11. Differentiation

Exercise 11.1

1. Question

Differentiate the following functions from first principles :
e^{-x}

Answer

We have to find the derivative of e^{-x} with the first principle method, so,
$f(x)=e^{-x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-(x+h)}-e^{-x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{-x}\left(e^{-h}-1\right)(-1)}{h(-1)}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=-e^{-x}$

2. Question

Differentiate the following functions from first principles:
$e^{3 x}$

Answer

We have to find the derivative of $\mathrm{e}^{3 \mathrm{x}}$ with the first principle method, so,
$f(x)=e^{3 x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3(x+h)}-e^{3 x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3 x\left(e^{3 h}-1\right)}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{3 x}\left(e^{3 h}-1\right) 3}{3 h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=3 e^{3 x}$
3. Question

Differentiate the following functions from first principles:
$e^{a x+b}$

Answer

We have to find the derivative of $e^{a x+b}$ with the first principle method, so,
$f(x)=e^{a x+b}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{a(x+h)+b}-e^{a x+b}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{a x+b}\left(e^{a h}-1\right) a}{a h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=a e^{a x+b}$

4. Question

Differentiate the following functions from first principles:
$e^{\cos x}$

Answer

We have to find the derivative of $e^{\cos x}$ with the first principle method, so,
$f(x)=e^{\cos x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos (x+h)}-e^{\cos x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos x}\left(e^{\cos (x+h)-\cos x}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\cos x}\left(e^{\cos (x+h)-\cos x}-1\right)}{\cos (x+h)-\cos x} \frac{\cos (x+h)-\cos x}{h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x} \frac{\cos (x+h)-\cos x}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x} \frac{\cos x \cosh -\sin x \sin h-\cos x}{h}$
[By using $\cos (x+h)=\cos x \cosh -\sin x \sinh]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x(\cos h-1)}{h}-\frac{\sin x \sin h}{h}\right]$
[By using $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and
$\left.\cos 2 x=1-2 \sin ^{2} x\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x\left(-2 \sin ^{2} \frac{h}{2}\right)\left(\frac{h}{4}\right)}{h\left(\frac{h}{4}\right)}-\sin x\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} e^{\cos x}\left[\frac{\cos x\left(-2 \sin ^{2} \frac{h}{2}\right)\left(\frac{h}{4}\right)}{\frac{h^{2}}{2^{2}}}-\sin x\right]$
$f^{\prime}(x)=-e^{\cos x} \sin x$

5. Question

Differentiate the following functions from first principles:
$e^{\sqrt{2 x}}$

Answer

We have to find the derivative of $e^{\sqrt{ } 2 x}$ with the first principle method, so,
$f(x)=e^{\sqrt{ } 2 x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2(x+h)}}-e^{\sqrt{2 x}}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{e}^{\sqrt{2 \mathrm{X}}}\left(\mathrm{e}^{\sqrt{2(\mathrm{x}+\mathrm{h})}-\sqrt{2 \mathrm{X}}-1)}\right.}{\mathrm{h}}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}\left(e^{\sqrt{2(x+h)}-\sqrt{2 x}}-1\right)}{h} \times \frac{\sqrt{2(\mathrm{x}+\mathrm{h})}-\sqrt{2 \mathrm{x}}}{\sqrt{2(\mathrm{x}+\mathrm{h})}-\sqrt{2 \mathrm{x}}}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}}{h} \times(\sqrt{2(x+h)}-\sqrt{2 x}) \times \frac{\sqrt{2(x+h)}+\sqrt{2 x}}{\sqrt{2(x+h)}+\sqrt{2 x}}$
[By rationalising]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{2 x}}}{h} \times \frac{(2(x+h)-2 x)}{\sqrt{2(x+h)}+\sqrt{2 x}}$
$f^{\prime}(x)=\frac{e^{\sqrt{2 X}}}{\sqrt{2 \mathrm{x}}}$

6. Question

Differentiate each of the following functions from the first principal :
$\log \cos x$

Answer

We have to find the derivative of log cosx with the first principle method, so,
$f(x)=\log \cos x$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \cos (x+h)-\log \cos x}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left(\frac{\cos (x+h)}{\cos x}\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left(1+\frac{\cos (x+h)}{\cos x}-1\right)}{h}$
[Adding and subtracting 1]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left(1+\frac{\cos (x+h)-\cos x}{\cos x}\right)}{h}$
[Rationalising]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left(1+\frac{\cos (x+h)-\cos x}{\cos x}\right)}{h} \times \frac{\frac{\cos (x+h)-\cos x}{\cos x}}{\frac{\cos (x+h)-\cos x}{\cos x}}$
[By using $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{\cos (x+h)-\cos x}{\cos x}}{h}$
$\left[\cos C-\cos D=-2 \sin \frac{\mathrm{C}-\mathrm{D}}{2} \sin \frac{\mathrm{C}+\mathrm{D}}{2}\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{-2 \sin \frac{2 x+h}{2} \sin \frac{h}{2}}{\cos x}}{\frac{2 h}{2}}\left[\right.$ By using $\left.\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-2 \sin \frac{2 x+h}{2}}{2 \cos x}$
$f^{\prime}(x)=-\tan x$

7. Question

Differentiate each of the following functions from the first principal :
$e^{\sqrt{\cot x}}$

Answer

We have to find the derivative of $e^{\sqrt{\operatorname{cotx}}}$ with the first principle method, so,
$f(x)=e^{\sqrt{\cot x}}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot (x+h)}}-e^{\sqrt{\cot x}}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}\left(e^{\sqrt{\cot (x+h)}-\sqrt{\cot x}}-1\right)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}\left(e^{\sqrt{\cot (x+h)}-\sqrt{\cot x}}-1\right)}{h} \times \frac{(\sqrt{\cot (x+h)}-\sqrt{\cot x})}{\sqrt{\cot (x+h)}-\sqrt{\cot x}}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}}{h} \times(\sqrt{\cot (x+h)}-\sqrt{\cot x}) \times \frac{(\sqrt{\cot (x+h)}+\sqrt{\cot x)}}{\sqrt{\cot (x+h)}+\sqrt{\cot x}}$
[Rationalizing]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}}{h} \times(\cot (x+h)-\cot x) \times \frac{1}{\sqrt{\cot (x+h)}+\sqrt{\cot x}}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}}{h} \times \frac{\cos (x+h) \sin x-\sin (x+h) \cos x}{\sin x \sin (x+h)} \times \frac{1}{\sqrt{\cot (x+h)}+\sqrt{\cot x}}$
$[\sin A \cos B-\cos A \sin B=\sin (A-B)]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}}{h} \times \frac{\sin (x-x-h)}{\sin x \sin (x+h)} \times \frac{1}{\sqrt{\cot (x+h)}+\sqrt{\cot x}}$
[By using $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{\sqrt{\cot x}}}{\sin x \sin (x+h)} \times \frac{-1}{\sqrt{\cot (x+h)}+\sqrt{\cot x}}$
$f^{\prime}(x)=\frac{-\operatorname{cosec}^{2} x e^{\sqrt{\cot x}}}{2 \sqrt{\cot x}}$

8. Question

Differentiate each of the following functions from the first principal :
$x^{2} e^{x}$

Answer

We have to find the derivative of $x^{2} e^{x}$ with the first principle method, so,
$f(x)=x^{2} e^{x}$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2} e^{(x+h)}-x^{2} e^{x}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left(x^{2}+h^{2}+2 h x\right) e^{(x+h)}-x^{2} e^{x}}{h}$
[By using $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2} e^{x}\left\{\left(h^{2}+2 h x+1\right) e^{(h)}-1\right\}}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x^{2} e^{x}\left(e^{h}-1\right)}{h}+\lim _{h \rightarrow 0} \frac{e^{(x+h)}\left[h^{2}+2 h x\right]}{h}$
[By using $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$]
$f^{\prime}(x)=x^{2} e^{x}+\lim _{h \rightarrow 0} e^{(x+h)}[h+2 x]$
$f^{\prime}(x)=x^{2} e^{x}+2 x e^{x}$

9. Question

Differentiate each of the following functions from the first principal :
$\log \operatorname{cosec} x$

Answer

We have to find the derivative of log cosec x with the first principle method, so,
$f(x)=\log \operatorname{cosec} x$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \operatorname{cosec}(x+h)-\log \operatorname{cosec} x}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \sin x-\log \sin (x+h)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \frac{\sin x}{\sin (x+h)}}{h}$
[By using $\log a-\log b=\log \frac{a}{b}$]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left[1+\frac{\sin x}{\sin (x+h)}-1\right]}{h}$
[adding and subtracting 1]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left[1+\frac{\sin x-\sin (x+h)}{\sin (x+h)}\right]}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\log \left[1+\frac{\sin x-\sin (x+h)}{\sin (x+h)}\right]}{h} \times \frac{\frac{\sin x-\sin (x+h)}{\sin (x(x h)}}{\frac{\sin x-\sin (x) h)}{\sin (x+h)}}$
[Rationalising]
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin x-\sin (x+h)}{h \sin (x+h)}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 \cos \frac{2 x+h}{2} \sin \frac{-h}{2}}{h \sin (x+h)}$
$\left[\sin C-\sin D=2 \sin \frac{C-D}{2} \cos \frac{C+D}{2}\right]$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-2 \cos \frac{2 x+h}{2} \sin \frac{-h}{2}}{(-1) h \sin (x+h)}$
[By using $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$]
$f^{\prime}(x)=-\cot x$

10. Question

Differentiate each of the following functions from the first principal :
$\sin ^{-1}(2 x+3)$

Answer

We have to find the derivative of $\sin ^{-1}(2 x+3)$ with the first principle method, so,
$f(x)=\sin ^{-1}(2 x+3)$
by using the first principle formula, we get,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin ^{-1}(2[x+h]+3)-\sin ^{-1}(2 x+3)}{h}$
Let $\sin ^{-1}[2(x+h)+3]=A$ and $\sin ^{-1}(2 x+3)=B$, so,
$\sin A=[2(x+h)+3]$ and $\sin B=(2 x+3)$,
$2 h=\sin A-\sin B$, when $h \rightarrow 0$ then $\sin A \rightarrow \sin B$ we can also say that $\mathbf{A} \rightarrow \mathbf{B}$ and hence $A-B \rightarrow 0$,
$f^{\prime}(x)=\lim _{A-B \rightarrow 0} \frac{2(A-B)}{\sin A-\sin B}$
$f^{\prime}(x)=\lim _{A-B \rightarrow 0} \frac{2(A-B)}{2 \sin ^{A-B} \frac{B}{2} \cos \frac{A+B}{2}}$
$\left[\sin C-\sin D=2 \sin \frac{\mathrm{C}-\mathrm{D}}{2} \cos \frac{\mathrm{C}+\mathrm{D}}{2}\right.$]
$f^{\prime}(x)=\lim _{A-B \rightarrow 0} \frac{2}{1 \cos ^{\frac{A+B}{2}}}$
[By using $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$]
$f^{\prime}(x)=\frac{2}{\cos B}$
$f^{\prime}(x)=\frac{2}{\cos \left[\sin ^{-1}(2 x+3)\right]}$
[By using Pythagoras theorem, in which $\mathrm{H}=1$ and $\mathrm{P}=2 \mathrm{x}+3$, so, we have to find B , which comes out to be $\sqrt{1-(2 \mathrm{x}+3)^{2}}$ by the relation $\left.\mathrm{H}^{2}=\mathrm{P}^{2}+\mathrm{B}^{2}\right]$
$f^{\prime}(x)=\frac{2}{\sqrt{1-(2 x+3)^{2}}}$

Exercise 11.2

1. Question

Differentiate the following functions with respect to x :
$\sin (3 x+5)$

Answer

Let $y=\sin (3 x+5)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (3 x+5)]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5) \frac{d}{d x}(3 x+5)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)\left[\frac{d}{d x}(3 x)+\frac{d}{d x}(5)\right]$
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)\left[3 \frac{d}{d x}(x)+\frac{d}{d x}(5)\right]$
However, $\frac{d}{d x}(x)=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\cos (3 x+5)[3 \times 1+0]$
$\therefore \frac{d y}{d x}=3 \cos (3 x+5)$
Thus, $\frac{d}{d x}[\sin (3 x+5)]=3 \cos (3 x+5)$

2. Question

Differentiate the following functions with respect to x :
$\tan ^{2} \mathrm{x}$
Answer

Let $y=\tan ^{2} x$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{2} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2 \tan ^{2-1} x \frac{d}{d x}(\tan x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=2 \tan x \frac{d}{d x}(\tan x)$
However, $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=2 \tan x\left(\sec ^{2} x\right)$
$\therefore \frac{d y}{d x}=2 \tan x \sec ^{2} x$
Thus, $\frac{d}{d x}\left(\tan ^{2} x\right)=2 \tan x \sec ^{2} x$

3. Question

Differentiate the following functions with respect to x :
$\tan \left(x^{\circ}+45^{\circ}\right)$

