Distances from a point to complex roots of unity Dr Richard Kenderdine

Problem:

We want to show that the sum of the squares of the Euclidean distances from any point on the unit circle in the Argand diagram to all of the $n^{\text {th }}$ roots of unity equals $2 n$ (for $n>1$).
Example when $n=3$:
The solutions of $z^{3}=1$ are $1, \frac{-1+\sqrt{3} i}{2}$ and $\frac{-1-\sqrt{3} i}{2}$. These are shown as w_{1}, w_{2} and w_{3} in the plot below. We can consider a variable point z on the unit circle and we want to calculate the distances to w_{1}, w_{2} and w_{3} (shown in red).

As an example let z be the complex number with argument $\frac{2 \pi}{5}$. We then calculate the sum of the square of the Euclidean distances to w_{1}, w_{2} and w_{3}.
$z=\left\{\operatorname{Cos}\left[\frac{2 \pi}{5}\right], \operatorname{Sin}\left[\frac{2 \pi}{5}\right]\right\} / / N ;$
cuberoots $=\left\{\{1,0\},\left\{\cos \left[\frac{2 \pi}{3}\right], \operatorname{Sin}\left[\frac{2 \pi}{3}\right]\right\},\left\{\cos \left[\frac{4 \pi}{3}\right], \sin \left[\frac{4 \pi}{3}\right]\right\}\right\} ;$
$\sum_{k=1}^{3}(\text { EuclideanDistance }[z \text {, cuberoots }[[k]]])^{2}$
6.

Thus the sum of the square of the distances is 6 , which is twice the number of roots. We can prove this is the case for all values of $n>1$.

Proof

Let P be the general point z on the unit circle with $z=x+i y$ and A_{k} the position of the root w_{k} with $w_{k}=a+i b$.

Then $\quad P A_{k}{ }^{2}=(x-a)^{2}+(y-b)^{2}$ as usual.
However

$$
\begin{aligned}
\left(z-w_{k}\right)\left(\bar{z}-\bar{w}_{k}\right) & =(x+i y-(a+i b))(x-i y-(a-i b)) \\
& =(x-a+i(y-b))(x-a-i(y-b)) \\
& =(x-a)^{2}+(y-b)^{2}
\end{aligned}
$$

So

$$
P A_{k}^{2}=\left(z-w_{k}\right)\left(\bar{z}-\bar{w}_{k}\right)
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n} P A_{k}^{2} & =\sum_{k=1}^{n}\left(z-w_{k}\right)\left(\bar{z}-\bar{w}_{k}\right) \\
& =\sum_{k=1}^{n}\left(z \bar{z}-z \bar{w}_{k}-w_{k} \bar{z}+w_{k} \bar{w}_{k}\right) \\
& =\sum_{k=1}^{n} z \bar{z}-z \sum_{k=1}^{n} \bar{w}_{k}-\bar{z} \sum_{k=1}^{n} w_{k}+\sum_{k=1}^{n} w_{k} \bar{w}_{k}
\end{aligned}
$$

Now on the unit circle $z \bar{z}=1$ and $w_{k} \bar{w}_{k}=1$ while $\sum_{k=1}^{n} w_{k}=\sum_{k=1}^{n} \bar{w}_{k}=0$

Hence

$$
\sum_{k=1}^{n} P A_{k}^{2}=\sum_{k=1}^{n} 1+\sum_{k=1}^{n} 1=2 n
$$

A further question
Given a point P on the x-axis $(-1<x<1)$, prove that the product of the Euclidean distances to all the $n^{\text {th }}$ roots of unity equals $1-x^{n}$

$$
\text { ie } \quad \prod_{k=1}^{n} P A_{k}=1-x^{n}
$$

We have from above $\quad P A_{k}=\sqrt{\left(x-w_{k}\right)\left(x-\bar{W}_{k}\right)}$ since $\bar{x}=x$

From the example of the cube roots of unity we see that $\bar{w}_{1}=w_{1}, \bar{w}_{2}=w_{3}$ and $\bar{w}_{3}=w_{2}$.

Therefore we have in this case $\prod_{k=1}^{3} P A_{k}=\sqrt{\left(x-w_{1}\right)\left(x-\bar{w}_{1}\right)\left(x-w_{2}\right)\left(x-\bar{w}_{2}\right)\left(x-w_{3}\right)\left(x-\bar{w}_{3}\right)}$

$$
\begin{aligned}
& =\sqrt{\left(x-w_{1}\right)\left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)\left(x-w_{3}\right)\left(x-w_{2}\right)} \\
& =\sqrt{\left(x-w_{1}\right)^{2}\left(x-w_{2}\right)^{2}\left(x-w_{3}\right)^{2}} \\
& = \pm\left(x-w_{1}\right)\left(x-w_{2}\right)\left(x-w_{3}\right)
\end{aligned}
$$

This is the factorisation of $\pm\left(x^{3}-1\right)$.

To determine which sign is appropriate we first need to consider the product $(x-w)(x-\bar{w})$ with $w=a+i b$ and $\bar{w}=a-i b$. We have $(x-w)(x-\bar{w})=(x-a)^{2}+b^{2}$ ie positive. Hence the sign of the product of the roots depends upon the sign of $\left(x-w_{1}\right)$ and since $w_{1}=1$ and $-1<x<1$ we have $\left(x-w_{1}\right)<0$. Distances are positive and therefore we need to use $\left(w_{1}-x\right)$, giving

$$
\prod_{k=1}^{3} P A_{k}=\left(w_{1}-x\right)\left(x-w_{2}\right)\left(x-w_{3}\right)=1-x^{3}
$$

The extension to the $n^{\text {th }}$ roots of unity is immediate since every root has a conjugate. The derivation of $\prod_{k=1}^{n} P A_{k}$ follows the same argument, yielding

$$
\prod_{k=1}^{n} P A_{k}=\left(w_{1}-x\right)\left(x-w_{2}\right)\left(x-w_{3}\right)=1-x^{n}
$$

