt{6(-2)+12}=0 \\
-\frac{6}{3}=\frac{3 x}{3} & \sqrt{0}+\sqrt{0}=0 \\
x=-2 & 0=0
\end{array}
\end{aligned}
$$

- I can explain why the graph of a radical equation ends where it does. Graph the equation $y=\sqrt{x}$.

x	Y
0	0
1	1
4	2
9	3

Why does the graph of $y=\sqrt{x}$ behave in the way you are seeing? Talk about both the left-end behavior and the right-end behavior.
Left-end Behavior-As x is under a square root, the lowest X can be is O in order to stay inside the set of real numbers. Therefore the left-most point of $y=\sqrt{x}$ is $(0,0)$ Right-end Behavior - The graph approaches ∞ on the right as it continues to rise.
\qquad
\qquad
Classwork: Solving and Graphing Radical Equations

Solve each of the following equations.

1) $\sqrt{-x+17}-\sqrt{-9 x-11}=0$

$$
\begin{aligned}
& -\sqrt{-9 x-11}=0 \\
& +\sqrt{-9 x-11}+\sqrt{-9 x-11}
\end{aligned}
$$

$$
\sqrt{-x+17}^{2}=\sqrt{-9 x-11}^{2}
$$

2)

$$
-x+17=-9 x-11 \quad \text { Check: }
$$

$$
\begin{aligned}
& -x+11-9 x-17+9 x-17 \quad \sqrt{-(-3.5)+17}-\sqrt{-9(-3.5)-11}=0 \\
& 8 x=-28
\end{aligned}
$$

$$
\frac{8 x}{8}=\frac{-28}{8}
$$

$$
\sqrt{20.5}-\sqrt{20.5}=0
$$

$$
x=\frac{-7}{2}
$$

$$
\begin{aligned}
& \sqrt{-0.45 x-1}^{2} \\
&=\sqrt{41+0.3 x}^{2} \\
&-0.45 x-1=41+0.3 x \\
&+0.45 x-41-41+0.45 x \\
& \frac{-42}{\frac{0.75}{x}}=\frac{0.75 x}{0.75} \\
& \sqrt{-566} \text { Check: } \\
& \sqrt{24.2}=\sqrt{24.2}
\end{aligned}
$$

3) $\begin{array}{rr}\frac{\sqrt{3-x}}{6}+10=18 \\ -10 & -10\end{array}$

$\frac{-x}{-1}=\frac{2301}{-1}$

$$
x=-2301
$$

5) $20 \sqrt{2 x}-2=-12$ $+2+2$

$$
\sqrt{2 x}=-0.5
$$

$$
\text { 4) } \sqrt{6 x+4}+\sqrt{3 x+12}=0
$$

$$
\begin{aligned}
& +\sqrt{3 x+12} \\
& -\sqrt{3 x+12}
\end{aligned}=0-\sqrt{3 \times 12}
$$

$$
(\sqrt{6 x+4})^{2}=(-\sqrt{3 x+12})^{2}
$$

$$
6 x+4=3 x+12
$$

Check

$$
-3 x-4-3 x-4 \sqrt{6\left(\frac{8}{3}\right)+4}+\sqrt{3\left(\frac{8}{3}\right)+121}=0
$$

$$
\frac{3 x}{3}=\frac{8}{3} \quad \sqrt{20}+\sqrt{20} \neq 0
$$

$$
x=\frac{8}{3}
$$

$$
\begin{gathered}
\text { 6) } \sqrt{13 x+32}^{2}=\sqrt{13 x+21}^{2} \\
13 x+32=\mid 3 x+21 \\
-13 x-21-13 x-21 \\
11 \neq 0
\end{gathered}
$$

 be negative
7) Graph the equation $y=\sqrt{x-1}$.

x	y
1	0
2	1
5	2
10	3

8) Solve the following equation:

$$
\left(\frac{1}{4 x+1}\right)^{-1 / 2}=\frac{\left(\frac{x}{3}+5\right)^{-7 / 2}}{\left(\frac{x}{3}+5\right)^{-4}}
$$

$$
\begin{aligned}
& \text { Check: } \\
& 2.315952582 \ldots=2.315952582 \ldots \\
& 4 x+1=\frac{x}{3}+5 \\
& \frac{12}{3} x+1=\frac{1}{3} x+5 \\
& -\frac{1}{3} x^{-1}-\frac{1}{3} x^{-1} \\
& \left(\frac{3}{11}\right) \frac{11}{3} x=4\left(\frac{3}{11}\right) \quad x=\frac{12}{11}
\end{aligned}
$$