Answer

Let $\mathrm{y}=\tan \left(\mathrm{x}^{\circ}+45^{\circ}\right)$
First, we will convert the angle from degrees to radians.
We have $1^{\circ}=\left(\frac{\pi}{180}\right)^{c} \Rightarrow(x+45)^{\circ}=\left[\frac{(x+45) \pi}{180}\right]^{c}$
$\Rightarrow \mathrm{y}=\tan \left[\frac{(\mathrm{x}+45) \pi}{180}\right]$
On differentiating y with respect to x, we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan \left[\frac{(\mathrm{x}+45) \pi}{180}\right]\right\}$
We know $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left[\frac{(x+45) \pi}{180}\right] \frac{d}{d x}\left[\frac{(x+45) \pi}{180}\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(x^{\circ}+45^{\circ}\right) \frac{\pi}{180} \frac{d}{d x}(x+45)$
$\Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)\left[\frac{d}{d x}(x)+\frac{d}{d x}(45)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)[1+0]$
$\therefore \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(x^{\circ}+45^{\circ}\right)$

Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan \left(\mathrm{x}^{\circ}+45^{\circ}\right)\right]=\frac{\pi}{180} \sec ^{2}\left(\mathrm{x}^{\circ}+45^{\circ}\right)$

4. Question

Differentiate the following functions with respect to x :
$\sin (\log x)$

Answer

Let $y=\sin (\log x)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (\log x)]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos (\log x) \frac{d}{d x}(\log x)[$ using chain rule]
However, $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\cos (\log x) \times \frac{1}{x}$
$\therefore \frac{d y}{d x}=\frac{1}{x} \cos (\log x)$
Thus, $\frac{d}{d x}[\sin (\log x)]=\frac{1}{x} \cos (\log x)$

5. Question

Differentiate the following functions with respect to x :
$e^{\sin \sqrt{x}}$

Answer

Let $y=e^{\sin \sqrt{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \frac{d}{d x}(\sin \sqrt{x})$ [using chain rule]
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x} \frac{d}{d x}(\sqrt{x})$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x} \frac{d}{d x}\left(x^{\frac{1}{2}}\right)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=e^{\sin \sqrt{x}} \cos \sqrt{x}\left[\frac{1}{2} x^{\left(\frac{1}{2}-1\right)}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} e^{\sin \sqrt{x}} \cos \sqrt{x} x^{-\frac{1}{2}}$
$\therefore \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} e^{\sin \sqrt{x}} \cos \sqrt{x}$
Thus, $\frac{d}{d x}\left(e^{\sin \sqrt{x}}\right)=\frac{1}{2 \sqrt{x}} e^{\sin \sqrt{x}} \cos \sqrt{x}$

6. Question

Differentiate the following functions with respect to x :
$e^{\tan x}$

Answer

Let $\mathrm{y}=\mathrm{e}^{\tan \mathrm{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan x}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\tan x} \frac{d}{d x}(\tan x)$ [using chain rule]
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\therefore \frac{d y}{d x}=e^{\tan x} \sec ^{2} x$
Thus, $\frac{d}{d x}\left(e^{\tan x}\right)=e^{\tan x} \sec ^{2} x$

7. Question

Differentiate the following functions with respect to x :
$\sin ^{2}(2 x+1)$

Answer

Let $y=\sin ^{2}(2 x+1)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}(2 x+1)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2 \sin ^{2-1}(2 x+1) \frac{d}{d x}[\sin (2 x+1)]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=2 \sin (2 x+1) \frac{d}{d x}[\sin (2 x+1)]$
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=2 \sin (2 x+1) \cos (2 x+1) \frac{d}{d x}(2 x+1)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\sin [2(2 x+1)] \frac{d}{d x}(2 x+1)[\because \sin (2 \theta)=2 \sin \theta \cos \theta]$
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)\left[\frac{d}{d x}(2 x)+\frac{d}{d x}(1)\right]$
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)\left[2 \frac{d}{d x}(x)+\frac{d}{d x}(1)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\sin (4 x+2)[2 \times 1+0]$
$\therefore \frac{d y}{d x}=2 \sin (4 x+2)$
Thus, $\frac{d}{d x}\left[\sin ^{2}(2 x+1)\right]=2 \sin (4 x+2)$

8. Question

Differentiate the following functions with respect to x :
$\log _{7}(2 x-3)$

Answer

Let $y=\log _{7}(2 x-3)$
Recall that $\log _{a} b=\frac{\log b}{\log a}$.
$\Rightarrow \log _{7}(2 x-3)=\frac{\log (2 x-3)}{\log 7}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{\log (2 x-3)}{\log 7}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1}{\log 7}\right) \frac{d}{d x}[\log (2 x-3)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1}{\log 7}\right)\left(\frac{1}{2 x-3}\right) \frac{d}{d x}(2 x-3)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}\left[\frac{d}{d x}(2 x)-\frac{d}{d x}(3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}\left[2 \frac{d}{d x}(x)-\frac{d}{d x}(3)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{(2 x-3) \log 7}[2 \times 1-0]$
$\therefore \frac{d y}{d x}=\frac{2}{(2 x-3) \log 7}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log _{7}(2 \mathrm{x}-3)\right]=\frac{2}{(2 \mathrm{x}-3) \log 7}$

9. Question

Differentiate the following functions with respect to x :
$\tan \left(5 x^{\circ}\right)$

Answer

Let $\mathrm{y}=\tan \left(5 \mathrm{x}^{\circ}\right)$
First, we will convert the angle from degrees to radians.
We have $1^{\circ}=\left(\frac{\pi}{180}\right)^{c} \Rightarrow 5 x^{\circ}=5 \mathrm{x} \times \frac{\pi^{c}}{180}$
$\Rightarrow y=\tan \left(5 x \times \frac{\pi}{180}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\tan \left(5 x \times \frac{\pi}{180}\right)\right]$
We know $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(5 x \times \frac{\pi}{180}\right) \frac{d}{d x}\left(5 x \times \frac{\pi}{180}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(5 x^{\circ}\right) \frac{\pi}{180} \frac{d}{d x}(5 x)$
$\Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(5 x^{\circ}\right)\left[5 \frac{d}{d x}(x)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=\frac{\pi}{180} \sec ^{2}\left(5 x^{\circ}\right)[5]$
$\therefore \frac{d y}{d x}=\frac{5 \pi}{180} \sec ^{2}\left(5 x^{\circ}\right)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan 5 \mathrm{x}^{\circ}\right)=\frac{5 \pi}{180} \sec ^{2}\left(5 \mathrm{x}^{\circ}\right)$

10. Question

Differentiate the following functions with respect to x :
$2^{\mathrm{x}^{3}}$

Answer

Let $y=2^{x^{3}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2^{x^{3}}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\Rightarrow \frac{d y}{d x}=2^{x^{3}} \log 2 \frac{d}{d x}\left(x^{3}\right)$ [using chain rule]
We have $\frac{d}{d x}\left(\mathrm{X}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2^{x^{3}} \log 2 \times 3 x^{3-1}$
$\Rightarrow \frac{d y}{d x}=2^{x^{3}} \log 2 \times 3 x^{2}$
$\therefore \frac{d y}{d x}=2^{x^{3}} 3 x^{2} \log 2$
Thus, $\frac{d}{d x}\left(2^{x^{3}}\right)=2^{x^{3}} 3 x^{2} \log 2$

11. Question

Differentiate the following functions with respect to x :
$3 e^{x}$

Answer

Let $y=3^{e^{x}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{e^{x}}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{e}^{\mathrm{x}}} \log 3 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{e}^{\mathrm{x}}\right)$ [using chain rule]
We have $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=3^{e^{x}} \log 3 \times e^{x}$
$\therefore \frac{d y}{d x}=3 e^{x^{x}} e^{x} \log 3$
Thus, $\frac{d}{d x}\left(3^{e^{x}}\right)=3^{e^{x}} e^{x} \log 3$
12. Question

Differentiate the following functions with respect to x :
$\log _{x} 3$

Answer

Let $y=\log _{x} 3$
Recall that $\log _{\mathrm{a}} \mathrm{b}=\frac{\log \mathrm{b}}{\log \mathrm{a}}$.
$\Rightarrow \log _{\mathrm{x}} 3=\frac{\log 3}{\log \mathrm{x}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\log 3}{\log x}\right)$
$\Rightarrow \frac{d y}{d x}=\log 3 \frac{d}{d x}\left(\frac{1}{\log x}\right)$
$\Rightarrow \frac{d y}{d x}=\log 3 \frac{d}{d x}(\log x)^{-1}$

We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\log 3\left[-1 \times(\log x)^{-1-1}\right] \frac{\mathrm{d}}{\mathrm{dx}}(\log x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=-\log 3(\log x)^{-2} \frac{d}{d x}(\log x)$
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=-\log 3(\log x)^{-2} \times \frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x} \frac{\log 3}{(\log x)^{2}}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x} \frac{\log 3}{(\log x)^{2}} \times \frac{\log 3}{\log 3}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3} \frac{(\log 3)^{2}}{(\log x)^{2}}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3}\left(\frac{\log 3}{\log x}\right)^{2}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x \log 3 \times\left(\frac{\log x}{\log 3}\right)^{2}}$
$\therefore \frac{d y}{d x}=-\frac{1}{x \log 3\left(\log _{3} x\right)^{2}}$
Thus, $\frac{d}{d x}\left(\log _{x} 3\right)=-\frac{1}{x \log 3\left(\log _{3} x\right)^{2}}$

13. Question

Differentiate the following functions with respect to x :
$3^{x^{2}+2 x}$

Answer

Let $y=3^{x^{2}+2 x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{2}+2 x}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3 \frac{d}{d x}\left(x^{2}+2 x\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3\left[\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3\left[\frac{d}{d x}\left(x^{2}\right)+2 \frac{d}{d x}(x)\right]$
We have $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ and $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3[2 x+2 \times 1]$
$\Rightarrow \frac{d y}{d x}=3^{x^{2}+2 x} \log 3(2 x+2)$
$\therefore \frac{d y}{d x}=(2 x+2) 3^{x^{2}+2 x} \log 3$
Thus, $\frac{d}{d x}\left(3^{x^{2}+2 x}\right)=(2 x+2) 3^{x^{2}+2 x} \log 3$

14. Question

Differentiate the following functions with respect to x :
$\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$

Answer

Let $y=\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{\frac{1}{2}} \frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}}{} \mathrm{v}^{2}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right) \frac{d}{d x}\left(a^{2}-x^{2}\right)-\left(a^{2}-x^{2}\right) \frac{d}{d x}\left(a^{2}+x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right)\left(\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right)-\left(a^{2}-x^{2}\right)\left(\frac{d}{d x}\left(a^{2}\right)+\frac{d}{d x}\left(x^{2}\right)\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(a^{2}+x^{2}\right)(0-2 x)-\left(a^{2}-x^{2}\right)(0+2 x)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(a^{2}+x^{2}\right)-2 x\left(a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(a^{2}+x^{2}+a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(2 a^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{a^{2}-x^{2}}{a^{2}+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}}{\left(a^{2}+x^{2}\right)^{-\frac{1}{2}}}\left[\frac{-2 x^{2}}{\left(a^{2}+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{-2 \mathrm{xa}^{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)^{-\frac{1}{2}}}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{-\frac{1}{2}+2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 \mathrm{xa}^{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)^{-\frac{1}{2}}}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{\frac{3}{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x^{2}}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=\frac{-2 x^{2}}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{\frac{3}{2}} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}$
Thus, $\frac{d}{d x}\left(\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}\right)=\frac{-2 x a^{2}}{\left(a^{2}+x^{2}\right)^{\frac{3}{2}} \sqrt{a^{2}-x^{2}}}$

15. Question

Differentiate the following functions with respect to x :
$3^{x \log x}$

Answer

Let $y=3^{x \log x}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(3^{x \log x}\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
$\Rightarrow \frac{d y}{d x}=3^{\mathrm{x} \log \mathrm{x}} \log 3 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x} \log \mathrm{x})$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3 \frac{d}{d x}(x \times \log x)$
Recall that (uv) $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3\left[\log x \frac{d}{d x}(x)+x \frac{d}{d x}(\log x)\right]$

We have $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=3^{\mathrm{x} \log \mathrm{x}} \log 3\left[\log \mathrm{x} \times 1+\mathrm{x} \times \frac{1}{\mathrm{x}}\right]$
$\Rightarrow \frac{d y}{d x}=3^{x \log x} \log 3[\log x+1]$
$\therefore \frac{d y}{d x}=(1+\log x) 3^{x \log x} \log 3$
Thus, $\frac{d}{d x}\left(3^{x \log x}\right)=(1+\log x) 3^{x \log x} \log 3$

16. Question

Differentiate the following functions with respect to x :
$\sqrt{\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}}$

Answer

Let $\mathrm{y}=\sqrt{\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1+\sin x}{1-\sin x}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x) \frac{d}{d x}(1+\sin x)-(1+\sin x) \frac{d}{d x}(1-\sin x)}{(1-\sin x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(\sin x)\right)-(1+\sin x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(\sin x)\right)}{(1-\sin x)^{2}}\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$ and derivative of a constant is 0 .

