The complications of a constant in a differential equation

 Dr Richard KenderdineThe inclusion of a constant in a differential equation can change the solution from simple to complex where a closed form solution may not even exist. Thsi note looks at one example.

1. An easily solved differential equation

Consider the equation $\frac{d y}{d x}=-\frac{x}{y}$ with $y(1)=2$
This is solved by separation of variables:

$$
\begin{aligned}
& \int y d y=-\int x d x \\
& \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C
\end{aligned}
$$

From the boundary condition we have $C=\frac{5}{2}$ and hence the solution is

$$
y=\sqrt{5-x^{2}}
$$

The slope field in Figure 1 shows the solution as a collection of semi-circles (dependent upon the constant of integration) and is obtained from:

$$
\begin{aligned}
& \operatorname{Show}\left[\operatorname{StreamPlot}\left[\left\{1,-\frac{x}{y}\right\},\{x,-3,3\},\{y,-3,3\}\right]\right. \\
& \operatorname{Plot}[-x,\{x,-3,3\}], \operatorname{Plot}[0,\{x,-3,3\}]]
\end{aligned}
$$

Figure 1: Slope field for $y^{\prime}=-\frac{x}{y}$ with the line $y=-x$ (isocline with $y^{\prime}=1$)

2. A non-so-easily solved differential equation

If we alter our DE by including a constant then we find that it is not so easy to solve For simplicity we let the constant be 1 . Thus we have $\frac{d y}{d x}=1-\frac{x}{y}$ with $y(1)=2$

The slope field now looks a lot different, as shown in Figure 2.

```
Show[StreamPlot [{1, 1-\frac{x}{y}},{x,-3,3},{y,-3,3}],
Plot[x, {x, -3, 3}], Plot[0,{x,-3, 3}]]
```


Figure 2: Slope field for $y^{\prime}=1-\frac{x}{y}$ with the line $y=x$ (isocline with $y^{\prime}=0$)

The standard way of solving a DE when $\frac{d y}{d x}$ is a function of $\frac{x}{y}$ or $\frac{y}{x}$ is to introduce a new variable $v=\frac{y}{x}$ so that $y=v x$.

Then $\frac{d y}{d x}=v+\frac{d v}{d x} x$ and substituting into the DE we have $v+\frac{d v}{d x} x=1-\frac{1}{v}$

This becomes

$$
\frac{d v}{d x} x=\frac{v-1-v^{2}}{v} \Longrightarrow \frac{v}{v^{2}-v+1} d v=-\frac{1}{x} d x
$$

We can manipulate the numerator on LHS in order to integrate:

$$
\begin{gathered}
\frac{1}{2} \int \frac{2 v-1+1}{v^{2}-v+1} d v=-\int \frac{1}{x} d x \\
\frac{1}{2} \int \frac{2 v-1}{v^{2}-v+1} d v+\frac{1}{2} \int \frac{1}{\left(v-\frac{1}{2}\right)^{2}+\frac{3}{4}} d v=-\operatorname{Ln}(\mathrm{x})+\mathrm{C} \\
\frac{1}{2} \operatorname{Ln}\left(v^{2}-v+1\right)+\frac{1}{\sqrt{3}} \operatorname{ArcTan}\left(\frac{2 v-1}{\sqrt{3}}\right)=-\operatorname{Ln}(\mathrm{x})+\mathrm{C}
\end{gathered}
$$

Replacing v with $\frac{y}{x} \quad \frac{1}{2} \operatorname{Ln}\left(\left(\frac{y}{x}\right)^{2}-\frac{y}{x}+1\right)+\frac{1}{\sqrt{3}} \operatorname{ArcTan}\left(\frac{2 \frac{y}{x}-1}{\sqrt{3}}\right)=-\operatorname{Ln}(x)+C$
Using the condition $y(1)=2$ yields $C=\frac{1}{2} \operatorname{Ln}(3)+\frac{\pi}{3 \sqrt{3}}$

