Working with bases in n-dimensional space Dr Richard Kenderdine

A basis in n-dimensional space is a set of vectors, each with n elements, such that each point in the space can be obtained from a linear combination of the vectors.

For example, the standard bases in 2 - and 3 -dimensional space are $\{(1,0),(0,1)\}$ and $\{(1,0,0)$, $(0,1,0),(0,0,1)\}$ respectively.

The co-ordinates of a point in terms of one basis can be related to the co-ordinates using another basis through the relationship

Matrix of basis vectors using basis $\boldsymbol{B} \times$ co-ordinates using basis \boldsymbol{B}

$$
\begin{equation*}
=\text { Matrix of basis vectors using basis } \boldsymbol{C} \times \text { co-ordinates using basis } \boldsymbol{C} \tag{1}
\end{equation*}
$$

For example, suppose we have the point $(-6,11)$ using the standard basis and we want to calculate the co-ordinates using basis $\{(2,1),(-1,3)\}$.

Using (1) we have

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{-6}{11}=\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right)\binom{x}{y}
$$

We can either use simultaneous equations $(2 x-y=-6$ and $x+3 y=11)$ to obtain $(x, y)=(-1,4)$ or use the inverse of $\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)=\frac{1}{7}\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$ and then

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{7}\left(\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right)\binom{-6}{11}=\binom{x}{y}=\binom{-1}{4}
$$

This result can also be expressed as a linear combination of the basis vectors:

$$
\binom{2}{1}(-1)+\binom{-1}{3}(4)=\binom{-6}{11}
$$

Using a transition matrix

We can use a transition matrix to change from one non-standard basis to another. Denote \boldsymbol{P} as the transition matrix from base \boldsymbol{B} to base \boldsymbol{C}. Then $\boldsymbol{B} \boldsymbol{P}=\boldsymbol{C}$
For example, let $\boldsymbol{B}=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)$ and $\boldsymbol{C}=\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$ then

$$
\boldsymbol{P}=\boldsymbol{B}^{-1} \boldsymbol{C}=\frac{1}{7}\left(\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)=\frac{1}{7}\left(\begin{array}{cc}
2 & 9 \\
-3 & 4
\end{array}\right)
$$

Check:

$$
\boldsymbol{B} \boldsymbol{P}=\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right) \frac{1}{7}\left(\begin{array}{cc}
2 & 9 \\
-3 & 4
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)=\boldsymbol{C}
$$

We also need $\boldsymbol{p}^{-1}=\frac{1}{5}\left(\begin{array}{cc}4 & -9 \\ 3 & 2\end{array}\right)$ to calculate \boldsymbol{B} from \boldsymbol{C} :

$$
\boldsymbol{C} \boldsymbol{P}^{-1}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
4 & -9 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right)=\boldsymbol{B} \text { as required }
$$

Having obtained the transition matrix we can now calculate the coordinates of a point under another basis using (1). Continuing the above example where we had $(-6,11)$ as coordinates with the standard basis that became $(-1,4)$ with basis \boldsymbol{B}. Now we want to calculate the coordinates under basis \boldsymbol{C} ie we need to find coordinates (x, y) such that, using (1)

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right)\binom{-1}{4}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)\binom{x}{y}
$$

Introduce \boldsymbol{P}^{-1} on the left

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right) \frac{1}{7}\left(\begin{array}{cc}
2 & 9 \\
-3 & 4
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
4 & -9 \\
3 & 2
\end{array}\right)\binom{-1}{4}
$$

Multiplying the first two matrices yields \boldsymbol{C} so the coordinates are obtained from

$$
\frac{1}{5}\left(\begin{array}{cc}
4 & -9 \\
3 & 2
\end{array}\right)\binom{-1}{4}=\binom{-8}{1}
$$