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x)(0+\cos x)-(1+\sin x)(0-\cos x)}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x) \cos x+(1+\sin x) \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{(1-\sin x+1+\sin x) \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{2 \cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\left(\frac{1+\sin x}{1-\sin x}\right)^{-\frac{1}{2}}\left[\frac{\cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}}}{(1-\sin x)^{-\frac{1}{2}}}\left[\frac{\cos x}{(1-\sin x)^{2}}\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}} \cos x}{(1-\sin x)^{-\frac{1}{2}+2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{(1+\sin x)^{-\frac{1}{2}} \cos x}{(1-\sin x)^{\frac{3}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x)^{1+\frac{1}{2}}(1+\sin x)^{\frac{1}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x)(1-\sin x)^{\frac{1}{2}}(1+\sin x)^{\frac{1}{2}}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \sqrt{(1-\sin x)(1+\sin x)}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \sqrt{1-\sin ^{2} x}} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos \mathrm{x}}{(1-\sin \mathrm{x}) \sqrt{\cos ^{2} \mathrm{x}}}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{\cos x}{(1-\sin x) \cos x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{1-\sin x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{1-\sin x} \times \frac{1+\sin x}{1+\sin x} \\
& \Rightarrow \frac{d y}{d x}=\frac{1+\sin x}{1-\sin ^{2} x} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\sin \mathrm{x}}{\cos ^{2} \mathrm{x}}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{\cos ^{2} x}+\frac{\sin x}{\cos ^{2} x}
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\left(\frac{1}{\cos x}\right)^{2}+\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right)$
$\Rightarrow \frac{d y}{d x}=\sec ^{2} x+\sec x \tan x$
$\therefore \frac{d y}{d x}=\sec x(\sec x+\tan x)$
Thus, $\frac{d}{d x}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right)=\sec x(\sec x+\tan x)$

17. Question

Differentiate the following functions with respect to x :
$\sqrt{\frac{1-x^{2}}{1+x^{2}}}$

Answer

Let $y=\sqrt{\frac{1-x^{2}}{1+x^{2}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1-x^{2}}{1+x^{2}}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{I}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)-\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right)\left(\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right)-\left(1-x^{2}\right)\left(\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right)}{\left(1+x^{2}\right)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{\left(1+x^{2}\right)(0-2 x)-\left(1-x^{2}\right)(0+2 x)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x\left(1+x^{2}+1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x(2)}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1-x^{2}}{1+x^{2}}\right)^{-\frac{1}{2}}\left[\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{-\frac{1}{2}}}\left[\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{-\frac{1}{2}+2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x\left(1-x^{2}\right)^{-\frac{1}{2}}}{\left(1+x^{2}\right)^{\frac{3}{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{\left(1+x^{2}\right)^{\frac{3}{2}}\left(1-x^{2}\right)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=\frac{-2 x}{\left(1+x^{2}\right)^{\frac{3}{2}} \sqrt{1-x^{2}}}$
Thus, $\frac{d}{d x}\left(\sqrt{\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}}\right)=\frac{-2 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{\frac{3}{2}} \sqrt{1-\mathrm{x}^{2}}}$
18. Question

Differentiate the following functions with respect to x :
$(\log \sin x)^{2}$

Answer

Let $y=(\log \sin x)^{2}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left[(\log (\sin x))^{2}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=2(\log (\sin x))^{2-1} \frac{d}{d x}[\log (\sin x)]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=2 \log (\sin x) \frac{d}{d x}[\log (\sin x)]$
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=2 \log (\sin x)\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sin x} \log (\sin x) \frac{d}{d x}(\sin x)$
However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sin x} \log (\sin x) \cos x$
$\Rightarrow \frac{d y}{d x}=2\left(\frac{\cos x}{\sin x}\right) \log (\sin x)$
$\therefore \frac{d y}{d x}=2 \cot x \log (\sin x)$
Thus, $\frac{d}{d x}\left[(\log (\sin x))^{2}\right]=2 \cot x \log (\sin x)$

19. Question

Differentiate the following functions with respect to x :
$\sqrt{\frac{1+x}{1-x}}$

Answer

Let $\mathrm{y}=\sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}$
On differentiating y with respect to x, we get

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{1+x}{1-x}}\right)
$$

$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1+x}{1-x}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x) \frac{d}{d x}(1+x)-(1+x) \frac{d}{d x}(1-x)}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(x)\right)-(1+x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(x)\right)}{(1-x)^{2}}\right]$
However, $\frac{d}{d x}(x)=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)(0+1)-(1+x)(0-1)}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{(1-x)+(1+x)}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{2}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1+x}{1-x}\right)^{-\frac{1}{2}}\left[\frac{1}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{-\frac{1}{2}}}\left[\frac{1}{(1-x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{-\frac{1}{2}+2}}$
$\Rightarrow \frac{d y}{d x}=\frac{(1+x)^{-\frac{1}{2}}}{(1-x)^{\frac{3}{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{(1-x)^{\frac{3}{2}}(1+x)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=\frac{1}{(1-x)^{\frac{3}{2}} \sqrt{1+x}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}\right)=\frac{1}{(1-\mathrm{x})^{\frac{3}{2}} \sqrt{1+\mathrm{x}}}$

20. Question

Differentiate the following functions with respect to x :

$$
\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)
$$

Answer

Let $\mathrm{y}=\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
On differentiating y with respect to x , we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\cos \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$ [using chain rule]
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{r}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right) \frac{d}{d x}\left(1+x^{2}\right)-\left(1+x^{2}\right) \frac{d}{d x}\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)\left(\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right)-\left(1+x^{2}\right)\left(\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right)}{\left(1-x^{2}\right)^{2}}\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{\left(1-x^{2}\right)(0+2 x)-\left(1+x^{2}\right)(0-2 x)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x\left(1-x^{2}\right)+2 x\left(1+x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x\left(1-x^{2}+1+x^{2}\right)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{2 x(2)}{\left(1-x^{2}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\cos \left(\frac{1+x^{2}}{1-x^{2}}\right)\left[\frac{4 x}{\left(1-x^{2}\right)^{2}}\right]$
$\therefore \frac{d y}{d x}=\frac{4 x}{\left(1-x^{2}\right)^{2}} \cos \left(\frac{1+x^{2}}{1-x^{2}}\right)$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)\right]=\frac{4 \mathrm{x}}{\left(1-\mathrm{x}^{2}\right)^{2}} \cos \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$

21. Question

Differentiate the following functions with respect to x :
$\mathrm{e}^{3 \mathrm{x}} \cos (2 \mathrm{x})$

Answer

Let $\mathrm{y}=\mathrm{e}^{3 \mathrm{x}} \cos (2 \mathrm{x})$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{3 x} \cos 2 x\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{3 x} \times \cos 2 x\right)$
Recall that (uv)' $=$ vu' $+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\cos 2 x \frac{d}{d x}\left(e^{3 x}\right)+e^{3 x} \frac{d}{d x}(\cos 2 x)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{d y}{d x}=\cos 2 x\left[e^{3 x} \frac{d}{d x}(3 x)\right]+e^{3 x}\left[-\sin 2 x \frac{d}{d x}(2 x)\right]$ [chain rule]
$\Rightarrow \frac{d y}{d x}=e^{3 x} \cos 2 x\left[\frac{d}{d x}(3 x)\right]-e^{3 x} \sin 2 x\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d y}{d x}=e^{3 x} \cos 2 x\left[3 \frac{d}{d x}(x)\right]-e^{3 x} \sin 2 x\left[2 \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x\left[\frac{d}{d x}(x)\right]-2 e^{3 x} \sin 2 x\left[\frac{d}{d x}(x)\right]$
We have $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x \times 1-2 e^{3 x} \sin 2 x \times 1$
$\Rightarrow \frac{d y}{d x}=3 e^{3 x} \cos 2 x-2 e^{3 x} \sin 2 x$
$\therefore \frac{d y}{d x}=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$
Thus, $\frac{d}{d x}\left(e^{3 x} \cos 2 x\right)=e^{3 x}(3 \cos 2 x-2 \sin 2 x)$

22. Question

Differentiate the following functions with respect to x :
$\sin (\log \sin x)$

Answer

Let $\mathrm{y}=\sin (\log \sin \mathrm{x})$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\sin (\log (\sin \mathrm{x}))]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x)) \frac{d}{d x}[\log (\sin x)]$ [using chain rule]
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\cos (\log (\sin x))\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right][$ using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \frac{d}{d x}(\sin x)$
However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x} \cos (\log (\sin x)) \cos x$
$\Rightarrow \frac{d y}{d x}=\left(\frac{\cos x}{\sin x}\right) \cos (\log (\sin x))$
$\therefore \frac{d y}{d x}=\cot x \cos (\log (\sin x))$
Thus, $\frac{d}{d x}[\sin (\log (\sin x))]=\cot x \cos (\log (\sin x))$

23. Question

Differentiate the following functions with respect to x :
$e^{\tan 3 x}$

Answer

Let $y=e^{\tan 3 x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan 3 x}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\tan 3 x} \frac{d}{d x}(\tan 3 x)$ [using chain rule]
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=e^{\tan 3 x} \sec ^{2} 3 x \frac{d}{d x}(3 x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x \times 1$
$\therefore \frac{d y}{d x}=3 e^{\tan 3 x} \sec ^{2} 3 x$
Thus, $\frac{d}{d x}\left(e^{\tan 3 x}\right)=3 e^{\tan 3 x} \sec ^{2} 3 x$

24. Question

Differentiate the following functions with respect to x :
$e^{\sqrt{\cot x}}$

Answer

Let $y=e^{\sqrt{\cot x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sqrt{\cot x}}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\sqrt{\cot x}} \frac{d}{d x}(\sqrt{\cot x})$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=e^{\sqrt{\cot x}} \frac{d}{d x}\left[(\cot x)^{\frac{1}{2}}\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{X}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\sqrt{\cot x}}\left[\frac{1}{2}(\cot \mathrm{x})^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\cot \mathrm{x})\right][$ using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} e^{\sqrt{\cot x}}(\cot x)^{-\frac{1}{2}} \frac{d}{d x}(\cot x)$

However, $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2} e^{\sqrt{\cot x}}(\cot x)^{-\frac{1}{2}} \operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=-\frac{e^{\sqrt{\cot x}} \operatorname{cosec}^{2} x}{2(\cot x)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=-\frac{e^{\sqrt{\cot x}} \operatorname{cosec}^{2} x}{2 \sqrt{\cot x}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{\sqrt{\cot \mathrm{x}}}\right)=-\frac{\mathrm{e}^{\sqrt{\cot \mathrm{x}} \operatorname{cosec}^{2} \mathrm{x}}}{2 \sqrt{\cot \mathrm{x}}}$

25. Question

Differentiate the following functions with respect to x :
$\log \left(\frac{\sin x}{1+\cos x}\right)$

Answer

Let $y=\log \left(\frac{\sin x}{1+\cos x}\right)$
$\Rightarrow y=\log \left(\frac{\sin 2 \times \frac{x}{2}}{1+\cos 2 \times \frac{x}{2}}\right)$
We have $\sin 2 \theta=2 \sin \theta \cos \theta$ and $1+\cos 2 \theta=2 \cos ^{2} \theta$.
$\Rightarrow y=\log \left(\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)$
$\Rightarrow y=\log \left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)$
$\Rightarrow \mathrm{y}=\log \left(\tan \frac{\mathrm{x}}{2}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\tan \frac{x}{2}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{1}{\tan \frac{\mathrm{x}}{2}}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan \frac{\mathrm{x}}{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\cot \frac{x}{2} \frac{d}{d x}\left(\tan \frac{x}{2}\right)$
We have $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\cot \frac{x}{2} \sec ^{2} \frac{x}{2} \frac{d}{d x}\left(\frac{x}{2}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cot \frac{x}{2} \sec ^{2} \frac{x}{2} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cot \frac{x}{2} \sec ^{2} \frac{x}{2} \times 1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \times \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \times \frac{1}{\cos ^{2} \frac{x}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin 2 \times \frac{x}{2}}[\because \sin 2 \theta=2 \sin \theta \cos \theta]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x}$
$\therefore \frac{d y}{d x}=\operatorname{cosec} x$
Thus, $\frac{d}{d x}\left[\log \left(\frac{\sin x}{1+\cos x}\right)\right]=\operatorname{cosec} x$

26. Question

Differentiate the following functions with respect to x :
$\log \sqrt{\frac{1-\cos x}{1+\cos x}}$
Answer
Let $y=\log \sqrt{\frac{1-\cos x}{1+\cos x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\log \sqrt{\frac{1-\cos x}{1+\cos x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}\left[\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)^{\frac{1}{2}}\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left[\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)^{-\frac{1}{2}} \frac{1}{2}\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}}\left(\frac{1-\cos x}{1+\cos x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)^{-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right) \frac{d}{d x}\left(\frac{1-\cos x}{1+\cos x}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{r}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(\cos x)\right)-(1-\cos x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(\cos x)\right.}{(1+\cos x)^{2}}\right]$
We know $\frac{d}{d x}(\cos x)=-\sin x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x)(0+\sin x)-(1-\cos x)(0-\sin x)}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x) \sin x+(1-\cos x) \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{(1+\cos x+1-\cos x) \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\cos x}{1-\cos x}\right)\left[\frac{2 \sin x}{(1+\cos x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{(1-\cos x)(1+\cos x)}$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{1-\cos ^{2} x}$
$\Rightarrow \frac{d y}{d x}=\frac{\sin x}{\sin ^{2} x}\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x}$
$\therefore \frac{d y}{d x}=\operatorname{cosec} x$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\log \sqrt{\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}}\right)=\operatorname{cosec} \mathrm{x}$