Therefore the final answer is

$$
\frac{1}{2} \operatorname{Ln}\left(\left(\frac{y}{x}\right)^{2}-\frac{y}{x}+1\right)+\frac{1}{\sqrt{3}} \operatorname{ArcTan}\left(\frac{2 \frac{y}{x}-1}{\sqrt{3}}\right)=-\operatorname{Ln}(x)+\frac{1}{2} \operatorname{Ln}(3)+\frac{\pi}{3 \sqrt{3}}
$$

Obviously there is no closed form solution for y. If we try to solve it using Mathematica we just obtain the same equation:

```
DSolve \(\left[\left\{y^{\prime}[x]=1-\frac{x}{y[x]}, y[1]=2\right\}, y[x], x\right]\)
Solve[
    \(\left.\frac{\operatorname{ArcTan}\left[\frac{-1+\frac{2 y[x]}{x}}{\sqrt{3}}\right]}{\sqrt{3}}+\frac{1}{2} \log \left[1-\frac{y[x]}{x}+\frac{y[x]^{2}}{x^{2}}\right]=\frac{1}{18}(2 \sqrt{3} \pi+9 \log [3])-\log [x], y[x]\right]\)
```

However we can at least solve it numerically and plot the solution:
$s=\operatorname{NDSolve}\left[\left\{y^{\prime}[x]==1-\frac{x}{y[x]}, y[1]=2\right\}, y[x],\{x, 0.0001,4.5\}\right]$
$\left\{\left\{y[x] \rightarrow\right.\right.$ InterpolatingFunction $\left.\left.\left[\mp \bigcap \begin{array}{l}\text { Domain: }\{\{0.0001,4.29\}\} \\ \text { Output: scalar }\end{array}\right][\mathrm{x}]\right\}\right\}$
This solution can be plotted in Figure 3.The x-intercept is 4.28965 (5 dp). The function value when $x=0.0001$ is 1.28029 .

```
Plot[Evaluate[y[x] / . s], {x, 0.0001, 4.289}, PlotRange }->\mathrm{ All]
```


Figure 3: Solution curve for $y^{\prime}=1-\frac{x}{y}$ with $y(1)=2$
Figure 2 shows that there are possible solutions for negative values of y. We set up an equation from the solution off the DE, substitute values for y, equate to 0 and solve for x. The results are shown in Table 1 and plotted in Figure 4.
eqny $\left[y_{-}\right]:=\frac{\operatorname{ArcTan}\left[\frac{-1+\frac{2 y}{x}}{\sqrt{3}}\right]}{\sqrt{3}}+\frac{1}{2} \log \left[1-\frac{y}{x}+\frac{y^{2}}{x^{2}}\right]+\log [x]-\frac{1}{18}(2 \sqrt{3} \pi+9 \log [3])$ $\mathrm{t}=\mathrm{Table}[$ FindRoot[eqny[j], $\{\mathrm{x}, 1\}],\{j,-8,0,0.5\}] ;$ TableForm[Table[\{t[[j]][[1]][[2]], -8+0.5(j-1)\}, \{j, 1, 17\}], TableHeadings \rightarrow \{None, \{"x", "y"\}\}]

x	y
1.60242×10^{-14}	-8.
0.344503	-7.5
0.807543	-7.
1.2415	-6.5
1.64749	-6.
2.02628	-5.5
2.37837	-5.
2.70396	-4.5
3.00295	-4.
3.27496	-3.5
3.51925	-3.
3.73468	-2.5
3.91958	-2.
4.07162	-1.5
4.18751	-1.
4.26252	-0.5
4.28965	0.

Table 1: Solutions of $y^{\prime}=1-\frac{x}{y}$ with $y(1)=2$ for fixed negative values of y ListPlot[\%, Joined \rightarrow True]

Figure 4: Solution curve for $y^{\prime}=1-\frac{x}{y}$ with $y(1)=2$ for fixed negative values of y Figure 5 shows the full solution for positive x-values.

Figure 5: Full solution for $y^{\prime}=1-\frac{x}{y}$ with $y(1)=2$

