KENDERDINE
 MATHS TUTORING

6 Braeside Dr
BOWRAL NSW 2576
AUSTRALIA

48622827 mob 0429317491
rdkdine@acenet.com.au
www.kenderdinemathstutoring.com.au

TANGENTIAL CIRCLES

Prepared by Dr Richard Kenderdine

Let S be the centre of circle C_{0}, R the centre of C_{1}, U the centre of C_{2} and V the centre of C_{3}.
Draw $V T$ perpendicular to $P Q$. Let $x=T U, h=T V$ and r the radius of C_{3}.
Now consider the 3 right-angled triangles:

1. $R T V$ with $R V=\frac{1}{3}+r$, since the radius of C_{1} is $\frac{1}{3}, R T=\frac{1}{2}-x$ and $V T=h$
2. $S T V$ with $S T=\frac{1}{3}-x$ since radii of C_{0} and C_{2} are $\frac{1}{2}$ and $\frac{1}{6}$ respectively, $S V=\frac{1}{2}-r$
3. $T U V$ with $U V=\frac{1}{6}+r$

Now use Pythagoras' Theorem with these triangles to form three equations with three unknowns, h, r, x. Use two of these equations to eliminate h; then use one of these equations together with the remaining equation to eliminate h again. Now there are two equations with two unknowns, r and x. Eliminate x to find $r=\frac{1}{7}$. For the record, $h=\frac{2}{7}$ and $x=\frac{5}{42}$.

This problem finds the centre and radius of the first circle in a Pappus Chain. The area enclosed between circles C_{0}, C_{1} and C_{2} in the top semi-circle, without C_{3}, is called an arbelos.

Extension: (1) Research Pappus chain and abelos. (2) Find an expression for the radius of C_{3} when the radii of C_{1} and C_{2} are in the ratio $p: 1$.

