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Consider the linear system of differential equations 

y1 ' (t) = a y1(t) + b y2(t)

y2 ' (t) = c y1(t) + d y2(t)

or, in matrix form,

y ' (t) =
a b

c d
 y(t)

Critical points occur when y ' (t) = 0 ie when 
a b

c d
 y(t) = 0. The type and stability of critical point 

depends upon the values of the pair of eigenvalues (λ1, λ2) of the matrix 
a b

c d
. The possible 

combinations are given in the table.  

Eigenvalues Typeof critical

point

Stability

Both positive, different Improper node Unstable

Both negative, different Improper node Asymptotically stable

One positive, one negative Saddle point Unstable

Equal and positive (independent eigenvectors) Proper node Unstable

Equal and positive (dependent eigenvectors) Improper node Unstable

Equal and negative (independent eigenvectors) Proper node Asymptotically stable

Equal and negative (dependent eigenvectors) Improper node Asymptotically stable

Complex conjugates with positive real part Spiral point Unstable

Complex conjugates with negative real part Spiral point Asymptotically stable

Purely complex conjugates Centre Stable

The following pages show examples of each type.

The phase portraits illustrate how 
dy2(t)

dy1(t)
 changes according to the values of y1(t) (horizontal axis) and 

y2(t) (vertical axis).



(1) Unequal positive eigenvalues

The matrix 
5 -1

3 1
 has eigenvalues λ = (2,4) and the critical point (0,0) is an unstable improper 

node, as shown in the phase portrait. Note that all streamlines move out from the origin.

The Mathematica code is:

StreamPlot[{5 x - y, 3 x + y}, {x, -3, 3}, {y, -3, 3}, PlotTheme → "Scientific"]

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(2) Unequal negative eigenvalues

The matrix 
-1 2

-1 -4
 has eigenvalues λ = (-3,-2) and the critical point (0,0) is an asymptotically 

stable improper node as shown in the phase portrait. Note that all streamlines move towards the 
origin.
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(3) One positive and one negative eigenvalue

The matrix 
-3 4

-1 2
 has eigenvalues λ = (-2,1) and the critical point (0,0) is an  unstable saddle 

point, as shown in the phase portrait. Note that all streamlines move towards and then away from 
the origin.
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(4) Equal positive eigenvalues with independent eigenvectors

The matrix 
1 0

0 1
 has eigenvalues λ = (1,1) with eigenvectors 

0

1
 and 

1

0
. The critical point (0,0) 

is an  unstable proper node, as shown in the phase portrait. Note that all streamlines move away 
from the origin.
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(5) Equal positive eigenvalues with dependent eigenvectors

The matrix 
5 -1

1 3
 has repeated eigenvalue λ = 4 with dependent eigenvectors 

1

1
 and 

0

0
. The 

critical point (0,0) is an unstable improper node, as shown in the phase portrait. Note that all stream-
lines move away from the origin.
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(6) Equal negative eigenvalues with independent eigenvectors

The matrix 
-1 0

0 -1
 has eigenvalues λ = (-1,-1) with eigenvectors 

0

1
 and 

1

0
. The critical point 

(0,0) is an asymtotically stable proper node, as shown in the phase portrait. Note that all streamlines 
move toward the origin.
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(7) Equal negative eigenvalues with dependent eigenvectors

The matrix 
-5 -1

1 -3
 has repeated eigenvalue λ = -4 with dependent eigenvectors 

-1

1
 and 

0

0
. 

The critical point (0,0) is an asymtotically stable improper node, as shown in the phase portrait. Note 
that all streamlines move toward the origin.
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(8) Complex conjuate eigenvalues with positive real part

The matrix 
3 4

-1 2
 has eigenvalues λ = ( 5+i 15

2
,  5-i 15

2
) and the critical point (0,0) is an unsta-

ble spiral point, as shown in the phase portrait. Note that all streamlines move away from the origin.
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(9) Complex conjuate eigenvalues with negative real part

The matrix 
-3 -3

1 -1
 has eigenvalues λ = ( -2 + i 2 ,  -2 - i 2 ) and the critical point (0,0) is an 

asymptotically stable spiral point, as shown in the phase portrait. Note that all streamlines move 
toward the origin.
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(10) Purely complex conjuate eigenvalues 

The matrix 
2 -5

1 -2
 has eigenvalues λ = ( i,  - i) and the critical point (0,0) is a stable centre point, 

as shown in the phase portrait. Note that all streamlines are centred around the origin with anti-
clockwise rotation.
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A closer look at one linear system

The matrix 
3 -2

2 -2
 has eigenvalues λ = -1 and 2 with independent eigenvectors 

1

2
 and 

2

1
. The 

critical point (0,0) is an saddlepoint.

The solutions to the system of differential equations are 

                                y (1)(t) = a
1

2
ⅇ-t         and         y (2)(t) = b

2

1
ⅇ2 t

                                
where a and b are arbitrary constants, depending upon the initial conditions. Each combination of a 

and b produces a trajectory. The following plot shows the streamlines with a sample of trajectories. 

Note that y (1)(t) is on the horizontal axis and  y (2)(t) on the vertical axis.     
                  

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Saddle Point - real eigenvalues with different signs

a=0.5,b=0.1

a=0.5,b=-0.1

a=-0.5,b=0.1

a=-1,b=-0.45

a=-0.5,b=0.1

a=1,b=0.45
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An example of a non-linear system: the predator / prey 
model.

A simple non-linear system models the situation where predators have prey as a source of food 
while the prey have a different source of food.

If y1 is the prey population and y2  the predator population then the system is 

y1 ' (t) = a y1(t) - b y1(t) y2(t)

y2 ' (t) = -c y2(t) + d y1(t) y2(t)

where a, b, c and d are all positve. These are Lotka-Volterra equations where both populations are 
simultaneously subject to increasing and decreasing forces.

Here is the phase-portrait when a = 1, b = 0.5, c = 1 and d = 0.5:

StreamPlot[{x (1 - 0.5 y), y (-1 + 0.5 x)},
{x, 0, 4}, {y, 0, 4}, PlotTheme → "Scientific"]
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Equilibrium exists at (2,2). In the top right quadrant the increasing predator population causes the 
prey population to decrease. This increasing shortage of prey causes the predator population to 
decrease (top left quadrant). The result of this is an increase in prey population (bottom left), thus 
causing the small predator population to grow (bottom right). 
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