Novel recruitment method

Some time ago Google advertised for employees by using the following message on a roadside billboard: '[first 10-digit prime found in consecutive digits of e].com'
That is, potential employees had to locate the first occurrence of a 10-digit prime number in consecutive digits of the mathematical constant e. This number gave the web address of a more difficult mathematical question.

How do we find this 10-digit prime number? Mathematica has the necessary functions to make this relatively easy.

The function RealDigits[x, b, len] gives len digits of the number x in base b. Hence the first 10 digits of e in base 10 is obtained from:
$\ln [2]:=$ RealDigits [e, 10, 10]
Out[2] $=\{\{2,7,1,8,2,8,1,8,2,8\}, 1\}$
The 10 digits are shown together with the number of digits in the integer part (1). We can then form the 10-digit number by first extracting the list of digits

```
In[3]:= RealDigits[e, 10, 10][[1]]
Out[3]={2, 7, 1, 8, 2, 8, 1, 8, 2, 8}
```

followed by applying the function FromDigits:

```
ln[4]:= FromDigits[RealDigits[e, 10, 10][[1]]]
Out[4]= 2 718281828
```

which we can test for primality using PrimeQ:

```
In[5]:= PrimeQ[FromDigits[RealDigits[e, 10, 10][[1]]]]
Out[5]= False
```

Now we need to be able to extract 10 consecutive digits commencing at an arbitrary position.

We do this using RealDigits $[x, b, l e n, n]$ which gives len digits starting with the coefficient of b^{n}.

We create a function with argument j to start the 10 digits at position 10^{j} :
edigits[j]]:=RealDigits[e,10,10,-j]

We can use a For statement to repeat the process until we locate the first 10-digit prime.

The counter i is set initially to 0 and incremented by 1 provided the 10 -digit number is not prime; the process stops when a prime number is found.
$\ln [6]:=\operatorname{For}[i=0, \operatorname{PrimeQ}[F r o m D i g i t s[R e a l D i g i t s[e, 10,10,-i][[1]]]$ == False, i++] ;
We use this incremented value of i to give the 10-digit prime:
$\ln [7]:=$ FromDigits [RealDigits [e, 10, 10, -i][[1]]]
Out[7]= 7427466391
Thus 7427466391 is the first 10 -digit prime from consecutive digits of e.

Here are the first 120 digits of e with the 10 -digit prime in red:
N [e, 120]
2.71828182845904523536028747135266249775 7247093699959574966967627724076630353547
5945713821785251664274274663919320030599