27. Question

Differentiate the following functions with respect to x :
$\tan \left(e^{\sin \mathrm{x}}\right)$
Answer

Let $y=\tan \left(e^{\sin x}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right]$
We know $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \frac{d}{d x}\left(e^{\sin x}\right)$ [using chain rule]
We have $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) e^{\sin x} \frac{d}{d x}(\sin x)$ [using chain rule]
However, $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) e^{\sin x} \cos x$
$\therefore \frac{d y}{d x}=e^{\sin x} \cos x \sec ^{2}\left(e^{\sin x}\right)$
Thus, $\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right]=e^{\sin x} \cos x \sec ^{2}\left(e^{\sin x}\right)$

28. Question

Differentiate the following functions with respect to x :
$\log \left(x+\sqrt{x^{2}+1}\right)$

Answer

Let $\mathrm{y}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}} \frac{d}{d x}\left(x+\sqrt{x^{2}+1}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}\left(\sqrt{x^{2}+1}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}\left(x^{2}+1\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(x)=1$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{2}+1\right)\right][$ using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(1)\right)\right]$
However, $\frac{d}{d x}\left(x^{2}\right)=2 x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(2 x+0)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}} \times 2 x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+x\left(x^{2}+1\right)^{-\frac{1}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[1+\frac{x}{\sqrt{x^{2}+1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+\sqrt{x^{2}+1}}\left[\frac{x+\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}\right]$
$\therefore \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+1}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)\right]=\frac{1}{\sqrt{\mathrm{x}^{2}+1}}$

29. Question

Differentiate the following functions with respect to x :
$\frac{e^{x} \log x}{x^{2}}$

Answer

Let $y=\frac{e^{x} \log x}{x^{2}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x} \log x}{x^{2}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right) \frac{d}{d x}\left(e^{x} \log x\right)-\left(e^{x} \log x\right) \frac{d}{d x}\left(x^{2}\right)}{\left(x^{2}\right)^{2}}$
We have (uv)' = vu' $+u v^{\prime}($ product rule $)$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[\log x \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\log x)\right]-\left(e^{x} \log x\right) \frac{d}{d x}\left(x^{2}\right)}{x^{4}}$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}, \frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}\left(x^{2}\right)=2 x$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[\log x \times e^{x}+e^{x} \times \frac{1}{x}\right]-\left(e^{x} \log x\right) \times 2 x}{x^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}\right)\left[e^{x} \log x+\frac{e^{x}}{x}\right]-2 x e^{x} \log x}{x^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2} e^{x} \log x+x e^{x}-2 x e^{x} \log x}{x^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{x^{2} e^{x} \log x}{x^{4}}+\frac{x e^{x}}{x^{4}}-\frac{2 x e^{x} \log x}{x^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{e^{x} \log x}{x^{2}}+\frac{e^{x}}{x^{3}}-\frac{2 e^{x} \log x}{x^{3}}$
$\Rightarrow \frac{d y}{d x}=\frac{e^{x}}{x^{2}}\left(\log x+\frac{1}{x}-\frac{2 \log x}{x}\right)$
$\therefore \frac{d y}{d x}=e^{x} x^{-2}\left(\log x+\frac{1}{x}-\frac{2}{x} \log x\right)$
Thus, $\frac{d}{d x}\left(\frac{e^{x} \log x}{x^{2}}\right)=e^{x} x^{-2}\left(\log x+\frac{1}{x}-\frac{2}{x} \log x\right)$
30. Question

Differentiate the following functions with respect to x :
$\log (\operatorname{cosec} x-\cot x)$

Answer

Let $y=\log (\operatorname{cosec} x-\cot x)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\log (\operatorname{cosec} x-\cot x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x} \frac{d}{d x}(\operatorname{cosec} x-\cot x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[\frac{d}{d x}(\operatorname{cosec} x)-\frac{d}{d x}(\cot x)\right]$
We know $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$ and $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[-\operatorname{cosec} x \cot x-\left(-\operatorname{cosec}^{2} x\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[-\operatorname{cosec} x \cot x+\operatorname{cosec}^{2} x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}\left[\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\operatorname{cosec} x-\cot x}[(\operatorname{cosec} x-\cot x) \operatorname{cosec} x]$
$\therefore \frac{d y}{d x}=\operatorname{cosec} x$
Thus, $\frac{d}{d x}[\log (\operatorname{cosec} x-\cot x)]=\operatorname{cosec} x$
31. Question

Differentiate the following functions with respect to x :
$\frac{e^{e x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$

Answer

Let $y=\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{I}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{2 x}-e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}+e^{-2 x}\right)-\left(e^{2 x}+e^{-2 x}\right) \frac{d}{d x}\left(e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[\frac{d}{d x}\left(e^{2 x}\right)+\frac{d}{d x}\left(e^{-2 x}\right)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[\frac{d}{d x}\left(e^{2 x}\right)-\frac{d}{d x}\left(e^{-2 x}\right)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[e^{2 x} \frac{d}{d x}(2 x)+e^{-2 x} \frac{d}{d x}(-2 x)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[e^{2 x} \frac{d}{d x}(2 x)-e^{-2 x} \frac{d}{d x}(-2 x)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[2 e^{2 x} \frac{d}{d x}(x)-2 e^{-2 x} \frac{d}{d x}(x)\right]-\left(e^{2 x}+e^{-2 x}\right)\left[2 e^{2 x} \frac{d}{d x}(x)+2 e^{-2 x} \frac{d}{d x}(x)\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}$
$=\frac{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)\left[2 \mathrm{e}^{2 \mathrm{x}} \times 1-2 \mathrm{e}^{-2 \mathrm{x}} \times 1\right]-\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)\left[2 \mathrm{e}^{2 \mathrm{x}} \times 1+2 \mathrm{e}^{-2 \mathrm{x}} \times 1\right]}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{2 x}-e^{-2 x}\right)\left[2 e^{2 x}-2 e^{-2 x}\right]-\left(e^{2 x}+e^{-2 x}\right)\left[2 e^{2 x}+2 e^{-2 x}\right]}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(e^{2 x}-e^{-2 x}\right)\left(e^{2 x}-e^{-2 x}\right)-2\left(e^{2 x}+e^{-2 x}\right)\left(e^{2 x}+e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left[\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}-\left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)^{2}\right]}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(e^{2 x}-e^{-2 x}+e^{2 x}+e^{-2 x}\right)\left(e^{2 x}-e^{-2 x}-e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(2 e^{2 x}\right)\left(-2 e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-8 e^{2 x+(-2 x)}}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\therefore \frac{d y}{d x}=\frac{-8}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
Thus, $\frac{d}{d x}\left(\frac{e^{2 x}+e^{-2 x}}{e^{2 X}-e^{-2 x}}\right)=\frac{-8}{\left(e^{2 X}-e^{-2 X}\right)^{2}}$

32. Question

Differentiate the following functions with respect to x :
$\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$

Answer

Let $y=\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)} \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right) \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{I}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right) \frac{d}{d x}\left(x^{2}+x+1\right)-\left(x^{2}+x+1\right) \frac{d}{d x}\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right)\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)\right)-\left(x^{2}+x+1\right)\left(\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x)+\frac{d}{d x}(1)\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
We know $\frac{d}{d x}\left(x^{2}\right)=2 x, \frac{d}{d x}(x)=1$ and derivative of constant is 0 .
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{\left(x^{2}-x+1\right)(2 x+1+0)-\left(x^{2}+x+1\right)(2 x-1+0)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{(2 x+1)\left(x^{2}-x+1\right)-(2 x-1)\left(x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x\left(x^{2}-x+1\right)+\left(x^{2}-x+1\right)-2 x\left(x^{2}+x+1\right)+\left(x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x\left(x^{2}-x+1-x^{2}-x-1\right)+\left(x^{2}-x+1+x^{2}+x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2 x(-2 x)+\left(2 x^{2}+2\right)}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{-4 x^{2}+2 x^{2}+2}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left[\frac{2-2 x^{2}}{\left(x^{2}-x+1\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{2-2 x^{2}}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{x^{4}+2 x^{2}+1-x^{2}}$
$\therefore \frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{x^{4}+x^{2}+1}$
Thus, $\frac{d}{d x}\left[\log \left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)\right]=\frac{2\left(1-x^{2}\right)}{x^{4}+x^{2}+1}$

33. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(e^{x}\right)$

Answer

Let $y=\tan ^{-1}\left(e^{x}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+\left(e^{x}\right)^{2}} \frac{d}{d x}\left(\mathrm{e}^{x}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \frac{d}{d x}\left(e^{x}\right)$
However, $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{1+e^{2 x}} \times e^{x}$
$\therefore \frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}}$
Thus, $\frac{d}{d x}\left(\tan ^{-1} e^{x}\right)=\frac{e^{x}}{1+e^{2 x}}$
34. Question

Differentiate the following functions with respect to x :
$e^{\sin ^{-1} 2 x}$
Answer

Let $y=e^{\sin ^{-1} 2 x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\sin ^{-1} 2 x}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\sin ^{-1} 2 x} \frac{d}{d x}\left(\sin ^{-1} 2 x\right)$ [using chain rule]
We have $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=e^{\sin ^{-1} 2 x} \frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}(2 x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \times 2 \frac{d}{d x}(x)$
$\Rightarrow \frac{d y}{d x}=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}} \times \frac{d}{d x}(x)$
However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d y}{d x}=\frac{2 \mathrm{e}^{\sin ^{-1} 2 \mathrm{x}}}{\sqrt{1-4 \mathrm{x}^{2}}} \times 1$
$\therefore \frac{d y}{d x}=\frac{2 \mathrm{e}^{\sin ^{-1} 2 \mathrm{x}}}{\sqrt{1-4 \mathrm{x}^{2}}}$
Thus, $\frac{d}{d x}\left(e^{\sin ^{-1} 2 x}\right)=\frac{2 e^{\sin ^{-1} 2 x}}{\sqrt{1-4 x^{2}}}$

35. Question

Differentiate the following functions with respect to x :
$\sin \left(2 \sin ^{-1} x\right)$

Answer

Let $y=\sin \left(2 \sin ^{-1} x\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(2 \sin ^{-1} x\right)\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(2 \sin ^{-1} x\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\cos \left(2 \sin ^{-1} x\right) \times 2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=2 \cos \left(2 \sin ^{-1} x\right) \frac{d}{d x}\left(\sin ^{-1} x\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\Rightarrow \frac{d y}{d x}=2 \cos \left(2 \sin ^{-1} x\right) \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d y}{d x}=\frac{2 \cos \left(2 \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin \left(2 \sin ^{-1} \mathrm{x}\right)\right]=\frac{2 \cos \left(2 \sin ^{-1} \mathrm{x}\right)}{\sqrt{1-\mathrm{x}^{2}}}$

36. Question

Differentiate the following functions with respect to x :
$e^{\tan ^{-1} \sqrt{x}}$

Answer

Let $y=e^{\tan ^{-1} \sqrt{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{\tan ^{-1} \sqrt{x}}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{\tan ^{-1} \sqrt{x}} \frac{d}{d x}\left(\tan ^{-1} \sqrt{x}\right)$ [using chain rule]
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\tan ^{-1} \sqrt{\mathrm{x}}} \frac{1}{1+(\sqrt{x})^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}(\sqrt{\mathrm{x}})$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+\mathrm{x}} \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\frac{1}{2}}\right)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{\mathrm{e}^{\tan ^{-1} \sqrt{x}}}{1+\mathrm{x}}\left(\frac{1}{2} \mathrm{x}^{\frac{1}{2}-1}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x}\left(\frac{1}{2} x^{-\frac{1}{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{1+x}\left(\frac{1}{2 \sqrt{x}}\right)$
$\therefore \frac{d y}{d x}=\frac{e^{\tan ^{-1} \sqrt{x}}}{2 \sqrt{x}(1+x)}$
Thus, $\frac{d}{d x}\left(\mathrm{e}^{\tan ^{-1} \sqrt{x}}\right)=\frac{\mathrm{e}^{\tan -1} \sqrt{x}}{2 \sqrt{x}(1+x)}$

37. Question

Differentiate the following functions with respect to x :
$\sqrt{\tan ^{-1}\left(\frac{x}{2}\right)}$

Answer

Let $\mathrm{y}=\sqrt{\tan ^{-1} \frac{\mathrm{x}}{2}}$

On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\tan ^{-1} \frac{x}{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(\tan ^{-1} \frac{x}{2}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\tan ^{-1} \frac{x}{2}\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\tan ^{-1} \frac{\mathrm{x}}{2}\right)^{-\frac{1}{2}} \frac{1}{1+\left(\frac{x}{2}\right)^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{\mathrm{x}}{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{1+\frac{x^{2}}{4}} \times \frac{1}{2} \frac{d}{d x}(x)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{4}{4+x^{2}} \times \frac{1}{2} \frac{d}{d x}(x)$
$\Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}} \times \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}} \times 1$
$\Rightarrow \frac{d y}{d x}=\left(\tan ^{-1} \frac{x}{2}\right)^{-\frac{1}{2}} \frac{1}{4+x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\left(4+x^{2}\right)\left(\tan ^{-1} \frac{x}{2}\right)^{\frac{1}{2}}}$
$\therefore \frac{d y}{d x}=\frac{1}{\left(4+x^{2}\right) \sqrt{\tan ^{-1} \frac{x}{2}}}$
Thus, $\frac{d}{d x}\left(\sqrt{\tan ^{-1} \frac{x}{2}}\right)=\frac{1}{\left(4+x^{2}\right) \sqrt{\tan ^{-1} \frac{x}{2}}}$

