Linear transformation of Poisson Distribution

Dr Richard Kenderdine

Kenderdine Maths Tutoring
www.kenderdinemathstutoring.com.au

The Poisson distribution for a random variable X with parameter λ has the probability function

$$
\begin{equation*}
P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \tag{1}
\end{equation*}
$$

Now suppose we have another random variable Y defined by $Y=a X+b$ ie a linear transformation of X. The probability function for Y is given by

$$
\begin{equation*}
P(Y=y)=\frac{\lambda^{\frac{y-b}{a}} e^{-\lambda}}{\left(\frac{y-b}{a}\right)!} \tag{2}
\end{equation*}
$$

It is important to recognise that while X can take on the values $0,1,2, \ldots$ ie non-negative integers, the values that Y can take are determined by the transformation $Y=a X+b$. Hence to calculate the expected value of $Y, E(Y)$, we cannot use the usual expression for a Poisson distributed random variable:

$$
\begin{equation*}
E(Y)=\sum_{y=0}^{\infty} y P(Y=y) \tag{3}
\end{equation*}
$$

Instead we have to use only those values that Y can take under the transformation and we use

$$
\begin{equation*}
E(Y)=\sum_{i=1}^{\infty} y_{i} P\left(Y=y_{i}\right) \tag{4}
\end{equation*}
$$

Calculation of Expected Value and Variance

The calculation of the Expected Value and Variance of the transformed variable Y follow the usual rules:

$$
\begin{align*}
& E(Y)=E(a X+b)=a E(X)+b=a \lambda+b \tag{5}\\
& \operatorname{Var}(Y)=\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)=a^{2} \lambda \tag{6}
\end{align*}
$$

We can also calculate

$$
\begin{equation*}
E\left(Y^{2}\right)=E\left[(a X+b)^{2}\right]=\operatorname{Var}(Y)+(E(Y))^{2}=a^{2} \lambda+(a \lambda+b)^{2} \tag{7}
\end{equation*}
$$

A function to calculate Expected Value and Variance

Here is a function in Mathematica to calculate the Expected Value and Variance for a general linear transformation of the Poisson distribution:
lintrpoisson $\left[\lambda_{-}, a_{-}, b_{-}\right]:=($
$Y=$ Table $[a x+b,\{x, 0,99\}] ;$
expect $=\sum_{k=1}^{100}\left(y[[k]] \frac{e^{-\lambda} \lambda^{\frac{y[[k]]-b}{a}}}{\left(\frac{y[[k]]-b}{a}\right)!}\right) ;$
$\operatorname{expsq}=\sum_{k=1}^{100}\left((y[[k]])^{2} \frac{e^{-\lambda} \lambda^{\frac{y[[k]]-b}{a}}}{\left(\frac{y[[k]]-b}{a}\right)!}\right) ;$

Print $\left[" E(Y)="\right.$, expect, " $E\left(Y^{2}\right)="$,
expsq, " $\operatorname{Var}(Y)=\quad "$, expsq-expect $\left.\left.{ }^{2}\right]\right)$

Example

Suppose we have the transformation $Y=0.25 X+7$.
The values of Y corresponding to $X=0,1,2,3, \ldots .$. are $Y=7,7.25,7.5,7.75, \ldots \ldots$.

We run the function lintrpoisson with the input parameters $\lambda=2$, $a=0.25$ and $b=7$:
lintrpoisson [2, 0.25, 7]
$E(Y)=7.5 \quad E\left(Y^{2}\right)=56.375 \quad \operatorname{Var}(Y)=0.125$

The calculated values agree with (5) and (6): $E(Y)=0.25 \times 2+7=7.5$ and $\operatorname{Var}(Y)=0.25^{2} \times 2=0.125$

Probability density plots for X and Y are shown below. The only difference is the scale on the horizon tal axis as defined by the transformation:

A conditional probability concerning two

Poisson processes

Suppose we have two independent random variables X and Z that have Poisson distributions with parameters λ_{1} and λ_{2} respectively and we calculate $Y=X+Z$.

We want the probability that $X=k$ given that $Y=n$ ie $P(X=k \mid Y=n)$ with $0 \leq k \leq n$.
The standard result for conditional probability is $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$ so here we have

$$
\begin{equation*}
P(X=k \mid Y=n)=\frac{P(X=k \text { and } Y=n)}{P(Y=n)} \tag{8}
\end{equation*}
$$

Now the sum of two Poisson distributions with parameters λ_{1} and λ_{2} is also a Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$, hence

$$
\begin{equation*}
P(Y=n)=\frac{\left(\lambda_{1}+\lambda_{2}\right)^{n} e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \tag{9}
\end{equation*}
$$

If $X=k$ and $Y=n$ then $Z=n-k$ and, since both X and Z are independent,

$$
\begin{equation*}
P(X=k \text { and } Y=n)=P(X=k \text { and } Z=n-k)=\frac{\lambda_{1}{ }^{k} e^{-\lambda_{1}}}{k!} \times \frac{\lambda_{2}^{n-k} e^{-\lambda_{2}}}{(n-k)!} \tag{10}
\end{equation*}
$$

Then

$$
\begin{align*}
P(X=k \mid Y=n) & =\frac{\frac{\lambda_{1}{ }^{k} e^{-\lambda_{1}}}{k!} \times \frac{\lambda_{2}{ }^{n-k} e^{-\lambda_{2}}}{(n-k)!}}{\frac{\left(\lambda_{1}+\lambda_{2}\right)^{n} e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}} \\
& =\binom{n}{k} \frac{\lambda_{1}{ }^{k} \lambda_{2}{ }^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}} \tag{11}\\
& =\binom{n}{k}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-k}
\end{align*}
$$

which is a binomial probability function with $p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$

