The Josephus problem

Suppose we have the numbers 1-100 arranged in a circle and we start deleting every second number. Which number survives?

In[9]:= << Combinatorica
The table below shows the order in which each number is deleted ie 1 is deleted on the 88th go.The survivor is 73

In[11]:= TableForm [Table[\{i, Josephus [100, 2] [[i]]\}, \{i, 1, 100\}],
TableHeadings \rightarrow \{None, \{"n", "Deletion order"\}\}]

Out[11)/Tableform=	
n	Deletion order
1	88
2	1
3	51
4	2
5	76
6	3
7	52
8	4
9	99
10	5
11	53
12	6
13	77
14	7
15	54
16	8
17	89
18	9
19	55
20	10
21	78
22	11
23	56
24	12
25	95
26	13
27	57
28	14
29	79
30	15
31	58
32	16
33	90
34	17
35	59
36	18
37	80
38	19
39	60
40	20
41	98
42	21
43	61
44	22

45	81
46	23
47	62
48	24
49	91
50	25
51	63
52	26
53	82
54	27
55	64
56	28
57	96
58	29
59	65
60	30
61	83
62	31
63	66
64	32
65	92
66	33
67	67
68	34
69	84
70	35
71	68
72	36
73	100
74	37
75	69
76	38
77	85
78	39
79	70
80	40
81	93
82	41
83	71
84	42
85	86
86	43
87	72
88	44
89	97
90	45
91	73
92	46
93	87
94	47
95	74
96	48
97	94
98	49
99	75
100	50

The following list shows the order in which each number is deleted ie 2 is deleted first, then 4 etc. Again 73 is the survivor.

In[12]:= InversePermutation [Josephus [100, 2]]
Out[12] $=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42$, $44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80$, $82,84,86,88,90,92,94,96,98,100,3,7,11,15,19,23,27,31,35,39$, $43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,5,13,21,29,37$, $45,53,61,69,77,85,93,1,17,33,49,65,81,97,25,57,89,41,9,73\}$

A formula for calculating the survivor when each second number is deleted is

$$
L(n, 2)=1+2 n-2^{1+\lfloor\log (n, 2\rfloor}
$$

where $\lfloor\log (n, 2$ 」 is the floor function of Log to base 2 of the number n.
$\log (100,2)$ is the power to which 2 must be raised to give 100 ; this is 6.64386 and the floor function of this number (the integer below) is 6 .

Hence $L(100,2)=1+200-2^{7}=73$

