Working with bases in *n*-dimensional space Dr Richard Kenderdine

A basis in *n*-dimensional space is a set of vectors, each with *n* elements, such that each point in the space can be obtained from a linear combination of the vectors.

For example, the standard bases in 2- and 3-dimensional space are $\{(1, 0), (0, 1)\}$ and $\{(1,0,0), (0,1,0), (0,0,1)\}$ respectively.

The co-ordinates of a point in terms of one basis can be related to the co-ordinates using another basis through the relationship

Matrix of basis vectors using basis
$$\mathbf{\mathcal{B}} \times \text{co-ordinates using basis } \mathbf{\mathcal{B}}$$

= Matrix of basis vectors using basis $\mathbf{\mathcal{C}} \times \text{co-ordinates using basis } \mathbf{\mathcal{C}}$ (1)

For example, suppose we have the point (-6,11) using the standard basis and we want to calculate the co-ordinates using basis $\{(2,1), (-1,3)\}$.

Using (1) we have

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -6 \\ 11 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

We can either use simultaneous equations $(2 \times -y = -6 \text{ and } x + 3y = 11)$ to obtain (x, y) = (-1, 4) or use the inverse of $\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ and then

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -6 \\ 11 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

This result can also be expressed as a linear combination of the basis vectors:

$$\binom{2}{1}(-1) + \binom{-1}{3}(4) = \binom{-6}{11}$$

Using a transition matrix

We can use a transition matrix to change from one non-standard basis to another. Denote P as the transition matrix from base B to base C. Then B P = C

For example, let
$$\mathbf{g} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
 and $\mathbf{e} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ then

$$\mathbf{p} = \mathbf{g}^{-1} \mathbf{c} = \frac{1}{7} \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 2 & 9 \\ -3 & 4 \end{pmatrix}$$

Check:
$$\mathbf{g} \, \mathbf{p} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \frac{1}{7} \begin{pmatrix} 2 & 9 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \mathbf{e}$$

We also need $\mathbf{p}^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -9 \\ 3 & 2 \end{pmatrix}$ to calculate \mathbf{g} from \mathbf{e} :

$$\boldsymbol{e} \, \boldsymbol{p}^{-1} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 4 & -9 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} = \boldsymbol{g}$$
 as required

Having obtained the transition matrix we can now calculate the coordinates of a point under another basis using (1). Continuing the above example where we had (-6,11) as coordinates with the standard basis that became (-1, 4) with basis **B**. Now we want to calculate the coordinates under basis \boldsymbol{e} ie we need to find coordinates (x, y) such that, using (1)

$$\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Introduce pp^{-1} on the left

$$\begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \frac{1}{7} \begin{pmatrix} 2 & 9 \\ -3 & 4 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 4 & -9 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

Multiplying the first two matrices yields **e** so the coordinates are obtained from

$$\frac{1}{5} \begin{pmatrix} 4 & -9 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} -8 \\ 1 \end{pmatrix}.$$

As a check, multiplying these coordinates by the basis vectors should yield the coordinates using the standard basis:

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} (-8) + \begin{pmatrix} 2 \\ 3 \end{pmatrix} (1) = \begin{pmatrix} -6 \\ 11 \end{pmatrix}$$
 as required.

A 3-dimensional example

Let $\mathbf{B} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ and $\mathbf{e} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix}$ then the long way of calculating the transition matrix

from **B** to **e** is to use simultaneous equations, initially solving

$$\begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} a + \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} b + \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} c$$

The solution is $a = \frac{35}{2}$, $b = \frac{-19}{2}$ and c = -13. This is the first column of the transition matrix that can be obtained more efficiently using $\mathbf{B} \mathbf{P} = \mathbf{e}$ and hence $\mathbf{P} = \mathbf{P}^{-1} \mathbf{e}$

We have
$$\mathbf{g}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & 1 & -5 \\ -1 & -1 & 3 \\ -2 & 0 & 4 \end{pmatrix}$$
 and hence $\mathbf{p} = \mathbf{g}^{-1} \mathbf{e} = \frac{1}{2} \begin{pmatrix} 35 & 19 & -13 \\ -19 & -11 & 7 \\ -26 & -14 & 10 \end{pmatrix}$

To convert from
$$\mathbf{e}$$
 to \mathbf{g} we use $\mathbf{p}^{-1} = \begin{pmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & \frac{-1}{2} \\ 5 & 1 & 6 \end{pmatrix} = \mathbf{e}^{-1} \mathbf{g}$

Suppose we have the point (-5, 8, -5) with the standard basis. The coordinates with basis **B** are

$$\mathbf{B}^{-1} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & 1 & -5 \\ -1 & -1 & 3 \\ -2 & 0 & 4 \end{pmatrix} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix}$$

while under basis e they are

$$\mathbf{e}^{-1} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{2} & \frac{-1}{2} \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} -5 \\ 8 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{-7}{2} \\ \frac{23}{2} \\ 6 \end{pmatrix}$$

To check the direct connection between these coordinates we use (1) and the transition matrix:

$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \boldsymbol{p} \boldsymbol{p}^{-1} \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix} \mathbf{p}^{-1} \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \text{using } \mathbf{B} \mathbf{P} = \mathbf{e}$$

then cancelling *e* from both sides we have

$$\begin{pmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & \frac{-1}{2} \\ 5 & 1 & 6 \end{pmatrix} \begin{pmatrix} 9 \\ -9 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{-7}{2} \\ \frac{23}{2} \\ 6 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 as before