Connection between two standard integrals

Dr Richard Kenderdine
 Kenderdine Maths Tutoring
 24 May 2016

The standard integrals $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x$ and $\int \frac{1}{\sqrt{x^{2}+1}} d x=\log \left[x+\sqrt{x^{2}+1}\right]$ appear to be unrelated but this can be shown to not be the case.

The complex exponential and hyperbolic functions
We have the identity

$$
\begin{equation*}
\mathbb{e}^{\dot{i} \theta}=\cos \theta+\dot{\mathbb{1}} \sin \theta \tag{1}
\end{equation*}
$$

and its twin

$$
\begin{equation*}
\mathbb{e}^{-\dot{i} \theta}=\cos \theta-\dot{i} \sin \theta \tag{2}
\end{equation*}
$$

giving the result

$$
\begin{equation*}
\cos \theta=\frac{e^{\dot{i} \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \dot{i} \theta}-\mathbb{e}^{-i \theta}}{2 \dot{i}} \tag{3}
\end{equation*}
$$

$\operatorname{Sin} \theta$ and $\cos \theta$ are parameters for the circle; corresponding parameters for the hyperbola are $\sinh \theta$ and $\cosh \theta$, defined as

$$
\begin{equation*}
\cosh \theta=\frac{\mathbb{e}^{\theta}+\mathbb{e}^{-\theta}}{2} \quad \text { and } \quad \sinh \theta=\frac{e^{\theta}-\mathbb{e}^{-\theta}}{2} \tag{4}
\end{equation*}
$$

We can connect sin and sinh:

$$
\begin{equation*}
\sin (\dot{i} \theta)=\frac{e^{-\theta}-e^{\theta}}{2 \dot{i}}=\frac{\dot{\mathbb{i}}^{2}\left(\mathbb{e}^{\theta}-\mathbb{e}^{-\theta}\right)}{2 \dot{i}}=\frac{\dot{i}\left(e^{\theta}-e^{-\theta}\right)}{2}=\dot{i} \sinh \theta \tag{5}
\end{equation*}
$$

Connecting the standard integrals
Now consider $\int \frac{1}{\sqrt{x^{2}+1}} d x$ which we write as $\int \frac{1}{\sqrt{1+x^{2}}} d x$
Using $1+x^{2}=1-i^{2} x^{2}=1-(i x)^{2}$ we have

$$
\begin{equation*}
\int \frac{1}{\sqrt{1+x^{2}}} d x=\int \frac{1}{\sqrt{1-(\dot{i} \mathbf{x})^{2}}} d \mathbf{x}=\frac{1}{\dot{i}} \sin ^{-1}(\text { in } x) \tag{6}
\end{equation*}
$$

Now if $\theta=\frac{1}{i} \sin ^{-1}(\dot{j} x)$ then $x=\frac{1}{i} \sin (j \theta)=\sinh \theta$ from (5). Hence

$$
\begin{equation*}
\int \frac{1}{\sqrt{1+x^{2}}} d x=\sinh ^{-1} x \tag{7}
\end{equation*}
$$

Using the definition of $\sinh \theta$ in (4) we have

$$
\begin{equation*}
\sinh \theta=x \rightarrow \frac{e^{\ominus}-e^{-\theta}}{2}=x \tag{8}
\end{equation*}
$$

ie

$$
\begin{equation*}
e^{\theta}-\frac{1}{e^{\theta}}=2 x \tag{9}
\end{equation*}
$$

so

$$
\begin{equation*}
e^{2 \theta}-2 x e^{\theta}-1=0 \tag{10}
\end{equation*}
$$

The solution to this quadratic is found firstly from

$$
\begin{align*}
e^{\theta} & =\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \tag{11}\\
& =x \pm \sqrt{x^{2}+1}
\end{align*}
$$

Since $e^{\theta}>0$ we only have one solution, $x+\sqrt{x^{2}+1}$, and then taking logs we have

$$
\begin{equation*}
\theta=\log \left[x+\sqrt{x^{2}+1}\right] \tag{12}
\end{equation*}
$$

Putting it together
We have finally, from (6) and (12)

$$
\begin{equation*}
\int \frac{1}{\sqrt{1+x^{2}}} d x=\frac{1}{\text { i }} \sin ^{-1}(\text { ii } x)=\theta=\log \left[x+\sqrt{x^{2}+1}\right] \tag{13}
\end{equation*}
$$

also from (7)

$$
\begin{equation*}
\int \frac{1}{\sqrt{1+x^{2}}} d x=\sinh ^{-1} x \tag{14}
\end{equation*}
$$

so

$$
\begin{equation*}
\int \frac{1}{\sqrt{1+x^{2}}} d \mathbf{x}=\log \left[x+\sqrt{x^{2}+1}\right]=\sinh ^{-1} x \tag{15}
\end{equation*}
$$

