The complications of a constant in a differential equation Dr Richard Kenderdine

The inclusion of a constant in a differential equation can change the solution from simple to complex where a closed form solution may not even exist. This note looks at one example.

1. An easily solved differential equation

Consider the equation $\frac{dy}{dx} = -\frac{x}{y}$ with y(1) = 2

This is solved by separation of variables:

$$\int y \, dl \, y = - \int x \, dl \, x$$

$$\frac{1}{2}y^2 = -\frac{1}{2}x^2 + C$$

From the boundary condition we have $C = \frac{5}{2}$ and hence the solution is

$$y = \sqrt{5 - x^2}$$

The slope field in Figure 1 shows the solution as a collection of semi-circles (dependent upon the constant of integration) and is obtained from:

Show
$$\left[\text{StreamPlot} \left[\left\{ 1, -\frac{x}{y} \right\}, \{x, -3, 3\}, \{y, -3, 3\} \right] \right]$$

$$Plot[-x, \{x, -3, 3\}], Plot[0, \{x, -3, 3\}]$$

Figure 1: Slope field for $y' = -\frac{x}{y}$ with the line y = -x (isocline with y' = 1)

2. A non-so-easily solved differential equation

If we alter our DE by including a constant then we find that it is not so easy to solve For simplicity we let the constant be 1. Thus we have $\frac{dy}{dx} = 1 - \frac{x}{y}$ with y(1) = 2

The slope field now looks a lot different, as shown in Figure 2...

Show
$$\left[\text{StreamPlot} \left[\left\{ 1, 1 - \frac{x}{y} \right\}, \{x, -3, 3\}, \{y, -3, 3\} \right], \right]$$

Plot $\left[x, \{x, -3, 3\} \right], \text{Plot} \left[0, \{x, -3, 3\} \right] \right]$

Figure 2: Slope field for $y' = 1 - \frac{x}{y}$ with the line y = x (isocline with y' = 0)

The standard way of solving a DE when $\frac{dy}{dx}$ is a function of $\frac{x}{y}$ or $\frac{y}{x}$ is to introduce a new variable $v = \frac{y}{x}$ so that y = v x.

Then $\frac{dy}{dx} = v + \frac{dv}{dx}x$ and substituting into the DE we have $v + \frac{dv}{dx}x = 1 - \frac{1}{v}$

This becomes

$$\frac{dv}{dx}x = \frac{v-1-v^2}{v} \implies \frac{v}{v^2-v+1}dv = -\frac{1}{x}dx$$

We can manipulate the numerator on LHS in order to integrate:

$$\frac{1}{2} \int \frac{2v - 1 + 1}{v^2 - v + 1} \, dl \, v = -\int \frac{1}{x} \, dl \, x$$

$$\frac{1}{2} \int \frac{2v - 1}{v^2 - v + 1} \, dl \, v + \frac{1}{2} \int \frac{1}{\left(v - \frac{1}{2}\right)^2 + \frac{3}{4}} \, dl \, v = -\ln(x) + C$$

$$\frac{1}{2} \ln(v^2 - v + 1) + \frac{1}{\sqrt{3}} \operatorname{ArcTan}\left(\frac{2v - 1}{\sqrt{3}}\right) = -\ln(x) + C$$

Replacing
$$v$$
 with $\frac{y}{x}$ $\frac{1}{2} \operatorname{Ln}\left(\left(\frac{y}{x}\right)^2 - \frac{y}{x} + 1\right) + \frac{1}{\sqrt{3}} \operatorname{ArcTan}\left(\frac{2\frac{y}{x} - 1}{\sqrt{3}}\right) = -\operatorname{Ln}(x) + \operatorname{C}(x)$

Using the condition y(1) = 2 yields $C = \frac{1}{2} \operatorname{Ln}(3) + \frac{\pi}{3\sqrt{3}}$

