Vectors in 3D - equations of planes

Dr Richard Kenderdine

The Cambridge text briefly describes how to obtain the equation of a plane given the coordinates of three points P_{0}, P_{1} and P_{2}. Let \boldsymbol{u} be the vector $\overrightarrow{\boldsymbol{P}_{0} \boldsymbol{P}_{\mathbf{1}}}$ and \boldsymbol{v} be the vector $\overrightarrow{\boldsymbol{P}_{0} \boldsymbol{P}_{2}}$. Then the equation of the plane containing the three points is given by

$$
r=P_{0}+\lambda \boldsymbol{u}+\mu \boldsymbol{v}
$$

There is another methd that uses a point in the plane and a vector normal to the plane.
In the following derivations we use the fixed point $(2,1,4)$ and normal vector (1, $\mathbf{2}, 3$).
(A) Equation using a point and two vectors in the plane normal to another vector

The equation will be of the form $P_{0}+\lambda \boldsymbol{u}+\mu \boldsymbol{v}$

Let $\boldsymbol{u}=(a, b, c)$ and $\boldsymbol{v}=(d, e, f)$ where \boldsymbol{u} and \boldsymbol{v} are perpendicular to (1, $-2,3)$
We can choose the values for two of the components of each of \boldsymbol{u} and \boldsymbol{v} and then calculate the third such that the dot product is 0 .

We have $u .(1,-2,3)=a-2 b+3 c=0$ and letting $b=1, c=1$ yields $a=-1$, Similarly, letting $f=2$ and $e=1$ yields $d=-4$.

Thus $(-1,1,1)$ and $(-4,1,2)$ are vectors in the plane perpendicular to $(1,-2,3)$ and therefore the equation of the plane through $(2,1,4)$ is

$$
r=\left(\begin{array}{l}
2 \tag{1}\\
1 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
-4 \\
1 \\
2
\end{array}\right)
$$

(B) Using a point and a normal to the plane

Let $P(x, y, z)$ be an arbitrary point in the plane, $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ a fixed point in the plane and \boldsymbol{n} be a vector normal to the plane. Then the vector $\overrightarrow{P_{0} P}$ is perpendicular to n.

Thus $\boldsymbol{n} \cdot \stackrel{\rightharpoonup}{\boldsymbol{P}_{0} \boldsymbol{P}}=0$ and therfore the equation of the plane is, using $\boldsymbol{n}=(a, b, c)$

$$
(a, b, c),\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

Thus reduces to

$$
a x+b y+c z=k
$$

In our example, using $\boldsymbol{n}=(1,-2,3)$, we have $x-2 y+3 z=k$ and using $(2,1,4)$ in the plane we calculate $2-2(1)+3(4)=12$ yielding the equation of the plane as

$$
\begin{equation*}
x-2 y+3 z=12 \tag{2}
\end{equation*}
$$

Note that we did not need to use the dot product as the coefficients are just the components of the normal vector.

That is, if (a, b, c) is a normal vector to the plane then the equation of the plane takes the form

$$
a x+b y+c z=k
$$

where k is determined by substituting the coordinates of a point in the plane.
Aside: Suppose we have a line with gradient $\frac{a}{b}$ then the equation of the line is $y=\frac{a}{b} x+c$ or $a x-b y=k$. The gradient has horizontal component b and vertical component a. The normal therefore has horizontal component a and vertical component $-b$.

Thus the components of the normal are the coefficients for the equation of the line.

(C) Connecting the two methods

$\ln (1)$, let $\lambda=1$ and $\mu=1$, then $r=(-3,3,7)$. Check that this satisfies (2):

$$
-3-2(3)+3(7)=12
$$

Now use $\lambda=2$ and $\mu=-1$, then $r=(4,2,4)$. Check that this satisfies (2):

$$
4-2(2)+3(4)=12
$$

Thus two arbitrarily chosen values for λ and μ in Eqn (1) yield points in the plane defined by (2) as expected.

Now do the reverse by elimating the parameters λ and μ in Eqn (1). Start with the parametric equations

$$
x=2-\lambda-4 \mu \quad y=1+\lambda+\mu \quad z=4+\lambda+2 \mu
$$

These yield

$$
x+y=3-3 \mu \quad \text { and } \quad x+z=6-2 \mu \quad \Longrightarrow \mu=3-\frac{1}{2}(x-z)
$$

Then

$$
x+y=3-3\left(3-\frac{1}{2}(x-z)\right) \quad \Longrightarrow \quad x-2 y+3 z=12
$$

