## An interesting complex locus problem

Dr Richard Kenderdine Kenderdine Maths Tutoring

The problem is to find the maximum point z lying on the locus of points that satisfy

$$\left| z + \frac{1}{z} \right| = a \tag{1}$$

for some constant a, where z is a complex number.

Let  $z = r e^{i\theta} = r (\cos \theta + i \sin \theta)$  then  $\frac{1}{z} = \frac{1}{r} e^{-i\theta} = \frac{1}{r} (\cos \theta - i \sin \theta)$ 

and  $z + \frac{1}{r} = \left(r + \frac{1}{r}\right)\cos\theta + i\left(r - \frac{1}{r}\right)\sin\theta$ 

Hence  $|z + \frac{1}{z}|^2 = (r + \frac{1}{r})^2 \cos^2 \theta + (r - \frac{1}{r})^2 \sin^2 \theta$ 

 $= \left(r^2 + \frac{1}{r^2}\right) \left(\cos^2\theta + \sin^2\theta\right) + 2\left(\cos^2\theta - \sin^2\theta\right)$ 

 $= \left(r^2 + \frac{1}{r^2}\right) + 2\cos 2\theta$ 

Now the locus equation becomes

$$\left(r^2 + \frac{1}{r^2}\right) + 2\cos 2\theta = a^2 \tag{2}$$

Multiplying by  $r^2$  yields a quadratic in  $r^2$ :

$$r^4 + (2\cos 2\theta - a^2)r^2 + 1 = 0 (3)$$

Using the quadratic formula provides solutions for  $r^2$ :

$$r^{2} = \frac{-(2\cos 2\theta - a^{2}) \pm \sqrt{(2\cos 2\theta - a^{2})^{2} - 4}}{2}$$
 (4)

We have r defined in terms of  $\theta$ , a polar equation. Rembering that r is the modulus of z, maximising r will maximise z. Now  $-(2\cos 2\theta - a^2) = a^2 - 2\cos 2\theta$  which has maximum value  $a^2 + 2$  when  $\theta = \frac{\pi}{2}$  or  $\frac{3\pi}{2}$  and if we take the positive square root, again to maximise r, we have

$$r^{2} = \frac{\left(a^{2} + 2\right) + \sqrt{\left(a^{2} + 2\right)^{2} - 4}}{2} \tag{5}$$

Upon simplifying we have

$$r^2 = \frac{\left(a^2 + 2\right) + a\sqrt{a^2 + 4}}{2} \tag{6}$$

and hence

$$r = \sqrt{\frac{(a^2 + 2) + a\sqrt{a^2 + 4}}{2}} \tag{7}$$

So the maximum value of z occurs at this value of r and when  $\theta = \frac{\pi}{2}$  or  $\frac{3\pi}{2}$ .

The following plots show  $r^2$  for a = 0.5, 1, 1.5, 2, 3 and 4. As can be seen, the maximum values of  $r^2$  occur when  $\theta = \frac{\pi}{2}$  or  $\frac{3\pi}{2}$  (90° or 270°)



## Plotting the locus

What does a plot of the locus of points satisfying  $\left| z + \frac{1}{z} \right| = a$  look like? To find out we now use Cartesian co-ordinates.

Let z = x + iy. Then

$$\left| z + \frac{1}{z} \right| = \left| x + iy + \frac{1}{x + iy} \right| = \left| x + iy + \frac{1}{x + iy} \frac{x - iy}{x - iy} \right| = \left| x + iy + \frac{x - iy}{x^2 + y^2} \right|$$
(8)

and

$$\left| z + \frac{1}{z} \right|^2 = \left( x + \frac{x}{x^2 + v^2} \right)^2 + \left( y - \frac{y}{x^2 + v^2} \right)^2 = x^2 \left( 1 + \frac{1}{x^2 + v^2} \right)^2 + y^2 \left( 1 - \frac{1}{x^2 + v^2} \right)^2$$
 (9)

We then plot, for some values of *a*, the function defined by:

$$x^{2} \left( 1 + \frac{1}{x^{2} + y^{2}} \right)^{2} + y^{2} \left( 1 - \frac{1}{x^{2} + y^{2}} \right)^{2} = a^{2}$$
 (10)

The following plots show the function for a = 0.5, 1, 1.5, 2, 3 and 4:



These plots are interesting. If we only looked at the plots for a = 1, 2 and 4 then it would appear that the locus consists of two circles, initially the same size, that come together then one circle increases while the other decreases. However the plot for a = 1.5 indicates something more is happening. The plots below are for a = 1.8 - 2.3:



We see that the flattening out of the circle that occurred for a = 1.5 changes to a concave section as a approaches 2. When a = 2 the two parts of the curve touch and as a increases beyond 2 the concave sections join and separate from the surrounding part of the curve. The two shapes now resemble an ellipse and a nephroid. For larger values of a the curve approaches small and large concentric circles.

Why does this happen? If we use Eqn (10) to find the x-intercepts, by setting y = 0, we obtain

$$x = \pm \sqrt{\frac{(a^2 - 2) \pm a\sqrt{a^2 - 4}}{2}}$$
 (11)

which is equivalent to Eqn (4) with  $\theta$  = 0. From (11) we see that there are no x-intercepts when a < 2, two intercepts when a = 2 (at  $x = \pm 1$ ) and four intercepts when a > 2.

The *y*-intercepts are similarly obtained from (10) by setting x = 0. The resulting equation is equivalent to Eqn (7)

$$y = \pm \sqrt{\frac{(a^2 + 2) + a\sqrt{a^2 + 4}}{2}}$$
 (12)

## Enlarged plots for a = 1.995, 2 and 2.005 are shown:





