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A  common  question  asked  of  students  of  mathematical  induction  is  to  prove

12 + 22 + ... .. + n2 =
1

6
n(2 n + 1) (n + 1).  This note derives the expression on the right-hand side as

well as expressions for higher powers. 

Sum of the first n natural numbers

The series 1 + 2 + 3 +.....+ n is an Arithmetic Progression with first term = 1, difference = 1 and n terms. The standard formula for such a

series is 
n

2
(a + l) =

1

2
n(1 + n)  which we can also write as 

1

2
n2 +

1

2
n.

Thus we have



k=1

n

k =
n

2
(1 + n) =

1

2
n2 +

1

2
n (1)

The telescopic property

The telescopic property is useful for deriving results relating to series. Consider



k=1

n

[a(k + 1) - a(k)] = [a(2) - a(1)] + [a(3) - a(2)] + [a(4) - a(3)] + ....[a(n) - a(n - 1)] + [a(n + 1) - a(n)] (2)

= a(n + 1) - a(1) (3)

Sum of the first n square numbers

Consider 



k=1

n

(k + 1)3 - k3 (4)

Using the telescopic property this becomes



k=1

n

(k + 1)3 - k3 = (n + 1)3 - 13
(5)

= n3 + 3 n2 + 3 n (6)

Alternatively we can expand out the summation



k=1

n

(k + 1)3 - k3 =

k=1

n

k3 + 3 k2 + 3 k + 1 - k3 (7)

= 3 

k=1

n

k2 + 3 

k=1

n

k +

k=1

n

1 (8)

= 3 

k=1

n

k2 + 3
n

2
(1 + n) + n (9)

= 3 

k=1

n

k2 +
3

2
n2 +

5

2
n (10)

Equating (6) with (10), 

3 

k=1

n

k2 +
3

2
n2 +

5

2
n = n3 + 3 n2 + 3 n (11)



So



k=1

n

k2 =
1

3
n3 +

3

2
n2 +

1

2
n (12)

=
1

3
n3 +

1

2
n2 +

1

6
n (13)

or in factored form



k=1

n

k2 =
1

6
n(2 n + 1) (n + 1) (14)

Sum of the first n cubed numbers

Consider 



k=1

n

(k + 1)4 - k4 (15)

Using the telescopic property this becomes



k=1

n

(k + 1)4 - k4 = (n + 1)4 - 14
(16)

= n4 + 4 n3 + 6 n2 + 4 n (17)

Alternatively we can expand out the summation



k=1

n

(k + 1)4 - k4 =

k=1

n

k4 + 4 k3 + 6 k2 + 4 k + 1 - k4 (18)

= 4 

k=1

n

k3 + 6 

k=1

n

k2 + 4 

k=1

n

k +

k=1

n

1 (19)

= 4 

k=1

n

k3 + n(2 n + 1) (n + 1) + 4
n

2
(1 + n) + n (20)

= 4 

k=1

n

k3 + 2 n3 + 5 n2 + 4 n (21)

Equating (17) with (21), 

4 

k=1

n

k3 + 2 n3 + 5 n2 + 4 n = n4 + 4 n3 + 6 n2 + 4 n (22)

So



k=1

n

k3 =
1

4
n4 + 2 n3 + n2 (23)

=
1

4
n4 +

1

2
n3 +

1

4
n2 (24)

or in factored form



k=1

n

k3 =
n(n + 1)

2

2

(25)

Note that since 
n(n+1)

2
 is the sum of the first n natural numbers then we have

13 + 23 + 33 + ... ....+n3 = (1 + 2 + 3 + ... .. + n)2
(26)
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Sum of the first n quartic numbers