38. Question

Differentiate the following functions with respect to x :
$\log \left(\tan ^{-1} \mathrm{x}\right)$

Answer

Let $y=\log \left(\tan ^{-1} x\right)$

On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\tan ^{-1} x\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\tan ^{-1} x} \frac{d}{d x}\left(\tan ^{-1} x\right)$ [using chain rule]
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\tan ^{-1} x} \times \frac{1}{1+x^{2}}$
$\therefore \frac{d y}{d x}=\frac{1}{\left(1+x^{2}\right) \tan ^{-1} x}$
Thus, $\frac{d}{d x}\left[\log \left(\tan ^{-1} x\right)\right]=\frac{1}{\left(1+x^{2}\right) \tan ^{-1} x}$

39. Question

Differentiate the following functions with respect to x :
$\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}$

Answer

Let $y=\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}\right]$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2} \frac{d}{d x}\left(2^{x} \cos x\right)-\left(2^{x} \cos x\right) \frac{d}{d x}\left[\left(x^{2}+3\right)^{2}\right]}{\left[\left(x^{2}+3\right)^{2}\right]^{2}}$
We have (uv)' = vu' $+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2}\left[\cos x \frac{d}{d x}\left(2^{x}\right)+2^{x} \frac{d}{d x}(\cos x)\right]-\left(2^{x} \cos x\right) \frac{d}{d x}\left[\left(x^{2}+3\right)^{2}\right]}{\left(x^{2}+3\right)^{4}}$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a, \frac{d}{d x}(\cos x)=-\sin x$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(x^{2}+3\right)^{2}\left[\cos x\left(2^{x} \log 2\right)+2^{x}(-\sin x)\right]-\left(2^{x} \cos x\right)\left[2\left(x^{2}+3\right)^{2-1} \frac{d}{d x}\left(x^{2}+3\right)\right]}{\left(x^{2}+3\right)^{4}}$
$\Rightarrow \frac{d y}{d x}$
$=\frac{\left(x^{2}+3\right)^{2}\left[2^{x} \log 2 \cos x-2^{x} \sin x\right]-\left(2^{x} \cos x\right)\left[2\left(x^{2}+3\right)\left\{\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3)\right\}\right]}{\left(x^{2}+3\right)^{4}}$

However, $\frac{d}{d x}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2}\left[2^{x} \log 2 \cos x-2^{x} \sin x\right]-\left(2^{x} \cos x\right)\left[2\left(x^{2}+3\right)\{2 x+0\}\right]}{\left(x^{2}+3\right)^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2} 2^{x}(\log 2 \cos x-\sin x)-2^{x} 4 x\left(x^{2}+3\right) \cos x}{\left(x^{2}+3\right)^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+3\right)^{2} 2^{x}(\log 2 \cos x-\sin x)}{\left(x^{2}+3\right)^{4}}-\frac{2^{x} 4 x\left(x^{2}+3\right) \cos x}{\left(x^{2}+3\right)^{4}}$
$\Rightarrow \frac{d y}{d x}=\frac{2^{x}(\log 2 \cos x-\sin x)}{\left(x^{2}+3\right)^{2}}-\frac{2^{x} 4 x \cos x}{\left(x^{2}+3\right)^{3}}$
$\therefore \frac{d y}{d x}=\frac{2^{x}}{\left(x^{2}+3\right)^{2}}\left(\log 2 \cos x-\sin x-\frac{4 x \cos x}{x^{2}+3}\right)$
Thus, $\frac{d}{d x}\left[\frac{2^{x} \cos x}{\left(x^{2}+3\right)^{2}}\right]=\frac{2^{x}}{\left(x^{2}+3\right)^{2}}\left(\log 2 \cos x-\sin x-\frac{4 x \cos x}{x^{2}+3}\right)$

40. Question

Differentiate the following functions with respect to x :
$x \sin (2 x)+5^{x}+k^{k}+\left(\tan ^{2} x\right)^{3}$

Answer

Let $\mathrm{y}=\mathrm{x} \sin (2 \mathrm{x})+5^{\mathrm{x}}+\mathrm{k}^{\mathrm{k}}+\left(\tan ^{2} \mathrm{x}\right)^{3}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{2} x\right)^{3}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(x \sin 2 x)+\frac{d}{d x}\left(5^{x}\right)+\frac{d}{d x}\left(k^{k}\right)+\frac{d}{d x}\left[\left(\tan ^{2} x\right)^{3}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(x \times \sin 2 x)+\frac{d}{d x}\left(5^{x}\right)+\frac{d}{d x}\left(k^{k}\right)+\frac{d}{d x}\left(\tan ^{6} x\right)$
Recall that (uv)' $=\mathrm{vu}^{\prime}+\mathrm{uv}$ ((product rule)
$\Rightarrow \frac{d y}{d x}=\sin 2 x \frac{d}{d x}(x)+x \frac{d}{d x}(\sin 2 x)+\frac{d}{d x}\left(5^{x}\right)+\frac{d}{d x}\left(k^{k}\right)+\frac{d}{d x}\left(\tan ^{6} x\right)$
We know $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a, \frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
Also, the derivation of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\sin 2 x+x \cos 2 x \frac{d}{d x}(2 x)+5^{x} \log 5+0+6 \tan ^{6-1} x \frac{d}{d x}(\tan x)$
$\Rightarrow \frac{d y}{d x}=\sin 2 x+2 x \cos 2 x \frac{d}{d x}(x)+5^{x} \log 5+6 \tan ^{5} x \frac{d}{d x}(\tan x)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})=\sec ^{2} \mathrm{x}$
$\Rightarrow \frac{d y}{d x}=\sin 2 x+2 x \cos 2 x \times 1+5^{x} \log 5+6 \tan ^{5} x \times \sec ^{2} x$
$\therefore \frac{d y}{d x}=\sin 2 x+2 x \cos 2 x+5^{x} \log 5+6 \tan ^{5} x \sec ^{2} x$

Thus, $\frac{d}{d x}\left[x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{2} x\right)^{3}\right]=\sin 2 x+2 x \cos 2 x+5^{x} \log 5+$ $6 \tan ^{5} \mathrm{x} \sec ^{2} \mathrm{x}$

41. Question

Differentiate the following functions with respect to x :
$\log (3 x+2)-x^{2} \log (2 x-1)$

Answer

Let $\mathrm{y}=\log (3 \mathrm{x}+2)-\mathrm{x}^{2} \log (2 \mathrm{x}-1)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log (3 x+2)-x^{2} \log (2 x-1)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[\log (3 x+2)]-\frac{d}{d x}\left[x^{2} \log (2 x-1)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[\log (3 x+2)]-\frac{d}{d x}\left[x^{2} \times \log (2 x-1)\right]$
Recall that (uv) $=\mathrm{vu}^{\prime}+\mathrm{uv}^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[\log (3 x+2)]-\left[\log (2 x-1) \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}[\log (2 x-1)]\right]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[\log (3 x+2)]-\log (2 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}[\log (2 x-1)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{3 x+2} \frac{d}{d x}(3 x+2)-\log (2 x-1) \times 2 x-x^{2} \times \frac{1}{2 x-1} \frac{d}{d x}(2 x-1)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{3 x+2}\left[\frac{d}{d x}(3 x)+\frac{d}{d x}(2)\right]-2 x \log (2 x-1)-\frac{x^{2}}{2 x-1}\left[\frac{d}{d x}(2 x)-\frac{d}{d x}(1)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{3 x+2}\left[3 \frac{d}{d x}(x)+\frac{d}{d x}(2)\right]-2 x \log (2 x-1)$
$-\frac{x^{2}}{2 x-1}\left[2 \frac{d}{d x}(x)-\frac{d}{d x}(1)\right]$
We have $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{3 x+2}[3 \times 1+0]-2 x \log (2 x-1)-\frac{x^{2}}{2 x-1}[2 \times 1-0]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{3 x+2} \times 3-2 x \log (2 x-1)-\frac{x^{2}}{2 x-1} \times 2$
$\Rightarrow \frac{d y}{d x}=\frac{3}{3 x+2}-2 x \log (2 x-1)-\frac{2 x^{2}}{2 x-1}$
$\therefore \frac{d y}{d x}=\frac{3}{3 x+2}-\frac{2 x^{2}}{2 x-1}-2 x \log (2 x-1)$
Thus, $\frac{d}{d x}\left[\log (3 x+2)-x^{2} \log (2 x-1)\right]=\frac{3}{3 x+2}-\frac{2 x^{2}}{2 x-1}-2 x \log (2 x-1)$

42. Question

Differentiate the following functions with respect to x :
$\frac{3 x^{2} \sin x}{\sqrt{7-x^{2}}}$

Answer

Let $\mathrm{y}=\frac{3 \mathrm{x}^{2} \sin \mathrm{x}}{\sqrt{7-\mathrm{x}^{2}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{3 x^{2} \sin x}{\sqrt{7-x^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=3 \frac{d}{d x}\left(\frac{x^{2} \sin x}{\sqrt{7-x^{2}}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{r}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\sqrt{7-x^{2}} \frac{d}{d x}\left(x^{2} \sin x\right)-\left(x^{2} \sin x\right) \frac{d}{d x}\left(\sqrt{7-x^{2}}\right)}{\left(\sqrt{7-x^{2}}\right)^{2}}\right]$
We have (uv)' $=\mathrm{vu}^{\prime}+\mathrm{uv}^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\sqrt{7-x^{2}}\left(\sin x \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(\sin x)\right)-\left(x^{2} \sin x\right) \frac{d}{d x}\left(\left(7-x^{2}\right)^{\frac{1}{2}}\right)}{7-x^{2}}\right]$
We know $\frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\sqrt{7-x^{2}}\left(\sin x(2 x)+x^{2}(\cos x)\right)-\left(x^{2} \sin x\right) \frac{1}{2}\left(7-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(-x^{2}\right)}{7-x^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\sqrt{7-x^{2}}\left(2 x \sin x+x^{2} \cos x\right)+\frac{x^{2}}{2}\left(7-x^{2}\right)^{-\frac{1}{2}} \sin x \frac{d}{d x}\left(x^{2}\right)}{7-x^{2}}\right]$
However, $\frac{d}{d x}\left(x^{2}\right)=2 x$
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\left(2 x \sin x+x^{2} \cos x\right)\left(7-x^{2}\right)^{\frac{1}{2}}+x^{3} \sin x\left(7-x^{2}\right)^{-\frac{1}{2}}}{7-x^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=3\left[\frac{\left(2 x \sin x+x^{2} \cos x\right)\left(7-x^{2}\right)^{\frac{1}{2}}}{7-x^{2}}+\frac{x^{3} \sin x\left(7-x^{2}\right)^{-\frac{1}{2}}}{7-x^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=3\left[\frac{2 x \sin x+x^{2} \cos x}{\left(7-x^{2}\right)^{\frac{1}{2}}}+\frac{x^{3} \sin x}{\left(7-x^{2}\right)^{\frac{3}{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{3 x}{\left(7-x^{2}\right)^{\frac{1}{2}}}\left[2 \sin x+x \cos x+\frac{x^{2} \sin x}{7-x^{2}}\right]$
$\therefore \frac{d y}{d x}=\frac{3 x}{\sqrt{7-x^{2}}}\left(2 \sin x+x \cos x+\frac{x^{2} \sin x}{7-x^{2}}\right)$

Thus, $\frac{d}{d x}\left(\frac{3 x^{2} \sin x}{\sqrt{7-x^{2}}}\right)=\frac{3 x}{\sqrt{7-x^{2}}}\left(2 \sin x+x \cos x+\frac{x^{2} \sin x}{7-x^{2}}\right)$

43. Question

Differentiate the following functions with respect to x :
$\sin ^{2}\{\log (2 x+3)\}$

Answer

Let $y=\sin ^{2}\{\log (2 x+3)\}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{2}\{\log (2 x+3)\}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=2 \sin ^{2-1}\{\log (2 x+3)\} \frac{d}{d x}[\sin \{\log (2 x+3)\}][$ chain rule $]$
$\Rightarrow \frac{d y}{d x}=2 \sin \{\log (2 x+3)\} \frac{d}{d x}[\sin \{\log (2 x+3)\}]$
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=2 \sin \{\log (2 x+3)\} \cos \{\log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
As $\sin (2 \theta)=2 \sin \theta \cos \theta$, we have
$\frac{d y}{d x}=\sin \{2 \times \log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
$\frac{d y}{d x}=\sin \{2 \log (2 x+3)\} \frac{d}{d x}[\log (2 x+3)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\sin \{2 \log (2 x+3)\}\left[\frac{1}{(2 x+3)} \frac{d}{d x}(2 x+3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3} \frac{d}{d x}(2 x+3)$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3}\left[\frac{d}{d x}(2 x)+\frac{d}{d x}(3)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3}\left[2 \frac{d}{d x}(x)+\frac{d}{d x}(3)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3}[2 \times 1+0]$
$\Rightarrow \frac{d y}{d x}=\frac{\sin \{2 \log (2 x+3)\}}{2 x+3} \times 2$
$\therefore \frac{d y}{d x}=\frac{2 \sin \{2 \log (2 x+3)\}}{2 x+3}$
Thus, $\frac{d}{d x}\left[\sin ^{2}\{\log (2 x+3)\}\right]=\frac{2 \sin \{2 \log (2 x+3)\}}{2 x+3}$

