Mathematics

(Chapter – 2) (Polynomials)
(Class – X)

Exercise 2.1

Question 1:

The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

(i)

(ii)

(iii)

(iv)

(v)

(v)

Answer 1:

- (i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
- (ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
- (iii) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.
- (iv) The number of zeroes is 2 as the graph intersects the *x*-axis at 2 points.
- (\mathbf{v}) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
- (vi) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.

Mathematics

(Chapter - 2) (Polynomials) (Class X)

Exercise 2.2

Question 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

$$(i)x^2-2x-8$$

$$(ii)4s^2-4s+1$$

(iii)
$$6x^2 - 3 - 7x$$

$$(iv)4u^2 + 8u$$

$$(v)t^2-15$$

$$(v)t^2-15$$
 $(vi)3x^2-x-4$

Answer 1:

(i)
$$x^2-2x-8=(x-4)(x+2)$$

The value of $x^2 - 2x - 8$ is zero when x - 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = -2

Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2.

Sum of zeroes =
$$4-2=2=\frac{-(-2)}{1}=\frac{-(\text{Coefficient of }x)}{\text{Coefficient of }x^2}$$

Product of zeroes
$$= 4 \times (-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(ii) $4s^2 - 4s + 1 = (2s - 1)^2$

The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., $s = \frac{1}{2}$ Therefore,

the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

Sum of zeroes =
$$\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{(\text{Coefficient of } s^2)}$$

Product of zeroes $=\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$

(iii)
$$6x^2-3-7x=6x^2-7x-3=(3x+1)(2x-3)$$

The value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e.,

1

$$x = \frac{-1}{3}$$
 or $x = \frac{3}{2}$

Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$.

Sum of zeroes = $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeroes = $\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(iv)
$$4u^2 + 8u = 4u^2 + 8u + 0$$

= $4u(u+2)$

The value of $4u^2 + 8u$ is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2

Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2.

Sum of zeroes = $0 + (-2) = -2 = \frac{-(8)}{4} = \frac{-(\text{Coefficient of } u)}{\text{Coefficient of } u^2}$

Product of zeroes = $0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$

(v)
$$t^2 - 15$$

= $t^2 - 0t - 15$
= $(t - \sqrt{15})(t + \sqrt{15})$

The value of t^2-15 is zero when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when $t=\sqrt{15}$ or $t=-\sqrt{15}$

Therefore, the zeroes of $t^2 - 15$ are $\sqrt{15}$ and $-\sqrt{15}$.

Sum of zeroes =
$$\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(\text{Coefficient of } t)}{(\text{Coefficient of } t^2)}$$

Product of zeroes =
$$(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(vi)
$$3x^2 - x - 4$$

= $(3x - 4)(x + 1)$

The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 or x + 1 = 0, i.e.,

when
$$x = \frac{4}{3}$$
 or $x = -1$

Therefore, the zeroes of $3x^2 - x - 4$ are 4/3 and -1.

Sum of zeroes =
$$\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of zeroes
$$=\frac{4}{3}(-1) = \frac{-4}{3} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
,-1

(ii)
$$\sqrt{2}, \frac{1}{3}$$

(iii)
$$0, \sqrt{5}$$

$$\left(v\right) \quad -\frac{1}{4}, \frac{1}{4}$$

Answer 2:

(i)
$$\frac{1}{4}$$
,-1

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

$$\alpha \beta = -1 = \frac{-4}{4} = \frac{c}{a}$$
If $a = 4$, then $b = -1$, $c = -4$

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

$$\alpha \beta = \frac{1}{3} = \frac{c}{a}$$
If $a = 3$, then $b = -3\sqrt{2}$, $c = 1$

Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$.

(iii)
$$0, \sqrt{5}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$
If $a = 1$, then $b = 0$, $c = \sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$
If $a = 1$, then $b = -1$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - x + 1$.

$$\left(v\right) \quad -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$

$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$
If $a = 4$, then $b = 1$, $c = 1$

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4, 1

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

$$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$
If $a = 1$, then $b = -4$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - 4x + 1$.