As a check, multiplying these coordinates by the basis vectors should yield the coordinates using the standard basis:

$$
\binom{1}{-1}(-8)+\binom{2}{3}(1)=\binom{-6}{11} \text { as required. }
$$

A 3-dimensional example

Let $\boldsymbol{B}=\left(\begin{array}{ccc}2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1\end{array}\right)$ and $\boldsymbol{C}=\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 1 & 0 \\ -5 & -3 & 2\end{array}\right)$ then the long way of calculating the transition matrix from \boldsymbol{B} to \boldsymbol{C} is to use simultaneous equations, initially solving

$$
\left(\begin{array}{c}
3 \\
1 \\
-5
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) a+\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) b+\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) c
$$

The solution is $a=\frac{35}{2}, b=\frac{-19}{2}$ and $c=-13$. This is the first column of the transition matrix that can be obtained more efficiently using $\boldsymbol{B} \boldsymbol{P}=\boldsymbol{C}$ and hence $\boldsymbol{P}=\boldsymbol{p}^{-1} \boldsymbol{C}$

We have $\boldsymbol{B}^{-1}=\frac{1}{2}\left(\begin{array}{ccc}3 & 1 & -5 \\ -1 & -1 & 3 \\ -2 & 0 & 4\end{array}\right)$ and hence $\boldsymbol{P}=\boldsymbol{B}^{-1} \boldsymbol{C}=\frac{1}{2}\left(\begin{array}{ccc}35 & 19 & -13 \\ -19 & -11 & 7 \\ -26 & -14 & 10\end{array}\right)$

To convert from \boldsymbol{C} to \boldsymbol{B} we use $\boldsymbol{P}^{-1}=\left(\begin{array}{ccc}3 & 2 & \frac{5}{2} \\ -2 & -3 & \frac{-1}{2} \\ 5 & 1 & 6\end{array}\right)=\boldsymbol{C}^{-1} \boldsymbol{B}$

Suppose we have the point $(-5,8,-5)$ with the standard basis. The coordinates with basis \boldsymbol{B} are

$$
\boldsymbol{B}^{-1}\left(\begin{array}{c}
-5 \\
8 \\
-5
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
3 & 1 & -5 \\
-1 & -1 & 3 \\
-2 & 0 & 4
\end{array}\right)\left(\begin{array}{c}
-5 \\
8 \\
-5
\end{array}\right)=\left(\begin{array}{c}
9 \\
-9 \\
-5
\end{array}\right)
$$

while under basis \boldsymbol{C} they are

$$
\boldsymbol{e}^{-1}\left(\begin{array}{c}
-5 \\
8 \\
-5
\end{array}\right)=\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
-1 & \frac{1}{2} & \frac{-1}{2} \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{c}
-5 \\
8 \\
-5
\end{array}\right)=\left(\begin{array}{c}
\frac{-7}{2} \\
\frac{23}{2} \\
6
\end{array}\right)
$$

To check the direct connection between these coordinates we use (1) and the transition matrix:

$$
\begin{aligned}
\left(\begin{array}{ccc}
2 & 2 & 1 \\
1 & -1 & 2 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
9 \\
-9 \\
-5
\end{array}\right) & =\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 1 & 0 \\
-5 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 2 & 1 \\
1 & -1 & 2 \\
1 & 1 & 1
\end{array}\right) \boldsymbol{P}^{-1}\left(\begin{array}{c}
9 \\
-9 \\
-5
\end{array}\right) & =\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 1 & 0 \\
-5 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 1 & 0 \\
-5 & -3 & 2
\end{array}\right) \boldsymbol{P}^{-1}\left(\begin{array}{c}
9 \\
-9 \\
-5
\end{array}\right) & =\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 1 & 0 \\
-5 & -3 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \text { using } \boldsymbol{B} \boldsymbol{P}=\boldsymbol{C}
\end{aligned}
$$

then cancelling \boldsymbol{C} from both sides we have

$$
\left(\begin{array}{ccc}
3 & 2 & \frac{5}{2} \\
-2 & -3 & \frac{-1}{2} \\
5 & 1 & 6
\end{array}\right)\left(\begin{array}{c}
9 \\
-9 \\
-5
\end{array}\right)=\left(\begin{array}{c}
\frac{-7}{2} \\
\frac{23}{2} \\
6
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \text { as before }
$$