Therefore the final answer is

$$\frac{1}{2} \ln \left(\left(\frac{y}{x} \right)^2 - \frac{y}{x} + 1 \right) + \frac{1}{\sqrt{3}} \arctan \left(\frac{2\frac{y}{x} - 1}{\sqrt{3}} \right) = -\ln(x) + \frac{1}{2} \ln(3) + \frac{\pi}{3\sqrt{3}}$$

Obviously there is no closed form solution for y. If we try to solve it using Mathematica we just obtain the same equation:

DSolve
$$\left[\left\{y'[x] = 1 - \frac{x}{y[x]}, y[1] = 2\right\}, y[x], x\right]$$

Solve

$$\frac{\operatorname{ArcTan}\left[\frac{-1+\frac{2\,y\,[x]}{x}}{\sqrt{3}}\right]}{\sqrt{3}} + \frac{1}{2}\operatorname{Log}\left[1 - \frac{y\,[x]}{x} + \frac{y\,[x\,]^{\,2}}{x^{\,2}}\right] = \frac{1}{18}\left(2\,\sqrt{3}\,\pi + 9\,\operatorname{Log}[3]\right) - \operatorname{Log}[x],\,y\,[x]\right]$$

However we can at least solve it numerically and plot the solution:

$$s = NDSolve[{y'[x] = 1 - \frac{x}{y[x]}, y[1] = 2}, y[x], {x, 0.0001, 4.5}]$$

This solution can be plotted in Figure 3.The x-intercept is 4.28965 (5dp). The function value when x = 0.0001 is 1.28029.

 $Plot[Evaluate[y[x] /. s], \{x, 0.0001, 4.289\}, PlotRange \rightarrow All]$

Figure 3: Solution curve for $y' = 1 - \frac{x}{y}$ with y(1) = 2

Figure 2 shows that there are possible solutions for negative values of y. We set up an equation from the solution off the DE, substitute values for y, equate to 0 and solve for x. The results are shown in Table 1 and plotted in Figure 4.

$$eqny[y_{]} := \frac{ArcTan\left[\frac{-1+\frac{2^{y}}{x}}{\sqrt{3}}\right]}{\sqrt{3}} + \frac{1}{2}Log\left[1-\frac{y}{x}+\frac{y^{2}}{x^{2}}\right] + Log[x] - \frac{1}{18}\left(2\sqrt{3}\pi + 9Log[3]\right)$$

t = Table[FindRoot[eqny[j], {x, 1}], {j, -8, 0, 0.5}];

TableForm[Table[{t[[j]][[1]][[2]], -8+0.5(j-1)}, {j, 1, 17}], TableHeadings \rightarrow {None, {"x", "y"}}]

X	У
1.60242×10^{-14}	-8.
0.344503	-7.5
0.807543	-7.
1.2415	-6.5
1.64749	- 6 .
2.02628	-5.5
2.37837	- 5 .
2.70396	- 4 . 5
3.00295	-4.
3.27496	-3.5
3.51925	-3 .
3.73468	-2.5
3.91958	-2.
4.07162	-1.5
4.18751	-1.
4.26252	-0.5
4.28965	0.

Table 1: Solutions of $y' = 1 - \frac{x}{y}$ with y(1) = 2 for fixed negative values of y

ListPlot[%, Joined → True]

Figure 4: Solution curve for $y' = 1 - \frac{x}{y}$ with y(1) = 2 for fixed negative values of y

Figure 5 shows the full solution for positive *x*-values.

```
Show[Plot[Evaluate[y[x] /. s],
  \{x, 0.0001, 4.289\}, PlotRange \rightarrow All, AspectRatio \rightarrow 2],
  \texttt{ListPlot[Table[\{t[[j]][[1]][[2]], -8+0.5(j-1)\}, \{j, 1, 17\}],} \\
  Joined → True, AspectRatio → 2]]
```


Figure 5: Full solution for $y' = 1 - \frac{x}{y}$ with y(1) = 2