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This note looks at how primitives of some relatively simple functions are obtained.
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When we differentiate sec + tan 6 we find
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We can determine the primitive function in a number of ways, two of which are shown below. Both
use the hyperbolic functions sinh 8 and cosh 6 :
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with properties
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(2a) Substitute x = cosh 6

If x = cosh 6 (8 = 0 for the transformation to have an inverse) then j—g = sinh 8 and

\/x2 —1 dx =1/ cosh?@-1 sinh 6d@ = sinh? 6 d6.
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Now cosh 6 = x and sinh 6=\/cosh29—1 =\/x2—1 s0 2sinh 8 cosh 8=2 x4/ x> -1

Also, we have x = cosh 6 = ;— (e° + ) and we need to find the inverse function, 8 in terms of x.
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This is a quadratic in @® and using the formula we have
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(We only have one value since x - v X* -1 would require €® <1 = 6 < 0 but we stated above that
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6 = 0 for the transformation to have an inverse).

X+ x-1 ‘ (8)
X+ -1 ‘

Hence
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Finally (5) becomes
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(2b) Integration by parts and substitute x = cosh 6
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Now to find the integral on the right we use the substitution x = cosh 6 with dx = sinh 6 d6:
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and from (8) we see that 6 = In
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