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Modular arithmetic works with the remainders when an integer is divided by a positive integer. If we 
divide m by n then the remainder is 0 if m is a multiple of n. Otherwise the remainder varies from 1 
to n - 1. 

Two integers a and b are said to be congruent mod n if n divides the difference a - b. This is written 
as  a ≡ b (mod n) and just means that a and b have the same remainder when divided by n.

Rules for congruences

Two rules that are useful are, if  a ≡ b (mod n) and c ≡ d (mod n) then

(1)  a + c ≡  b + d  (mod n).

 For example:  
 15 ≡ 3 (mod 4) and 34 ≡ 2 (mod 4) so 15 + 34 ≡ 3 + 2 = 5 ≡ 1 (mod 4). 
 Alternatively,  15 + 34 = 49 ≡ 1 (mod 4)
 
(2) a c ≡ b d  (mod n)

For example:
11 ≡ 3 (mod 4) and 13 ≡ 1 (mod 4) so 11 × 13 ≡ 3 × 1 = 3 (mod 4),
Alternatively, 11 × 13 = 143 ≡ 3 (mod 4)

Problem solving with congruences

Congruences are useful in solving many types of divisibility problems. First we need to find all the 
possible remainders when powers of the integers 2, 3, ...., 9 are divided by 2, 3,...., 9 (the base). 
Table 1 shows the prevailing pattern of remainders, in order, with these explanations:

(1) some bases produce constant remainders for powers of certain integers. For example, powers 
of 7 always have a remainder of 1 when divided by 3. This is because 7 ≡ 1 (mod 3) and hence 

7k ≡ 1k = 1 (mod 3).

(2) other bases have two possible remainders. For example, powers of 5 have remainders of either 

5 or 1 when divided by 6 (51 = 5, 52 ≡ 1, 53 ≡ 5, 54 ≡ 1 ... .. (mod 6)) 

(3) bases 5, 7 and 9 can have more than three possible remainders.
     Consider the powers of 2 (mod 5):
     

     21 = 2, 22 = 4, 23 ≡ 3, 24 ≡ 1, 25 ≡ 2 ... ..(mod 5) and the pattern repeats unending.
     
(4) the remainders for powers of 2 and 6 (mod 8) are shown as always 0. This is the prevailing 

remainder for powers greater than 2. We have 62 ≡ 4 (mod 8) but 63 = 23×33 which is divisible by 8 
and hence all higher powers of 6 will be divisble by 8.     



Table 1: Remainders of powers of 2, 3, ..., 9 when divided by base 2. 3...., 9 

Now look at the remainders when all square numbers are divided by 2, 3, ....., 9. Table 2 shows 

these remainders as recurring series. For example, in mod 7 we have 22 ≡ 4, 32 ≡ 2, 

42 ≡ 2, 52 ≡ 4, 62 ≡ 1, 72 ≡ 0, 82 ≡ 1 and the series repeats from then on.

  Table 2: Remainders of the square numbers n2 mod(base) for n ≥ 2 and bases 2 - 9

Note that if an integer is even it can be expressed as 2m where m is an integer. An odd integer can 

be expressed as 2m + 1. These expression squared are 4 m2 and 4 m2 + 4 m + 1 respectively. There-
fore the square of an even number is conguent to 0 mod 2 or 4 while the square of an odd number 
is congruent to 1 mod 2 or 4. The opposite is true for mod 3.

Here is a list of the first 20 square numbers:

In[2]:= Tablen2, {n, 1, 20}

Out[2]= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
121, 144, 169, 196, 225, 256, 289, 324, 361, 400}

The units digit follows the pattern {1, 4, 9, 6, 5, 6, 9, 4, 1, 0}. There is a reverse symmetry here with 
the digits {1, 4, 9, 6} in a block and {0, 5} being dividers between the blocks.. 

The important fact to note is that {2, 3, 7, 8} are never the units digit for square numbers. 

This is shown by the remainders for base 5 in Table 2, the remainder is never 2 or 3.

The pattern for the units digit for square numbers is set by the squares of the first 10 numbers. This 
is because the units digit of the product of two numbers is solely determined by the product of the 
units digits of the two numbers and these can only be 0 - 9.
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A problem to solve

The 2016 Australian Mathematical Olympiad contained the following question:

Find all positive integers n such that 2n
+ 7n is a perfect square.

We can use the information provided above to answer this question. Table 3 shows the results for a 
few values of n:

                                      Table 3: Sum of powers of 2 and 7

Note that when n is even the units digit of the sum is 3 or 7. We know fhat the units digit of a square 
number cannot be either 3 or 7 so therefore the sum of even integer powers of 2 and 7 never 
results in a perfect square.

Now consider when n is odd. Obviously the result is true for n = 1 as 2 + 7 = 9.
For other odd values we use the results for mod 4 in Table 1. The powers of 2 are congruent to 0 
mod 4 while odd powers of 7 are congruent to 3 mod 4. Hence the sum of odd powers of 2 and 7 is 
congruent to 3 mod 4. But we know from Table 2 that square numbers are always congruent to 0 or 
1 mod 4. Hence there are no odd integers n > 1 that result in a perfect square.  

To conclude, the only value of n that results in 2n + 7n being a perfect square is 1.
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