Proceeding as previously



k=1

n

(k + 1)5 - k5 = (n + 1)5 - 15
(27)

which becomes

5 

k=1

n

k4 + 10 

k=1

n

k3 + 10 

k=1

n

k2 + 5 

k=1

n

k +

k=1

n

1 = n5 + 5 n4 + 10 n3 + 10 n2 + 5 n (28)

and using substitutions for ∑k=1
n k3, ∑k=1

n k2 and ∑k=1
n k from above (28) simplifies to 



k=1

n

k4 =
1

5
n5 +

1

2
n4 +

1

3
n3 -

1

30
n (29)

or in factored form



k=1

n

k4 =
1

30
(2 n + 1) n(n + 1)[3 n(n + 1) - 1] (30)

Summary so far

The sums of the first four powers of the natural numbers are:



k=1

n

k =
1

2
n2 +

1

2
n.



k=1

n

k2 =
1

3
n3 +

1

2
n2 +

1

6
n



k=1

n

k3 =
1

4
n4 +

1

2
n3 +

1

4
n2



k=1

n

k4 =
1

5
n5 +

1

2
n4 +

1

3
n3 -

1

30
n

Considering the general power p, the similarities of the expressions for ∑k=1
n k p include

 the first term is ∫ np ⅆn

 the second coefficient is 
1

2

 powers of n decrease from p+1 to 1 (the coefficients for n when p = 3 and n2 when p = 4  are 0)

 the coefficients sum to 1 in each case

In factored form we have



k=1

n

k =
1

2
n(n + 1).



k=1

n

k2 =
1

6
(2 n + 1) n(n + 1)



k=1

n

k3 =
1

4
[n (n + 1)]2



k=1

n

k4 =
1

30
(2 n + 1) n(n + 1)[3 n(n + 1) - 1]

It can be seen that the RHS is a polynomial in n(n+1) with the extra factor 2n+1 when  p is even. 

Sums of Powers report.nb  3



Historical note

Archimedes (287-212 BC) stated and proved a formula for the sum of squares as Proposition 10 in his treatise translated as On Spirals:

If a series of any number of lines be given, which exceed one another by an equal amount; and the difference be equal to the least, and if

other lines be given equal in number to these and in quantity to the greatest, the squares on the lines equal to the greatest, plus the square

on the greatest and the rectangle contained by the least and the sum of all those exceeding one another by an equal amount will be the

triplicate of all the squares on the lines exceeding one another by an equal amount.

In modern terms, Archimedes is referring to an arithmetic progression with difference equal to the first term. If we make both equal to 1
then the proposition states:

n2(n + 1) + (1 + 2 + 3 + ....+n) = 3 12 + 22 + 32 + ....+n2 (31)

This is illustrated below for n = 4 where there are 5 lots of 42 plus (1 + 2 + 3  + 4) cut up into 3 lots each of 12, 22, 32 and 42:

Now using (1 + 2 + 3 +....+ n) =
n

2
(1 + n) we have

n2(n + 1) +
n

2
(n + 1) = 3 12 + 22 + 32 + ....+n2 (32)

(n + 1) n2 +
n

2
= 3 12 + 22 + 32 + ....+n2 (33)

1

2
(n + 1) n(2 n + 1) = 3 12 + 22 + 32 + ....+n2 (34)

1

6
(2 n + 1) n(n + 1) = 12 + 22 + 32 + ....+n2 (35)

as previously derived.

Besides the ancient Greeks, Hindus and Arabs had rules for summing powers up to and including 4. In 1631 Johann Faulhaber (1580 -
1635) published Academiae Algebrae that contained the sums up to p = 17. However there was no general formula for arbitrary p until
Jacques (some references use Jakob or Jacob) Bernoulli (1654 -  1705) provided a  solution that  was not published until  1713 in Ars

Conjectandi. Bernoulli listed the results up to power 10 and described the general pattern, without proof. The pattern required the use of
what came to be termed `Bernoulli numbers` that have no obvious pattern but can be generated in a number of ways. 

