An interesting complex locus problem

Dr Richard Kenderdine

Kenderdine Maths Tutoring
The problem is to find the maximum point z lying on the locus of points that satisfy

$$
\begin{equation*}
\left|z+\frac{1}{z}\right|=a \tag{1}
\end{equation*}
$$

for some constant a, where z is a complex number.
Let $\quad z=r e^{i \theta}=r(\cos \theta+i \sin \theta) \quad$ then $\quad \frac{1}{z}=\frac{1}{r} e^{-i \theta}=\frac{1}{r}(\cos \theta-i \sin \theta)$
and

$$
z+\frac{1}{z}=\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta
$$

Hence

$$
\begin{aligned}
\left|z+\frac{1}{z}\right|^{2} & =\left(r+\frac{1}{r}\right)^{2} \cos ^{2} \theta+\left(r-\frac{1}{r}\right)^{2} \sin ^{2} \theta \\
& =\left(r^{2}+\frac{1}{r^{2}}\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+2\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =\left(r^{2}+\frac{1}{r^{2}}\right)+2 \cos 2 \theta
\end{aligned}
$$

Now the locus equation becomes

$$
\begin{equation*}
\left(r^{2}+\frac{1}{r^{2}}\right)+2 \cos 2 \theta=a^{2} \tag{2}
\end{equation*}
$$

Multiplying by r^{2} yields a quadratic in r^{2} :

$$
\begin{equation*}
r^{4}+\left(2 \cos 2 \theta-a^{2}\right) r^{2}+1=0 \tag{3}
\end{equation*}
$$

Using the quadratic formula provides solutions for r^{2} :

$$
\begin{equation*}
r^{2}=\frac{-\left(2 \cos 2 \theta-a^{2}\right) \pm \sqrt{\left(2 \cos 2 \theta-a^{2}\right)^{2}-4}}{2} \tag{4}
\end{equation*}
$$

We have r defined in terms of θ, a polar equation. Rembering that r is the modulus of z, maximising r will maximise z. Now $-\left(2 \cos 2 \theta-a^{2}\right)=a^{2}-2 \cos 2 \theta$ which has maximum value $a^{2}+2$ when $\theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ and if we take the positive square root, again to maximise r, we have

$$
\begin{equation*}
r^{2}=\frac{\left(a^{2}+2\right)+\sqrt{\left(a^{2}+2\right)^{2}-4}}{2} \tag{5}
\end{equation*}
$$

Upon simplifying we have

$$
\begin{equation*}
r^{2}=\frac{\left(a^{2}+2\right)+a \sqrt{a^{2}+4}}{2} \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
r=\sqrt{\frac{\left(a^{2}+2\right)+a \sqrt{a^{2}+4}}{2}} \tag{7}
\end{equation*}
$$

So the maximum value of z occurs at this value of r and when $\theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$.
The following plots show r^{2} for $a=0.5,1,1.5,2,3$ and 4 . As can be seen, the maximum values of r^{2} occur when $\theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}\left(90^{\circ}\right.$ or $\left.270^{\circ}\right)$

Plotting the locus
What does a plot of the locus of points satisfying $\left|z+\frac{1}{z}\right|=$ a look like? To find out we now use Cartesian co-ordinates.

Let $z=x+i y$. Then

$$
\begin{equation*}
\left|z+\frac{1}{z}\right|=\left|x+i y+\frac{1}{x+i y}\right|=\left|x+i y+\frac{1}{x+i y} \frac{x-i y}{x-i y}\right|=\left|x+i y+\frac{x-i y}{x^{2}+y^{2}}\right| \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|z+\frac{1}{z}\right|^{2}=\left(x+\frac{x}{x^{2}+y^{2}}\right)^{2}+\left(y-\frac{y}{x^{2}+y^{2}}\right)^{2}=x^{2}\left(1+\frac{1}{x^{2}+y^{2}}\right)^{2}+y^{2}\left(1-\frac{1}{x^{2}+y^{2}}\right)^{2} \tag{9}
\end{equation*}
$$

We then plot, for some values of a, the function defined by:

$$
\begin{equation*}
x^{2}\left(1+\frac{1}{x^{2}+y^{2}}\right)^{2}+y^{2}\left(1-\frac{1}{x^{2}+y^{2}}\right)^{2}=a^{2} \tag{10}
\end{equation*}
$$

The following plots show the function for $a=0.5,1,1.5,2,3$ and 4 :

These plots are interesting. If we only looked at the plots for $a=1,2$ and 4 then it would appear that the locus consists of two circles, initially the same size, that come together then one circle increases while the other decreases. However the plot for $a=1.5$ indicates something more is happening. The plots below are for $a=1.8-2.3$:

We see that the flattening out of the circle that occurred for $a=1.5$ changes to a concave section as a approaches 2 . When $a=2$ the two parts of the curve touch and as a increases beyond 2 the concave sections join and separate from the surrounding part of the curve. The two shapes now resemble an ellipse and a nephroid. For larger values of a the curve approaches small and large concentric circles.

Why does this happen? If we use Eqn (10) to find the x-intercepts, by setting $y=0$, we obtain

$$
\begin{equation*}
x= \pm \sqrt{\frac{\left(a^{2}-2\right) \pm a \sqrt{a^{2}-4}}{2}} \tag{11}
\end{equation*}
$$

which is equivalent to Eqn (4) with $\theta=0$. From (11) we see that there are no x-intercepts when $a<$ 2 , two intercepts when $a=2$ (at $x= \pm 1$) and four intercepts when $a>2$.

The y-intercepts are similarly obtained from (10) by setting $x=0$. The resulting equation is equivalent to Eqn (7)

$$
\begin{equation*}
y= \pm \sqrt{\frac{\left(a^{2}+2\right)+a \sqrt{a^{2}+4}}{2}} \tag{12}
\end{equation*}
$$

Enlarged plots for $a=1.995,2$ and 2.005 are shown:

