Using the inverse function to evaluate an integral numerically

Dr Richard Kenderdine
Kenderdine Maths Tutoring

The problem: Find the length of the arc of the function $y=\sqrt{x}$ between $x=0$ and $x=4$

The arc length of the function $y=f(x)$ between $x=a$ and $x=b$ is given by

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

For $y=\sqrt{x}$ we have $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$ and hence $\left(\frac{d y}{d x}\right)^{2}=\frac{1}{4 x}$, thus giving the arc length in this case as

$$
\int_{0}^{4} \sqrt{1+\frac{1}{4 x}} d x
$$

If we try to use numerical integration we find that the function $\sqrt{1+\frac{1}{4 x}}$ is undefined at $x=0$.

The inverse function is $y=x^{2}$ and thus $\left(\frac{d y}{d x}\right)^{2}=4 x^{2}$, with new limits $x=0$ and $x=2$. The integral is

$$
\int_{0}^{2} \sqrt{1+4 x^{2}} d x
$$

This is a standard integral (the primitive of $\sqrt{1+x^{2}}$ is $\frac{1}{2}\left(x \sqrt{1+x^{2}}+\operatorname{Ln}\left[x+\sqrt{1+x^{2}}\right]\right)$) and thus can be easily evaluated.

However, suppose we didn't inow this result and used numerical integration, specifically Simpson's Rule with 5 function values:

x	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2
$y=\sqrt{1+4 x^{2}}$	1	$\sqrt{2}$	$\sqrt{5}$	$\sqrt{10}$	$\sqrt{17}$
w	1	4	2	4	1
$w y$	1	$4 \sqrt{2}$	$2 \sqrt{5}$	$4 \sqrt{10}$	$\sqrt{17}$

Then $\quad \int_{0}^{2} \sqrt{1+4 \mathbf{x}^{2}} d \mathbf{x}=\frac{\frac{1}{2}}{3} \sum w y=4.6468$

Evaluation of the integral with Mathematica yields the same result:

$$
\int_{0}^{2} \sqrt{1+4 \mathrm{x}^{2}} \mathrm{~d} \mathrm{x} / / \mathrm{N}=4.64678
$$

Plot of the original and inverse functions:
$y=\sqrt{x}$

Alternative approach

Using the change of variable $x=u^{2}(\mathrm{~d} x=2 u \mathrm{~d} u)$ yields

$$
\begin{aligned}
\int_{0}^{4} \sqrt{1+\frac{1}{4 x}} d d x & =\int_{0}^{2} \sqrt{1+\frac{1}{4 u^{2}}} 2 u d u \\
& =\int_{0}^{2} \sqrt{4 u^{2}+1} d u
\end{aligned}
$$

Then let $v=2 u(\mathrm{~d} v=2 \mathrm{~d} u)$

$$
\begin{aligned}
\int_{0}^{2} \sqrt{4 u^{2}+1} d u & =\frac{1}{2} \int_{0}^{4} \sqrt{1+v^{2}} d u \\
& =\frac{1}{2}\left[\frac{v}{2} \sqrt{v^{2}+1}+\frac{1}{2} \operatorname{Ln}\left[v+\sqrt{v^{2}+1}\right]\right]_{0}^{4} \\
& =\sqrt{17}+\frac{1}{4} \operatorname{Ln}[4+\sqrt{17}] \\
& =4.64678
\end{aligned}
$$