44. Question

Differentiate the following functions with respect to x :
$e^{x} \log (\sin 2 x)$

Answer

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \log (\sin 2 \mathrm{x})$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[e^{x} \log (\sin 2 x)\right]$
We have (uv)' = vu' $+u v^{\prime}($ product rule $)$
$\Rightarrow \frac{d y}{d x}=\log (\sin 2 x) \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}[\log (\sin 2 x)]$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\log (\sin 2 x) \times e^{x}+e^{x}\left[\frac{1}{\sin 2 x} \frac{d}{d x}(\sin 2 x)\right]$ [chain rule]
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+\frac{e^{x}}{\sin 2 x}\left[\frac{d}{d x}(\sin 2 x)\right]$
We have $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+\frac{e^{x}}{\sin 2 x}\left[\cos 2 x \frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+\frac{2 e^{x} \cos 2 x}{\sin 2 x}\left[\frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+2 e^{x} \cot 2 x\left[\frac{d}{d x}(x)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+2 e^{x} \cot 2 x \times 1$
$\Rightarrow \frac{d y}{d x}=e^{x} \log (\sin 2 x)+2 e^{x} \cot 2 x$
$\therefore \frac{d y}{d x}=e^{x}[\log (\sin 2 x)+2 \cot 2 x]$
Thus, $\frac{d}{d x}\left[e^{x} \log (\sin 2 x)\right]=e^{x}[\log (\sin 2 x)+2 \cot 2 x]$

45. Question

Differentiate the following functions with respect to x :
$\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$

Answer

Let $y=\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$
$\Rightarrow y=\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}} \times \frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}$
$\Rightarrow y=\frac{\left(\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right)^{2}}{\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right)\left(\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right)}$
$\Rightarrow y=\frac{\left(\sqrt{x^{2}+1}\right)^{2}+\left(\sqrt{x^{2}-1}\right)^{2}+2 \sqrt{\left(x^{2}+1\right)\left(x^{2}-1\right)}}{\left(\sqrt{x^{2}+1}\right)^{2}-\left(\sqrt{x^{2}-1}\right)^{2}}$
$\Rightarrow y=\frac{x^{2}+1+x^{2}-1+2 \sqrt{\left(x^{2}\right)^{2}-(1)^{2}}}{\left(x^{2}+1\right)-\left(x^{2}-1\right)}$
$\Rightarrow \mathrm{y}=\frac{2 \mathrm{x}^{2}+2 \sqrt{\mathrm{x}^{4}-1}}{2}$
$\Rightarrow \mathrm{y}=\mathrm{x}^{2}+\sqrt{\mathrm{x}^{4}-1}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+\sqrt{x^{4}-1}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(\sqrt{x^{4}-1}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left[\left(x^{4}-1\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2}\left(x^{4}-1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{4}-1\right)$
$\Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2}\left(x^{4}-1\right)^{-\frac{1}{2}} \frac{d}{d x}\left(x^{4}-1\right)$
$\Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2 \sqrt{x^{4}-1}}\left[\frac{d}{d x}\left(x^{4}\right)-\frac{d}{d x}(1)\right]$
We have $\frac{d}{d x}\left(x^{4}\right)=4 x^{3}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2 \sqrt{x^{4}-1}}\left[4 x^{3}-0\right]$
$\Rightarrow \frac{d y}{d x}=2 x+\frac{1}{2 \sqrt{x^{4}-1}} \times 4 x^{3}$
$\therefore \frac{d y}{d x}=2 x+\frac{2 x^{3}}{\sqrt{x^{4}-1}}$
Thus, $\frac{d}{d x}\left(\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}\right)=2 x+\frac{2 x^{3}}{\sqrt{x^{4}-1}}$

46. Question

Differentiate the following functions with respect to x :
$\log \left\{x+2+\sqrt{x^{2}+4 x+1}\right\}$
Answer

Let $\mathrm{y}=\log \left(\mathrm{x}+2+\sqrt{\mathrm{x}^{2}+4 \mathrm{x}+1}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(x+2+\sqrt{x^{2}+4 x+1}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}} \frac{d}{d x}\left(x+2+\sqrt{x^{2}+4 x+1}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}(2)+\frac{d}{d x}\left(\sqrt{x^{2}+4 x+1}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[\frac{d}{d x}(x)+\frac{d}{d x}(2)+\frac{d}{d x}\left(x^{2}+4 x+1\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(x)=1$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Also the derivative of a constant is 0 .

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[1+0+\frac{1}{2}\left(x^{2}+4 x+1\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{2}+4 x+1\right)\right] \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}[1 \\
& \quad+\frac{1}{2}\left(x^{2}+4 x+1\right)^{\left.-\frac{1}{2}\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(4 x)+\frac{d}{d x}(1)\right)\right]} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}[1 \\
& \left.\quad+\frac{1}{2 \sqrt{x^{2}+4 x+1}}\left(\frac{d}{d x}\left(x^{2}\right)+4 \frac{d}{d x}(x)+\frac{d}{d x}(1)\right)\right]
\end{aligned}
$$

However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[1+\frac{1}{2 \sqrt{x^{2}+4 x+1}}(2 x+4 \times 1+0)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[1+\frac{2 x+4}{2 \sqrt{x^{2}+4 x+1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[1+\frac{x+2}{\sqrt{x^{2}+4 x+1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+2+\sqrt{x^{2}+4 x+1}}\left[\frac{\sqrt{x^{2}+4 x+1}+x+2}{\sqrt{x^{2}+4 x+1}}\right]$
$\therefore \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+4 x+1}}$
Thus, $\frac{d}{d x}\left[\log \left(x+2+\sqrt{x^{2}+4 x+1}\right)\right]=\frac{1}{\sqrt{x^{2}+4 x+1}}$

47. Question

Differentiate the following functions with respect to x :
$\left(\sin ^{-1} x^{4}\right)^{4}$

Answer

Let $y=\left(\sin ^{-1} x^{4}\right)^{4}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\left(\sin ^{-1} x^{4}\right)^{4}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=4\left(\sin ^{-1} x^{4}\right)^{4-1} \frac{d}{d x}\left(\sin ^{-1} x^{4}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=4\left(\sin ^{-1} x^{4}\right)^{3} \frac{d}{d x}\left(\sin ^{-1} x^{4}\right)$
We have $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4\left(\sin ^{-1} \mathrm{x}^{4}\right)^{3} \frac{1}{\sqrt{1-\left(x^{4}\right)^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{4}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{4\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}} \frac{d}{d x}\left(x^{4}\right)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{4}\right)=4 \mathrm{x}^{3}$
$\Rightarrow \frac{d y}{d x}=\frac{4\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}} \times 4 x^{3}$
$\therefore \frac{d y}{d x}=\frac{16 x^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-x^{8}}}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\left(\sin ^{-1} \mathrm{x}^{4}\right)^{4}\right]=\frac{16 \mathrm{x}^{3}\left(\sin ^{-1} x^{4}\right)^{3}}{\sqrt{1-\mathrm{x}^{8}}}$

48. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$

Answer

Let $y=\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)\right]$
We have $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)^{2}}} \frac{d}{d x}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-\frac{x^{2}}{x^{2}+a^{2}}}} \frac{d}{d x}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{\frac{x^{2}+a^{2}-x^{2}}{x^{2}+a^{2}}}} \frac{d}{d x}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{\frac{a^{2}}{x^{2}+a^{2}}}} \frac{d}{d x}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a} \frac{d}{d x}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}} \frac{d}{d x}(x)-x \frac{d}{d x}\left(\sqrt{x^{2}+a^{2}}\right)}{\left(\sqrt{x^{2}+a^{2}}\right)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}} \frac{d}{d x}(x)-x \frac{d}{d x}\left[\left(x^{2}+a^{2}\right)\right]^{\frac{1}{2}}}{x^{2}+a^{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}} \times 1-x\left(\frac{1}{2}\left(x^{2}+a^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(x^{2}+a^{2}\right)\right)}{x^{2}+a^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}}-x\left(\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(x^{2}+a^{2}\right)\right)}{x^{2}+a^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}}-\frac{x}{2 \sqrt{x^{2}+a^{2}}}\left(\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(a^{2}\right)\right)}{x^{2}+a^{2}}\right]$
We have $\frac{d}{d x}\left(x^{2}\right)=2 x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}}-\frac{x}{2 \sqrt{x^{2}+a^{2}}}(2 x+0)}{x^{2}+a^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\sqrt{x^{2}+a^{2}}-\frac{x^{2}}{\sqrt{x^{2}+a^{2}}}}{x^{2}+a^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{\frac{\left(\sqrt{x^{2}+a^{2}}\right)^{2}-x^{2}}{\sqrt{x^{2}+a^{2}}}}{x^{2}+a^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+a^{2}}}{a}\left[\frac{x^{2}+a^{2}-x^{2}}{\sqrt{x^{2}+a^{2}}\left(x^{2}+a^{2}\right)}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{a}\left[\frac{a^{2}}{x^{2}+a^{2}}\right]$
$\therefore \frac{d y}{d x}=\frac{a}{x^{2}+a^{2}}$
Thus, $\frac{d}{d x}\left[\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+a^{2}}}\right)\right]=\frac{a}{x^{2}+a^{2}}$

49. Question

Differentiate the following functions with respect to x :
$\frac{e^{x} \sin x}{\left(x^{2}+2\right)^{3}}$

Answer

Let $\mathrm{y}=\frac{\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}}{\left(\mathrm{x}^{2}+2\right)^{3}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{e^{x} \sin x}{\left(\mathrm{x}^{2}+2\right)^{3}}\right]$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3} \frac{d}{d x}\left(e^{x} \sin x\right)-\left(e^{x} \sin x\right) \frac{d}{d x}\left[\left(x^{2}+2\right)^{3}\right]}{\left[\left(x^{2}+2\right)^{3}\right]^{2}}$
We have (uv)' $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3}\left[\sin x \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\sin x)\right]-\left(e^{x} \sin x\right) \frac{d}{d x}\left[\left(x^{2}+2\right)^{3}\right]}{\left(x^{2}+2\right)^{6}}$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}, \frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3}\left[\sin x\left(e^{x}\right)+e^{x}(\cos x)\right]-\left(e^{x} \sin x\right)\left[3\left(x^{2}+2\right)^{3-1} \frac{d}{d x}\left(x^{2}+2\right)\right]}{\left(x^{2}+2\right)^{6}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\left(x^{2}+2\right)^{3}\left[e^{x} \sin x+e^{x} \cos x\right]-\left(e^{x} \sin x\right)\left[3\left(x^{2}+2\right)^{2}\left\{\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2)\right\}\right]}{\left(x^{2}+2\right)^{6}}$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3}\left[e^{x} \sin x+e^{x} \cos x\right]-\left(e^{x} \sin x\right)\left[3\left(x^{2}+2\right)^{2} \times 2 x\right]}{\left(x^{2}+2\right)^{6}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3} e^{x}(\sin x+\cos x)-6 x e^{x} \sin x\left(x^{2}+2\right)^{2}}{\left(x^{2}+2\right)^{6}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}+2\right)^{3} e^{x}(\sin x+\cos x)}{\left(x^{2}+2\right)^{6}}-\frac{6 \mathrm{xe}^{x} \sin x\left(x^{2}+2\right)^{2}}{\left(x^{2}+2\right)^{6}}$
$\Rightarrow \frac{d y}{d x}=\frac{e^{x}(\sin x+\cos x)}{\left(x^{2}+2\right)^{3}}-\frac{6 x e^{x} \sin x}{\left(x^{2}+2\right)^{4}}$
$\therefore \frac{d y}{d x}=\frac{e^{x}}{\left(x^{2}+2\right)^{3}}\left(\sin x+\cos x-\frac{6 x \sin x}{x^{2}+2}\right)$
Thus, $\frac{d}{d x}\left[\frac{e^{x} \sin x}{\left(x^{2}+2\right)^{3}}\right]=\frac{e^{x}}{\left(x^{2}+2\right)^{3}}\left(\sin x+\cos x-\frac{6 x \sin x}{x^{2}+2}\right)$

50. Question

Differentiate the following functions with respect to x :
$3 e^{-3 x} \log (1+x)$