Bernoulli numbers

One way of obtaining these numbers is from the coefficients in the power series expansion of

x

ⅇx - 1
=

n=0

∞ Bn xn

n !
(36)

Mathematica gives the expansion, up to x12,  as
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Series
x

Exp[x] - 1
, {x, 0, 12}

1 -
x

2
+
x2

12
-

x4

720
+

x6

30 240
-

x8

1 209600
+

x10

47 900160
-

691 x12

1 307 674368 000
+ O[x]13

which can be written as 

1 -
1

2

x

1 !
+

1

6

x2

2 !
-

1

30

x4

4 !
+

1

42

x6

6 !
... ... ... (37)

Thus the Bernoulli numbers are (B0 =1, B1 = -
1

2
, B2= 

1

6
, B3 = 0, B4 = -

1

30
, B5 = 0,  B6 =

1

42
, B7 = 0, ...) . Note that Bn = 0 for n

odd except n = 1. 

Another way is the use of Bernoulli polynomials, Bn(x), which appear in the expansion

t ⅇx t

ⅇt - 1
=

n=0

∞ Bn(x) tn

n !
(38)

Mathematica gives the expansion, up to t6,  as

Series
t ⅇx t

ⅇt - 1
, {t, 0, 6}

1 + -
1

2
+ x t +

1

12
1 - 6 x + 6 x2 t2 +

1

12
x - 3 x2 + 2 x3 t3 +

1

720
-1 + 30 x2 - 60 x3 + 30 x4 t4 +

1

720
-x + 10 x3 - 15 x4 + 6 x5 t5 +

1 - 21 x2 + 105 x4 - 126 x5 + 42 x6 t6

30 240
+ O[t]7

This expansion can be re-written as

1
t0

0 !
+ x -

1

2

t1

1 !
+ x2 - x +

1

6

t2

2 !
+ x2 -

3

2
x +

1

2
x

t3

3 !
+ x4 - 2 x3 + x2 -

1

30

t4

4 !
... ... (39)

The Bernoulli polynomials are the coefficients of 
tn

n!
 and the Bernoulli numbers are the constant terms of the polynomials.

One property of the Bernoulli numbers is


k + 1

1
 Bk + 

k + 1
2

 Bk-1 + 
k + 1

3
 Bk-2 + ... ... + 

k + 1
k

 B0 = 0 (40)

The general formula using Bernoulli numbers 

In modern notation we can write



k=1

n

k =
1

2


2
0
 n2 + 

2
1


1

2
n (41)



k=1

n

k2 =
1

3


3
0
 n3 + 

3
1


1

2
n2 + 

3
2
 B2 n (42)



k=1

n

k3 =
1

4


4
0
 n4 + 

4
1


1

2
n3 + 

4
2
 B2 n2 + 

4
3
 B3 n (43)

Note that in (43) B3 = 0.

The pattern can be summarised as 



k=1

n

kp =
1

p + 1

p + 1

0
 np+1 + 

p + 1
1


1

2
np +

j=2

p


p + 1
j

 Bj n
p+1- j (44)
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Let’s test this by summing powers of the first 10 natural numbers. First set up a function for arbitrary  n and  p.

In[14]:= sumpower[n_, p_] :=

1

p + 1
Binomial[p + 1, 0] np+1 +

1

2
Binomial[p + 1, 1] np +

SumBinomial[p + 1, j] BernoulliB[j] np+1-j, {j, 2, p} ;

Now sum powers of the first 10 natural numbers, from power 1 to power 10:

In[16]:= Table[sumpower[10, k], {k, 1, 10}]

Out[16]= {55, 385, 3025, 25333, 220825, 1978405,
18080425, 167731333, 1574304985, 14914341925}

For example 12 + 22 + 32 + ....+102 = 385 and 13 + 23 + 33 + ....+103 = 3025.

Now use the summation ∑k=1
10 k p for 1 ≤ p ≤ 10

In[17]:= Table[Sum[jp, {j, 10}], {p, 1, 10}]

Out[17]= {55, 385, 3025, 25333, 220825, 1978405,
18080425, 167731333, 1574304985, 14914341925}

Thus we have agreement.
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