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The problem: Find the length of the arc of the function y = x  between x = 0 and x = 4

The arc length of the function y = f(x) between x = a and x = b is given by
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For  y = x  we have 
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, thus giving the arc length in this case as
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If we try to use numerical integration we find that the function 1 + 1

4 x
is undefined at x = 0.

The inverse function is y = x2 and thus 
d y

d x

2
= 4 x2, with new limits x = 0 and x = 2. The integral is
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This is a standard integral (the primitive of 1 + x2  is 1
2

x 1 + x2 + Lnx + 1 + x2  ) and 

thus can be easily evaluated.

However, suppose we didn’t inow this result and used numerical integration, specifically Simpson’s 
Rule with 5 function values: 
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∑w y = 4.6468

Evaluation of the integral with Mathematica yields the same result:  


0

2

1 + 4 x2 ⅆx // N = 4.64678



Plot of the original and inverse functions: 
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Alternative approach

Using the change of variable x = u2 (dx = 2u du) yields
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Then let v = 2u (dv = 2 du)
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