Answer

Let $y=3 e^{-3 x} \log (1+x)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[3 e^{-3 x} \log (1+x)\right]$
$\Rightarrow \frac{d y}{d x}=3 \frac{d}{d x}\left[e^{-3 x} \log (1+x)\right]$
We have (uv)' $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=3\left[\log (1+x) \frac{d}{d x}\left(e^{-3 x}\right)+e^{-3 x} \frac{d}{d x}[\log (1+x)]\right]$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=3\left[\log (1+x) \times e^{-3 x} \frac{d}{d x}(-3 x)+e^{-3 x}\left(\frac{1}{1+x} \frac{d}{d x}(1+x)\right)\right]$
$\Rightarrow \frac{d y}{d x}=3\left[-3 e^{-3 x} \log (1+x) \frac{d}{d x}(x)+\frac{e^{-3 x}}{1+x}\left(\frac{d}{d x}(1)+\frac{d}{d x}(x)\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=3\left[-3 e^{-3 x} \log (1+x) \times 1+\frac{e^{-3 x}}{1+x}(0+1)\right]$
$\Rightarrow \frac{d y}{d x}=3\left[-3 e^{-3 x} \log (1+x)+\frac{e^{-3 x}}{1+x}\right]$
$\Rightarrow \frac{d y}{d x}=3 e^{-3 x}\left[-3 \log (1+x)+\frac{1}{1+x}\right]$
$\therefore \frac{d y}{d x}=3 e^{-3 x}\left[\frac{1}{1+x}-3 \log (1+x)\right]$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[3 \mathrm{e}^{-3 \mathrm{x}} \log (1+\mathrm{x})\right]=3 \mathrm{e}^{-3 \mathrm{x}}\left[\frac{1}{1+\mathrm{x}}-3 \log (1+\mathrm{x})\right]$

51. Question

Differentiate the following functions with respect to x :
$\frac{x^{2}+2}{\sqrt{\cos x}}$

Answer

Let $y=\frac{x^{2}+2}{\sqrt{\cos x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x^{2}+2}{\sqrt{\cos x}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{\cos x} \frac{d}{d x}\left(x^{2}+2\right)-\left(x^{2}+2\right) \frac{d}{d x}(\sqrt{\cos x})}{(\sqrt{\cos x})^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{\cos x}\left[\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2)\right]-\left(x^{2}+2\right) \frac{d}{d x}\left[(\cos x)^{\frac{1}{2}}\right]}{\cos x}$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{\cos \mathrm{x}}[2 \mathrm{x}+0]-\left(\mathrm{x}^{2}+2\right)\left[\frac{1}{2}(\cos \mathrm{x})^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\cos \mathrm{x})\right]}{\cos \mathrm{x}}$ [chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{2 x \sqrt{\cos x}-\frac{\left(x^{2}+2\right)}{2}(\cos x)^{-\frac{1}{2}}\left[\frac{d}{d x}(\cos x)\right]}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x \sqrt{\cos x}-\frac{\left(x^{2}+2\right)}{2}(\cos x)^{-\frac{1}{2}}\left[\frac{d}{d x}(\cos x)\right]}{\cos x}$
We know $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{d y}{d x}=\frac{2 x \sqrt{\cos x}-\frac{\left(x^{2}+2\right)}{2}(\cos x)^{-\frac{1}{2}}(-\sin x)}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x \sqrt{\cos x}+\frac{\left(x^{2}+2\right) \sin x}{2 \sqrt{\cos x}}}{\cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{4 x(\sqrt{\cos x})^{2}+\left(x^{2}+2\right) \sin x}{2 \sqrt{\cos x} \cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{4 x \cos x+\left(x^{2}+2\right) \sin x}{2 \sqrt{\cos x} \cos x}$
$\Rightarrow \frac{d y}{d x}=\frac{4 x \cos x}{2 \sqrt{\cos x} \cos x}+\frac{\left(x^{2}+2\right) \sin x}{2 \sqrt{\cos x} \cos x}$
$\therefore \frac{d y}{d x}=\frac{2 x}{\sqrt{\cos x}}+\frac{\left(x^{2}+2\right) \sin x}{2(\cos x)^{\frac{3}{2}}}$
Thus, $\frac{d}{d x}\left(\frac{x^{2}+2}{\sqrt{\cos x}}\right)=\frac{2 \mathrm{x}}{\sqrt{\cos \mathrm{x}}}+\frac{\left(\mathrm{x}^{2}+2\right) \sin \mathrm{x}}{2(\cos \mathrm{x})^{\frac{3}{2}}}$

52. Question

Differentiate the following functions with respect to x :
$x^{2}\left(1-x^{2}\right)^{3}$
$\cos 2 \mathrm{x}$

Answer

Let $\mathrm{y}=\frac{\mathrm{x}^{2}\left(1-\mathrm{x}^{2}\right)^{3}}{\cos 2 \mathrm{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\frac{x^{2}\left(1-x^{2}\right)^{3}}{\cos 2 x}\right]$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\cos 2 x \frac{d}{d x}\left[x^{2}\left(1-x^{2}\right)^{3}\right]-x^{2}\left(1-x^{2}\right)^{3} \frac{d}{d x}(\cos 2 x)}{(\cos 2 x)^{2}}$
We have (uv)' $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\cos 2 x\left[\left(1-x^{2}\right)^{3} \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}\left\{\left(1-x^{2}\right)^{3}\right\}\right]-x^{2}\left(1-x^{2}\right)^{3} \frac{d}{d x}(\cos 2 x)}{\cos ^{2} 2 x}$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ and $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$

$$
\begin{aligned}
& =\frac{\cos 2 x\left[\left(1-x^{2}\right)^{3}(2 x)+x^{2}\left\{3\left(1-x^{2}\right)^{2} \frac{d}{d x}\left(1-x^{2}\right)\right\}\right]-x^{2}\left(1-x^{2}\right)^{3}\left(-\sin 2 x \frac{d}{d x}(2 x)\right)}{\cos ^{2} 2 x} \\
& \Rightarrow \frac{d y}{d x} \\
& =\frac{\cos 2 x\left[2 x\left(1-x^{2}\right)^{3}+3 x^{2}\left(1-x^{2}\right)^{2}\left\{\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right\}\right]+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x \frac{d}{d x}(x)}{\cos ^{2} 2 x}
\end{aligned}
$$

However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\cos 2 x\left[2 x\left(1-x^{2}\right)^{3}+3 x^{2}\left(1-x^{2}\right)^{2}\{0-2 x\}\right]+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x \times 1}{\cos ^{2} 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos 2 x\left[2 x\left(1-x^{2}\right)^{3}+3 x^{2}\left(1-x^{2}\right)^{2}(-2 x)\right]+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos 2 x\left[2 x\left(1-x^{2}\right)^{3}-6 x^{3}\left(1-x^{2}\right)^{2}\right]+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{3} \cos 2 x-6 x^{3}\left(1-x^{2}\right)^{2} \cos 2 x+2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{3} \cos 2 x}{\cos ^{2} 2 x}-\frac{6 x^{3}\left(1-x^{2}\right)^{2} \cos 2 x+}{\cos ^{2} 2 x}+\frac{2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos ^{2} 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{3}}{\cos 2 x}-\frac{6 x^{3}\left(1-x^{2}\right)^{2}}{\cos 2 x}+\frac{2 x^{2}\left(1-x^{2}\right)^{3} \sin 2 x}{\cos 2 x \times \cos 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{3}}{\cos 2 x}-\frac{6 x^{3}\left(1-x^{2}\right)^{2}}{\cos 2 x}+\frac{2 x^{2}\left(1-x^{2}\right)^{3} \tan 2 x}{\cos 2 x}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{2}}{\cos 2 x}\left[\left(1-x^{2}\right)-3 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right]$
$\Rightarrow \frac{d y}{d x}=\frac{2 x\left(1-x^{2}\right)^{2}}{\cos 2 x}\left[1-4 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right]$
$\therefore \frac{d y}{d x}=2 x\left(1-x^{2}\right)^{2} \sec 2 x\left[1-4 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right]$
Thus, $\frac{d}{d x}\left[\frac{x^{2}\left(1-x^{2}\right)^{3}}{\cos 2 x}\right]=2 x\left(1-x^{2}\right)^{2} \sec 2 x\left[1-4 x^{2}+x\left(1-x^{2}\right) \tan 2 x\right]$

53. Question

Differentiate the following functions with respect to x :
$\log \left\{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}$

Answer

Let $\mathrm{y}=\log \left\{\cot \left(\frac{\pi}{4}+\frac{\mathrm{x}}{2}\right)\right\}$
On differentiating y with respect to x, we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left\{\cot \left(\frac{\pi}{4}+\frac{\mathrm{x}}{2}\right)\right\}\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\cot \left(\frac{\pi}{4}+\frac{x}{2}\right.} \frac{\mathrm{d}}{2}\right)\left[\cot \left(\frac{\pi}{4}+\frac{\mathrm{x}}{2}\right)\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \frac{d}{d x}\left[\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)\right]$
We have $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\Rightarrow \frac{d y}{d x}=\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\left[-\operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right) \frac{d}{d x}\left(\frac{\pi}{4}+\frac{x}{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=-\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)\left[\frac{d}{d x}\left(\frac{\pi}{4}\right)+\frac{d}{d x}\left(\frac{x}{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=-\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)\left[\frac{d}{d x}\left(\frac{\pi}{4}\right)+\frac{1}{2} \frac{d}{d x}(x)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=-\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)\left[0+\frac{1}{2} \times 1\right]$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2} \tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \operatorname{cosec}^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2} \times \frac{\sin \left(\frac{\pi}{4}+\frac{x}{2}\right)}{\cos \left(\frac{\pi}{4}+\frac{x}{2}\right)} \times \frac{1}{\sin ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{\sin \left[2\left(\frac{\pi}{4}+\frac{x}{2}\right)\right]}[\because \sin 2 \theta=2 \sin \theta \cos \theta]$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{\sin \left(\frac{\pi}{2}+x\right)}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{\cos x}\left[\because \sin \left(90^{\circ}+\theta\right)=\cos \theta\right]$
$\therefore \frac{d y}{d x}=-\sec x$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left\{\cot \left(\frac{\pi}{4}+\frac{\mathrm{x}}{2}\right)\right\}\right]=-\sec \mathrm{x}$

54. Question

Differentiate the following functions with respect to x :
$e^{a x} \sec (x) \tan (2 x)$

Answer

Let $y=e^{a x} \sec (x) \tan (2 x)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{a x} \sec x \tan 2 x\right)$
$\frac{d y}{d x}=\frac{d}{d x}\left[e^{a x} \times(\sec x \tan 2 x)\right]$
We have (uv)' = vu' $+u v^{\prime}($ product rule $)$
$\Rightarrow \frac{d y}{d x}=\sec x \tan 2 x \frac{d}{d x}\left(e^{a x}\right)+e^{a x} \frac{d}{d x}(\sec x \tan 2 x)$
$\Rightarrow \frac{d y}{d x}=\sec x \tan 2 x \frac{d}{d x}\left(e^{a x}\right)+e^{a x} \frac{d}{d x}(\sec x \times \tan 2 x)$
We will use the product rule once again.
$\Rightarrow \frac{d y}{d x}=\sec x \tan 2 x \frac{d}{d x}\left(e^{a x}\right)+e^{a x}\left[\tan 2 x \frac{d}{d x}(\sec x)+\sec x \frac{d}{d x}(\tan 2 x)\right]$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}, \frac{d}{d x}(\sec x)=\sec x \tan x$ and $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\sec x \tan 2 x\left[e^{a x} \frac{d}{d x}(a x)\right]$

$$
+\mathrm{e}^{\operatorname{ax}}\left[\tan 2 x(\sec x \tan x)+\sec x\left\{\sec ^{2} 2 x \frac{d}{d x}(2 x)\right\}\right]
$$

$\Rightarrow \frac{d y}{d x}=a e^{a x} \sec x \tan 2 x \frac{d}{d x}(x)+e^{a x}\left[\sec x \tan x \tan 2 x+2 \sec ^{2} \sec ^{2} 2 x \frac{d}{d x}(x)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=a^{a x} \sec x \tan 2 x \times 1+e^{a x}\left[\sec x \tan x \tan 2 x+2 \sec x \sec ^{2} 2 x \times 1\right]$
$\Rightarrow \frac{d y}{d x}=a^{a x} \sec x \tan 2 x+e^{a x}\left[\sec x \tan x \tan 2 x+2 \sec x \sec ^{2} 2 x\right]$
$\Rightarrow \frac{d y}{d x}=\mathrm{ae}^{\mathrm{ax}} \sec \mathrm{x} \tan 2 \mathrm{x}+\mathrm{e}^{\mathrm{ax}} \sec \mathrm{x}\left[\tan \mathrm{x} \tan 2 \mathrm{x}+2 \sec ^{2} 2 \mathrm{x}\right]$
$\therefore \frac{d y}{d x}=\mathrm{e}^{a \mathrm{x}} \sec \mathrm{x}\left(\operatorname{atan} 2 \mathrm{x}+\tan \mathrm{x} \tan 2 \mathrm{x}+2 \sec ^{2} 2 \mathrm{x}\right)$
Thus, $\frac{d}{d x}\left(e^{a x} \sec x \tan 2 x\right)=e^{a x} \sec x\left(\operatorname{atan} 2 x+\tan x \tan 2 x+2 \sec ^{2} 2 x\right)$

55. Question

Differentiate the following functions with respect to x :
$\log \left(\cos x^{2}\right)$