Mathematics

(Chapter - 2) (Polynomials) (Class - X)

Exercise 2.3

Question 1:

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$
(iii) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Answer 1:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$

 $q(x) = x^2 - 2$

$$\begin{array}{r}
x-3 \\
x^2-2 \overline{\smash)x^3-3x^2+5x-3} \\
x^3 -2x \\
\underline{- + \\
-3x^2+7x-3 \\
-3x^2 +6 \\
\underline{+ - \\
7x-9}
\end{array}$$

Quotient = x - 3

Remainder = 7x - 9

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0 \cdot x^3 - 3x^2 + 4x + 5$$

 $q(x) = x^2 + 1 - x = x^2 - x + 1$

$$\begin{array}{r} x^2 + x - 3 \\
x^2 - x + 1 \overline{\smash)} \ x^4 + 0.x^3 - 3x^2 + 4x + 5 \\
x^4 - x^3 + x^2 \\
\underline{- + -} \\
x^3 - 4x^2 + 4x + 5 \\
x^3 - x^2 + x \\
\underline{- + -} \\
- 3x^2 + 3x + 5 \\
\underline{- 3x^2 + 3x - 3} \\
\underline{+ - +} \\
8
\end{array}$$

Quotient = $x^2 + x - 3$

Remainder = 8

(iii)
$$p(x) = x^4 - 5x + 6 = x^4 + 0.x^2 - 5x + 6$$

 $q(x) = 2 - x^2 = -x^2 + 2$
 $-x^2 + 2$
 $-x^2 + 2$
 $x^4 + 0.x^2 - 5x + 6$
 $x^4 - 2x^2$
 $-x^2 - 5x + 6$
 $2x^2 - 4$
 $-x^2 - 4$

-5x+10

Ouotient =
$$-x^2 - 2$$

Remainder = -5x + 10

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$$

(ii)
$$x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$$

(iii)
$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

Answer 2:

(i)
$$t^2-3$$
, $2t^4+3t^3-2t^2-9t-12$

$$t^{2}-3 = t^{2}+0.t-3$$

$$2t^{2}+3t+4$$

$$t^{2}+0.t-3) 2t^{4}+3t^{3}-2t^{2}-9t-12$$

$$2t^{4}+0.t^{3}-6t^{2}$$

$$---+$$

$$3t^{3}+4t^{2}-9t-12$$

$$3t^{3}+0.t^{2}-9t$$

$$---+$$

$$4t^{2}+0.t-12$$

$$4t^{2}+0.t-12$$

$$---+$$

$$0$$

Since the remainder is 0,

Hence,
$$t^2 - 3$$
 is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

$$\begin{array}{r}
3x^2 - 4x + 2 \\
x^2 + 3x + 1 \overline{\smash)3x^4 + 5x^3 - 7x^2 + 2x + 2} \\
3x^4 + 9x^3 + 3x^2 \\
- - - \\
-4x^3 - 10x^2 + 2x + 2 \\
-4x^3 - 12x^2 - 4x \\
+ + + \\
2x^2 + 6x + 2 \\
2x^2 + 6x + 2
\end{array}$$

Since the remainder is 0,

Hence,
$$x^2 + 3x + 1$$
 is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

Since the remainder $\neq 0$,

Hence, x^3-3x+1 is not a factor of $x^5-4x^3+x^2+3x+1$.

Question 3:

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are

$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$

Answer 3:

$$p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ $\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^2 - \frac{5}{3}\right) \text{ is a factor of } 3x^4 + 6x^3 - 2x^2 - 10x - 5$

Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$

$$x^{2} + 0.x - \frac{5}{3}) \frac{3x^{2} + 6x + 3}{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$$

$$3x^{4} + 0x^{3} - 5x^{2}$$

$$- - +$$

$$6x^{3} + 3x^{2} - 10x - 5$$

$$6x^{3} + 0x^{2} - 10x$$

$$- - +$$

$$3x^{2} + 0x - 5$$

$$3x^{2} + 0x - 5$$

$$- - +$$

$$0$$

$$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = \left(x^{2} - \frac{5}{3}\right) \left(3x^{2} + 6x + 3\right)$$

$$= 3\left(x^{2} - \frac{5}{3}\right) \left(x^{2} + 2x + 1\right)$$

We factorize $x^2 + 2x + 1$ = $(x+1)^2$

Therefore, its zero is given by x + 1 = 0 or x = -1As it has the term $(x+1)^2$, therefore, there will be 2 zeroes at x = -1.

Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$ -1 and -1.

Question 4:

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Answer 4:

$$p(x) = x^3 - 3x^2 + x + 2$$
 (Dividend)

$$g(x) = ?$$
 (Divisor)

Quotient =
$$(x - 2)$$

Remainder =
$$(-2x + 4)$$

 $Dividend = Divisor \times Quotient + Remainder$

$$x^3 - 3x^2 + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$

$$x^3-3x^2+x+2+2x-4=g(x)(x-2)$$

$$x^3 - 3x^2 + 3x - 2 = g(x)(x-2)$$

g(x) is the quotient when we divide (x^3-3x^2+3x-2) by (x-2)

$$\therefore g(x) = (x^2 - x + 1)$$

Question 5:

Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

(i)
$$\deg p(x) = \deg q(x)$$

(ii)
$$\deg q(x) = \deg r(x)$$

(iii) deg
$$r(x) = 0$$

Answer 5:

According to the division algorithm, if p(x) and g(x) are two polynomials with $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$,

where r(x) = 0 or degree of r(x) < degree of g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) deg $p(x) = \deg q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

Let us assume the division of $6x^2 + 2x + 2$ by 2.

Here,
$$p(x) = 6x^2 + 2x + 2$$

$$q(x) = 2$$

$$q(x) = 3x^2 + x + 1$$
and $r(x) = 0$

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm, $p(x) = g(x) \times q(x) + r(x)$

$$6x^2 + 2x + 2 = (2)(3x^2 + x + 1) + 0$$

Thus, the division algorithm is satisfied.

(ii) $\deg q(x) = \deg r(x)$

Let us assume the division of $x^3 + x$ by x^2 ,

Here,
$$p(x) = x^3 + x g(x) = x^2 q(x) = x$$
 and $r(x) = x$

Clearly, the degree of q(x) and r(x) is the same i.e., 1. Checking for division algorithm, $p(x) = g(x) \times q(x) + r(x)$

$$x^3 + x = (x^2) \times x + x \times^3 + x = x^3 + x$$

Thus, the division algorithm is satisfied.

(iii)deg
$$r(x) = 0$$

Degree of remainder will be 0 when remainder comes to a constant.

Let us assume the division of $x^3 + 1$ by x^2 .

Here,
$$p(x) = x^3 + 1$$
 $g(x) = x^2$ $q(x) = x$ and $r(x) = 1$

Clearly, the degree of r(x) is 0. Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x) x^3 + 1 = (x^2) \times x + 1 x^3 + 1 = x^3 + 1$$

Thus, the division algorithm is satisfied.

Mathematics

(Chapter – 2) (Polynomials)
(Class – X)

Exercise 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2,1,1

Answer 1:

(i)
$$p(x) = 2x^3 + x^2 - 5x + 2$$
.

Zeroes for this polynomial are $\frac{1}{2}$, 1, -2

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$$
$$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$
$$= 0$$

$$p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$$
$$= 0$$

$$p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$$

= -16 + 4 + 10 + 2 = 0

Therefore, $\frac{1}{2}$, 1, and -2 are the zeroes of the given polynomial. Comparing the given polynomial with $ax^3 + bx^2 + cx + d$,

We can take
$$\alpha = \frac{1}{2}$$
, $\beta = 1$, $\gamma = -2$
 $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$
 $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$
 $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii)
$$p(x) = x^3 - 4x^2 + 5x - 2$$

Zeroes for this polynomial are 2, 1, 1.

$$p(2) = 2^{3} - 4(2^{2}) + 5(2) - 2$$

$$= 8 - 16 + 10 - 2 = 0$$

$$p(1) = 1^{3} - 4(1)^{2} + 5(1) - 2$$

$$= 1 - 4 + 5 - 2 = 0$$

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$,

we obtain
$$a = 1$$
, $b = -4$, $c = 5$, $d = -2$.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes =
$$2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$$

