# Derivation of Simpson's Rule 

Dr Richard Kenderdine<br>Kenderdine Maths Tutoring - Bowral

14 March 2014

## The formula

Simpson's Rule is a method for numerically evaluating an integral:

$$
\begin{aligned}
& \int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \\
& \text { where } x_{1} \text { is the average of } x_{0} \text { and } x_{2} \text { ie }
\end{aligned}
$$

$$
x_{1}=\frac{x_{0}+x_{2}}{2}
$$

and $h$ is the difference between successive $x$ values ie

$$
h=x_{1}-x_{0}
$$

## The formula

The expression

$$
\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]
$$

calculates the exact area under a parabola that passes through three points on the curve $y=f(x)$

The three points are $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$

## Interpreting the formula

Now $\frac{h}{3}=\frac{2 h}{6}$ and, putting the 6 inside the brackets,

$$
\begin{gathered}
\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]=2 h\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}\right] \\
\text { or } \\
2 h\left[\frac{1}{6} f\left(x_{0}\right)+\frac{4}{6} f\left(x_{1}\right)+\frac{1}{6} f\left(x_{2}\right)\right]
\end{gathered}
$$

which can be thought of as finding the area of a rectangle with width $2 h$ and height

$$
\frac{1}{6} f\left(x_{0}\right)+\frac{4}{6} f\left(x_{1}\right)+\frac{1}{6} f\left(x_{2}\right)
$$

## Interpreting the formula

Thus the area under the parabola is exactly equal to the area of the rectangle.

The expression

$$
\frac{1}{6} f\left(x_{0}\right)+\frac{4}{6} f\left(x_{1}\right)+\frac{1}{6} f\left(x_{2}\right)
$$

is a weighted average of the function values $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)$ with weights $\left(\frac{1}{6}, \frac{4}{6}, \frac{1}{6}\right)$

The following slides show how these weights are determined.

## Determining the weights

A parabola fitted to a function will give the exact area when the function is a straight line or a parabola. Therefore there are 3 simple functions we can use to determine the weights $(a, b, c)$ in the weighted average of function values given by

$$
a\left[f\left(x_{0}\right)\right]+b\left[f\left(x_{1}\right)\right]+c\left[f\left(x_{2}\right)\right]
$$

These functions are
(i) $f(x)=1$
(ii) $f(x)=x$
(iii) $f(x)=x^{2}$

We find the exact areas bounded by the function and the $x$-axis between $x=0$ and $x=1$

## Determining the weights

Note that in the following examples $h=\frac{1}{2}$ so $2 h=1$.

Hence the weighted value of the function values,

$$
a\left[f\left(x_{0}\right)\right]+b\left[f\left(x_{1}\right)\right]+c\left[f\left(x_{2}\right)\right]
$$

will give the area as determined by Simpson's Rule

## Parabola approximates the function

Consider an arbitrary function $f(x)$ and a parabola fitted to three points:


## Areas under parabola and rectangle equal

Height of rectangle $=\frac{1}{6}(12)+\frac{4}{6}(15)+\frac{1}{6}(14)=14.33$


## Determining the weights

(i) $f(x)=1$

We use Simpson's Rule to calculate the area of the square:


## Determining the weights

(i) $f(x)=1$

The region bounded by the function and the $x$-axis between $x=0$ and $x=1$ is a square with area 1 sq unit.

Using $\left(x_{0}, x_{1}, x_{2}\right)=\left(0, \frac{1}{2}, 1\right)$ in $a\left[f\left(x_{0}\right)\right]+b\left[f\left(x_{1}\right)\right]+c\left[f\left(x_{2}\right)\right]$ we have

$$
a[f(0)]+b\left[f\left(\frac{1}{2}\right)\right]+c[f(1)]=a[1]+b[1]+c[1]=a+b+c
$$

and since this equals the area we have

$$
a+b+c=1
$$

## Determining the weights

(ii) $f(x)=x$

We use Simpson's Rule to calculate the area of the triangle:


## Determining the weights

(ii) $f(x)=x$

The region bounded by the function and the $x$-axis between $x=0$ and $x=1$ is a triangle with area $\frac{1}{2}$ sq unit.

Using $\left(x_{0}, x_{1}, x_{2}\right)=\left(0, \frac{1}{2}, 1\right)$ in $a\left[f\left(x_{0}\right)\right]+b\left[f\left(x_{1}\right)\right]+c\left[f\left(x_{2}\right)\right]$ we have

$$
a[f(0)]+b\left[f\left(\frac{1}{2}\right)\right]+c[f(1)]=a[0]+b\left[\frac{1}{2}\right]+c[1]=\frac{1}{2} b+c
$$

and since this equals the area we have

$$
\frac{1}{2} b+c=\frac{1}{2}
$$

## Determining the weights

(iii) $f(x)=x^{2}$

We use Simpson's Rule to calculate the area under the parabola:


## Determining the weights

(iii) $f(x)=x^{2}$

The area of region bounded by the function and the $x$-axis between $x=0$ and $x=1$ is a found from $\int_{0}^{1} x^{2} d x=\frac{1}{3}$ sq unit.

Using $\left(x_{0}, x_{1}, x_{2}\right)=\left(0, \frac{1}{2}, 1\right)$ in $a\left[f\left(x_{0}\right)\right]+b\left[f\left(x_{1}\right)\right]+c\left[f\left(x_{2}\right)\right]$ we have

$$
a[f(0)]+b\left[f\left(\frac{1}{2}\right)\right]+c[f(1)]=a[0]+b\left[\frac{1}{4}\right]+c[1]=\frac{1}{4} b+c
$$

and since this equals the area we have

$$
\frac{1}{4} b+c=\frac{1}{3}
$$

## Determining the weights

Now we have three equations:

$$
\begin{gather*}
a+b+c=1  \tag{1}\\
\frac{1}{2} b+c=\frac{1}{2}  \tag{2}\\
\frac{1}{4} b+c=\frac{1}{3} \tag{3}
\end{gather*}
$$

Solving (2) and (3) simultaneously for $b$ gives $b=\frac{4}{6}$, then $c=\frac{1}{6}$ and then $a=\frac{1}{6}$ from(1)

Thus the weights are $\left(\frac{1}{6}, \frac{4}{6}, \frac{1}{6}\right)$

