Using the inverse function to evaluate an integral numerically

Dr Richard Kenderdine Kenderdine Maths Tutoring

The problem: Find the length of the arc of the function $y = \sqrt{x}$ between x = 0 and x = 4

The arc length of the function y = f(x) between x = a and x = b is given by

$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

For $y = \sqrt{x}$ we have $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ and hence $\left(\frac{dy}{dx}\right)^2 = \frac{1}{4x}$, thus giving the arc length in this case as

$$\int_0^4 \sqrt{1 + \frac{1}{4 \, x}} \, \, \mathrm{d} x$$

If we try to use numerical integration we find that the function $\sqrt{1 + \frac{1}{4x}}$ is undefined at x = 0.

The inverse function is $y = x^2$ and thus $\left(\frac{dy}{dx}\right)^2 = 4x^2$, with new limits x = 0 and x = 2. The integral is $\int_0^2 \sqrt{1 + 4x^2} \, dx$

This is a standard integral (the primitive of $\sqrt{1+x^2}$ is $\frac{1}{2}\left(x\sqrt{1+x^2}+\operatorname{Ln}\left[x+\sqrt{1+x^2}\right]\right)$) and thus can be easily evaluated.

However, suppose we didn't inow this result and used numerical integration, specifically Simpson's Rule with 5 function values:

$$\mathbf{x} \qquad 0 \quad \frac{1}{2} \qquad 1 \qquad \frac{3}{2} \qquad 2$$

$$\mathbf{y} = \sqrt{1 + 4 \, \mathbf{x}^2} \quad 1 \quad \sqrt{2} \quad \sqrt{5} \quad \sqrt{10} \quad \sqrt{17}$$

$$\mathbf{w} \qquad 1 \quad 4 \quad 2 \quad 4 \quad 1$$

$$\mathbf{wy} \qquad 1 \quad 4 \sqrt{2} \quad 2 \sqrt{5} \quad 4 \sqrt{10} \quad \sqrt{17}$$

Then
$$\int_0^2 \sqrt{1 + 4 x^2} dx = \frac{1}{2} \sum w y = 4.6468$$

Evaluation of the integral with *Mathematica* yields the same result:

$$\int_0^2 \sqrt{1 + 4 x^2} \, dx // N = 4.64678$$

Plot of the original and inverse functions:

Alternative approach

Using the change of variable $x = u^2$ (dx = 2u du) yields

$$\int_0^4 \sqrt{1 + \frac{1}{4 x}} \, dx = \int_0^2 \sqrt{1 + \frac{1}{4 u^2}} \, 2 u \, du$$
$$= \int_0^2 \sqrt{4 u^2 + 1} \, du$$

Then let v = 2u (dv = 2 du)

$$\int_0^2 \sqrt{4 u^2 + 1} \, du = \frac{1}{2} \int_0^4 \sqrt{1 + v^2} \, du$$

$$= \frac{1}{2} \left[\frac{v}{2} \sqrt{v^2 + 1} + \frac{1}{2} \ln \left[v + \sqrt{v^2 + 1} \right] \right]_0^4$$

$$= \sqrt{17} + \frac{1}{4} \ln \left[4 + \sqrt{17} \right]$$

$$= 4.64678$$