Multiplication of zeroes taking two at a time

= (2)(1) + (1)(1) + (2)(1) = 2 + 1 + 2 = 5 =
$$\frac{(5)}{1} = \frac{c}{a}$$

Multiplication of zeroes =
$$2 \times 1 \times 1 = 2$$
 = $\frac{-(-2)}{1} = \frac{-d}{a}$

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Answer 2:

Let the polynomial be $ax^3 + bx^2 + cx + d$ and the zeroes be α, β , and γ

It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$

If a = 1, then b = -2, c = -7, d = 14

Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$.

Question 3:

If the zeroes of polynomial, x^3-3x^2+x+1 are a-b,a,a+b find a and b.

Answer 3:

$$p(x) = x^3 - 3x^2 + x + 1$$

Zeroes are a - b, a + a + b

Comparing the given polynomial with $px^3 + qx^2 + rx + t$, we obtain

p = 1, q = -3, r = 1, t = 1

Sum of zeroes = a - b + a + a + b

$$\frac{-q}{p} = 3a$$

$$\frac{-(-3)}{1} = 3a$$

$$3 = 3a$$

$$a = 1$$

The zeroes are 1-b, 1, 1+b

Multiplication of zeroes = 1(1-b)(1+b)

$$\frac{-t}{p} = 1 - b^2$$

$$\frac{-1}{1} = 1 - b^2$$

$$1 - b^2 = -1$$

$$1 + 1 = b^2$$

$$b = \pm \sqrt{2}$$

Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$

Question 4:

]It two zeroes of the polynomial , $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$ find other zeroes.

Answer 4:

Given $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of the given polynomial.

So, $(2 + \sqrt{3})(2 - \sqrt{3})$ is a factor of polynomial.

Therefore, $[x - (2 + \sqrt{3})][x - (2 - \sqrt{3})] = x^2 + 4 - 4x - 3$

 $= x^2 - 4x + 1$ is a factor of the given polynomial

For finding the remaining zeroes of the given polynomial, we will find

$$\begin{array}{r}
x^2 - 2x - 35 \\
x^2 - 4x + 1 \overline{\smash)} x^4 - 6x^3 - 26x^2 + 138x - 35 \\
x^4 - 4x^3 + x^2 \\
\underline{\qquad - + -} \\
-2x^3 - 27x^2 + 138x - 35 \\
-2x^3 + 8x^2 - 2x \\
\underline{\qquad + - +} \\
-35x^2 + 140x - 35 \\
-35x^2 + 140x - 35 \\
\underline{\qquad + - +} \\
0
\end{array}$$

Clearly,
$$x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

 $(x^2-2x-35)$ is also a factor of the given

It can be observed that polynomial $(x^2-2x-35) = (x-7)(x+5)$

Therefore, the value of the polynomial is also zero when x-7=0 or x+5=0

Or x = 7 or -5

Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial, $x^2 - 2x + k$ the remainder comes out to be x + a, find k and a.

Answer 5:

By division algorithm,

Dividend = Divisor × Quotient + Remainder

Dividend - Remainder = Divisor × Quotient

$$x^4 - 6x^3 + 16x^2 - 25x + 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$$
 will be

divisible by x^2-2x+k .

Let us divide $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ by $x^2 - 2x + k$

$$-$$
 + $(-10+2k)x+(10-a-8k+k^2)$

It can be observed that $(-10+2k)x+(10-a-8k+k^2)$ Will be

0.

Therefore,
$$(-10+2k) = 0$$
 and $(10-a-8k+k^2) = 0$

For
$$(-10+2k) = 0$$
, $2 k = 10$ And thus, $k = 5$

For
$$(10-a-8k+k^2) = 0$$

$$10 - a - 8 \times 5 + 25 = 0$$

$$10 - a - 40 + 25 = 0$$

$$-5-a=0$$

Therefore,
$$a = -5$$

Hence,
$$k = 5$$
 and $a = -5$