Expressing integers in the form $a^{2}-b^{2}$

Dr Richard Kenderdine

Kenderdine Maths Tutoring

One of the problems given in `Teaching Problem-solving in Undergraduate Mathematics` [A] is the following:

Which numbers can be written as the difference of two perfect squares, e.g. $6^{2}-2^{2}=32$?

I interpret `number` to mean integer (whole number).

An initial investigation of the values of $a^{2}-b^{2}$ for $2 \leq a \leq 12$ and $1 \leq b \leq a-1$ yielded the output:

	$\mathrm{b}=\mathrm{a}-1$	a-2	a-3	a-4	a-5	a-6	a-7	a-8	a-9	a-10	a-11
$\mathrm{a}=2$	3										
3	5	8									
4	7	12	15								
5	9	16	21	24							
6	11	20	27	32	35						
7	13	24	33	40	45	48					
8	15	28	39	48	55	60	63				
9	17	32	45	56	65	72	77	80			
10	19	36	51	64	75	84	91	96	99		
11	21	40	57	72	85	96	105	112	117	120	
12	23	44	63	80	95	108	119	128	135	140	143

For example, the entries in the third row, where $a=4$, are obtained from $4^{2}-3^{2}=7,4^{2}-2^{2}=12$ and $4^{2}-1^{2}=15$.

The first column consists of all the odd numbers greater than 1 . Hence the numbers differ by 2 . The numbers in the second column differ by 4 , those in the third column by 6 and so on. Note that some numbers can be represented in more than one way eg $24=5^{2}-1^{2}=7^{2}-5^{2}$.

We can see from the table that all the odd numbers greater then 1 and all even numbers greater than 4 that are multiples of 4 can be expressed as the difference of two squares.

This leaves us with the question: why cannot even numbers that are not multiples of 4 be expressed as the difference of two squares?

Consider these points:
(1) even numbers can be expressed as $2 n$ and odd numbers as $2 n+1$, for integer $n \geq 0$.
(2) multiples of 4 can be expressed as $4 n$, even numbers that are not multiples of 4 can be expressed as $4 n+2$ and odd numbers as one of $4 n+1$ or $4 n-1$, for integer $n \geq 0$. Note that numbers of the form $4 n-1$ have a remainder of 3 when divided by 4 (in the language of modulus arithmetic they are said to be congruent to $3 \bmod 4$).

Now consider the forms that $a^{2}-b^{2}$ can take for the possible combinations of parity of a and b :
(1) both a and b even. Let $a=2 n$ and $b=2 m$ then $a^{2}-b^{2}=4\left(n^{2}-m^{2}\right)$
(2) a even and b odd. Let $a=2 n$ and $b=2 m+1$ then $a^{2}-b^{2}=4\left(n^{2}-m-m^{2}\right)-1$
(3) a odd and b even. Let $a=2 n+1$ and $b=2 m$ then $a^{2}-b^{2}=4\left(n^{2}+n-m^{2}\right)+1$
(4) both a and b odd. Let $a=2 n+1$ and $b=2 m+1$ then $a^{2}-b^{2}=4(n-m)(n+m+1)$

We see that when both a and b have the same parity $a^{2}-b^{2}$ is a multiple of 4 greater than 4 , whereas when they are of different parity $a^{2}-b^{2}$ is an odd number. None of the expressions were of the form $4 n+2$.

Note that the first even number that can be expressed in the form $a^{2}-b^{2}$ is 8 , using combination (4) with $n=1$ and $m=0$, giving $4(1-0)(1$ $+0+1)=4(1)(2)=8$.

Hence we agree with the conclusion given above:
All odd numbers greater than 1 and multiples of 4 greater than 4 can be expressed in the form $a^{2}-b^{2}$.

Reference

A. Teaching Problem-solving in Undergraduate Mathematics, MS Badger, CJ Sangwin, TO Hawkes with RP Burns, J Mason and S Pope. Downloaded from http://mellbreak.lboro.ac.uk/problemsolving/sites/default/files/guide/Guide.pdf on 17/11/2014