Answer

Let $y=\log \left(\cos x^{2}\right)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\cos x^{2}\right)\right]$
We have $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\cos \mathrm{x}^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\cos \mathrm{x}^{2}\right)$ [using chain rule]
We know $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\cos x^{2}}\left[-\sin x^{2} \frac{d}{d x}\left(x^{2}\right)\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=-\frac{\sin x^{2}}{\cos x^{2}} \frac{d}{d x}\left(x^{2}\right)$
$\Rightarrow \frac{d y}{d x}=-\tan x^{2} \frac{d}{d x}\left(x^{2}\right)$
However, $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=-\tan x^{2} \times 2 x$
$\therefore \frac{d y}{d x}=-2 x \tan x^{2}$
Thus, $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(\cos \mathrm{x}^{2}\right)\right]=-2 \mathrm{x} \tan \mathrm{x}^{2}$

56. Question

Differentiate the following functions with respect to x :
$\cos (\log x)^{2}$

Answer

Let $y=\cos (\log x)^{2}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\cos (\log x)^{2}\right]$
We have $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{d y}{d x}=-\sin (\log x)^{2} \frac{d}{d x}\left[(\log x)^{2}\right][$ using chain rule]
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=-\sin (\log x)^{2}\left[2(\log x)^{2-1} \frac{d}{d x}(\log x)\right]$ [chain rule]
$\Rightarrow \frac{d y}{d x}=-\sin (\log x)^{2}\left[2 \log x \frac{d}{d x}(\log x)\right]$
$\Rightarrow \frac{d y}{d x}=-2 \log x \sin (\log x)^{2} \frac{d}{d x}(\log x)$
However, $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=-2 \log x \sin (\log x)^{2} \times \frac{1}{x}$
$\therefore \frac{d y}{d x}=-\frac{2}{x} \log x \sin (\log x)^{2}$
Thus, $\frac{d}{d x}\left[\cos (\log x)^{2}\right]=-\frac{2}{x} \log x \sin (\log x)^{2}$

57. Question

Differentiate the following functions with respect to x :
$\log \sqrt{\frac{x-1}{x+1}}$

Answer

Let $y=\log \sqrt{\frac{x-1}{x+1}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\log \sqrt{\frac{x-1}{x+1}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)^{\frac{2}{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}\left[\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)^{\frac{1}{2}}\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\left(\frac{x-1}{x+1}\right)^{-\frac{1}{2}} \frac{d}{d x}\left[\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)^{-\frac{1}{2}} \frac{1}{2}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x-1}{x+1}\right)^{-\frac{1}{2}}\left(\frac{x-1}{x+1}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{x-1}{x+1}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x-1}{x+1}\right)^{-1} \frac{d}{d x}\left(\frac{x-1}{x+1}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right) \frac{d}{d x}\left(\frac{x-1}{x+1}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{I}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}}{} \mathrm{v}^{2}$ (quotient rule) 2 (q)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left[\frac{(x+1) \frac{d}{d x}(x-1)-(x-1) \frac{d}{d x}(x+1)}{(x+1)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left[\frac{(x+1)\left(\frac{d}{d x}(x)-\frac{d}{d x}(1)\right)-(x-1)\left(\frac{d}{d x}(x)+\frac{d}{d x}(1)\right)}{(x+1)^{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left[\frac{(x+1)(1-0)-(x-1)(1+0)}{(x+1)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left[\frac{(x+1)-(x-1)}{(x+1)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{x+1}{x-1}\right)\left[\frac{2}{(x+1)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{(x-1)(x+1)}$
$\therefore \frac{d y}{d x}=\frac{1}{x^{2}-1}$
Thus, $\frac{d}{d x}\left(\log \sqrt{\frac{x-1}{x+1}}\right)=\frac{1}{\mathrm{x}^{2}-1}$

58. Question

If $y=\log \{\sqrt{x-1}-\sqrt{x+1}\}$, show that $\frac{d y}{d x}=\frac{-1}{2 \sqrt{x^{2}-1}}$.

Answer

Given $\mathrm{y}=\log (\sqrt{\mathrm{x}-1}-\sqrt{\mathrm{x}+1})$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\log (\sqrt{x-1}-\sqrt{x+1})]$
We know $\frac{d}{d x}(\log x)=\frac{1}{\mathrm{x}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{x-1}-\sqrt{x+1}} \frac{d}{d x}(\sqrt{x-1}-\sqrt{x+1})$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{x-1}-\sqrt{x+1}}\left[\frac{d}{d x}(\sqrt{x-1})-\frac{d}{d x}(\sqrt{x+1})\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{x-1}-\sqrt{x+1}}\left[\frac{d}{d x}(x-1)^{\frac{1}{2}}-\frac{d}{d x}(x+1)^{\frac{1}{2}}\right]$

We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{x-1}-\sqrt{x+1}}\left[\frac{1}{2}(x-1)^{\frac{1}{2}-1} \frac{d}{d x}(x-1)-\frac{1}{2}(x+1)^{\frac{1}{2}-1} \frac{d}{d x}(x+1)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left[(x-1)^{-\frac{1}{2}}\left\{\frac{d}{d x}(x)-\frac{d}{d x}(1)\right\}\right.$

$$
\left.-(\mathrm{x}+1)^{-\frac{1}{2}}\left\{\frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})+\frac{\mathrm{d}}{\mathrm{dx}}(1)\right\}\right]
$$

However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left[(x-1)^{-\frac{1}{2}}\{1-0\}-(x+1)^{-\frac{1}{2}}\{1+0\}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left[(x-1)^{-\frac{1}{2}}-(x+1)^{-\frac{1}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left[\frac{1}{\sqrt{x-1}}-\frac{1}{\sqrt{x+1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2(\sqrt{x-1}-\sqrt{x+1})}\left[\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1} \sqrt{x-1}}\right]$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{2 \sqrt{x+1} \sqrt{x-1}}$
$\therefore \frac{d y}{d x}=-\frac{1}{2 \sqrt{x^{2}-1}}$
Thus, $\frac{d}{d x}[\log (\sqrt{x-1}-\sqrt{x+1})]=-\frac{1}{2 \sqrt{x^{2}-1}}$

59. Question

If $\mathrm{y}=\sqrt{\mathrm{x}+1}+\sqrt{\mathrm{x}-1}$, prove that $\sqrt{\mathrm{x}^{2}-1} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \mathrm{y}$.

Answer

Given $y=\sqrt{x+1}+\sqrt{x-1}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1}+\sqrt{x-1})$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(\sqrt{x+1})+\frac{d}{d x}(\sqrt{x-1})$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(x+1)^{\frac{1}{2}}+\frac{d}{d x}(x-1)^{\frac{1}{2}}$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x+1)^{\frac{1}{2}-1} \frac{d}{d x}(x+1)+\frac{1}{2}(x-1)^{\frac{1}{2}-1} \frac{d}{d x}(x-1)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x+1)^{-\frac{1}{2}}\left[\frac{d}{d x}(x)+\frac{d}{d x}(1)\right]+\frac{1}{2}(x-1)^{-\frac{1}{2}}\left[\frac{d}{d x}(x)-\frac{d}{d x}(1)\right]$

However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}(x+1)^{-\frac{1}{2}}[1+0]+\frac{1}{2}(x-1)^{-\frac{1}{2}}[1-0]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}(\mathrm{x}+1)^{-\frac{1}{2}}+\frac{1}{2}(\mathrm{x}-1)^{-\frac{1}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[(x+1)^{-\frac{1}{2}}+(x-1)^{-\frac{1}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x-1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{\sqrt{x-1}+\sqrt{x+1}}{\sqrt{x+1} \sqrt{x-1}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x-1}+\sqrt{x+1}}{2 \sqrt{x^{2}-1}}$
But, $y=\sqrt{x+1}+\sqrt{x-1}$
$\Rightarrow \frac{d y}{d x}=\frac{y}{2 \sqrt{x^{2}-1}}$
$\therefore \sqrt{x^{2}-1} \frac{d y}{d x}=\frac{1}{2} y$
Thus, $\sqrt{x^{2}-1} \frac{d y}{d x}=\frac{1}{2} y$

60. Question

If $y=\frac{x}{x+2}$, prove that $x \frac{d y}{d x}=(1-y) y$.

Answer

Given $y=\frac{x}{x+2}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{x+2}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{(x+2) \frac{d}{d x}(x)-(x) \frac{d}{d x}(x+2)}{(x+2)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{(x+2) \frac{d}{d x}(x)-(x)\left[\frac{d}{d x}(x)+\frac{d}{d x}(2)\right]}{(x+2)^{2}}$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{(x+2) \times 1-(x)[1+0]}{(x+2)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{x+2-x}{(x+2)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{(x+2)^{2}}$
On multiplying both sides with x, we get
$x \frac{d y}{d x}=\frac{2 x}{(x+2)^{2}}$
$\Rightarrow x \frac{d y}{d x}=\frac{2}{x+2} \times \frac{x}{x+2}$
$\Rightarrow x \frac{d y}{d x}=\frac{x+2-x}{x+2} \times \frac{x}{x+2}$
$\Rightarrow x \frac{d y}{d x}=\left(1-\frac{x}{x+2}\right) \times \frac{x}{x+2}$
But, $y=\frac{x}{x+2}$
$\Rightarrow x \frac{d y}{d x}=(1-y) \times y$
$\therefore x \frac{d y}{d x}=(1-y) y$
Thus, $\frac{\mathrm{dy}}{\mathrm{dx}}=(1-\mathrm{y}) \mathrm{y}$

61. Question

If $\mathrm{y}=\log \left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right)$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}-1}{2 \mathrm{x}(\mathrm{x}+1)}$.

Answer

Given $\mathrm{y}=\log \left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right)$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{x}}\right)} \frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{\left(\frac{x+1}{\sqrt{x}}\right)}\left[\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{x+1}\left[\frac{d}{d x}(x)^{\frac{1}{2}}+\frac{d}{d x}(x)^{-\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{x+1}\left[\frac{1}{2}(x)^{\frac{1}{2}-1}+\left(-\frac{1}{2}\right)(x)^{-\frac{1}{2}-1}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{x+1}\left[\frac{1}{2}(x)^{-\frac{1}{2}}-\frac{1}{2}(x)^{-\frac{3}{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{2(x+1)}\left[\frac{1}{x^{\frac{1}{2}}}-\frac{1}{x^{\frac{3}{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{2(x+1)}\left[\frac{1}{\sqrt{x}}-\frac{1}{x \sqrt{x}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x}}{2(x+1)}\left[\frac{x-1}{x \sqrt{x}}\right]$
$\therefore \frac{d y}{d x}=\frac{x-1}{2 x(x+1)}$
Thus, $\frac{d y}{d x}=\frac{x-1}{2 x(x+1)}$

62. Question

If $y=\log \sqrt{\frac{1+\tan x}{1-\tan x}}$, prove that $\frac{d y}{d x}=\sec 2 x$.

Answer

Given $\mathrm{y}=\log \sqrt{\frac{1+\tan \mathrm{x}}{1-\tan \mathrm{x}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\log \sqrt{\frac{1+\tan x}{1-\tan x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\log \left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}\left[\left(\frac{1+\tan x}{1-\tan \mathrm{x}}\right)^{\frac{1}{2}}\right]$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\left(\frac{1+\tan x}{1-\tan x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left[\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=\left(\frac{1+\tan x}{1-\tan x}\right)^{-\frac{1}{2}} \frac{1}{2}\left(\frac{1+\tan x}{1-\tan x}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(\frac{1+\tan x}{1-\tan x}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1+\tan x}{1-\tan x}\right)^{-\frac{1}{2}}\left(\frac{1+\tan x}{1-\tan x}\right)^{-\frac{1}{2}} \frac{d}{d x}\left(\frac{1+\tan x}{1-\tan x}\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1+\tan \mathrm{x}}{1-\tan \mathrm{x}}\right)^{-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\frac{1+\tan \mathrm{x}}{1-\tan \mathrm{x}}\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\frac{1-\tan \mathrm{x}}{1+\tan \mathrm{x}}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1+\tan \mathrm{x}}{1-\tan \mathrm{x}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x} x\left[\frac{(1-\tan x) \frac{d}{d x}(1+\tan x)-(1+\tan x) \frac{d}{d x}(1-\tan x)}{(1-\tan x)^{2}}\right]\right.$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x}\left[\frac{(1-\tan x)\left(\frac{d}{d x}(1)+\frac{d}{d x}(\tan x)\right)-(1+\tan x)\left(\frac{d}{d x}(1)-\frac{d}{d x}(\tan x)\right)}{(1-\tan x)^{2}}\right]\right.$
We know $\frac{d}{d x}(\tan x)=\sec ^{2} x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x}\right)\left[\frac{(1-\tan x)\left(0+\sec ^{2} x\right)-(1+\tan x)\left(0-\sec ^{2} x\right)}{(1-\tan x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x}\right)\left[\frac{(1-\tan x) \sec ^{2} x+(1+\tan x) \sec ^{2} x}{(1-\tan x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x}\right)\left[\frac{(1-\tan x+1+\tan x) \sec ^{2} x}{(1-\tan x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(\frac{1-\tan x}{1+\tan x}\right)\left[\frac{2 \sec ^{2} x}{(1-\tan x)^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\sec ^{2} x}{(1+\tan x)(1-\tan x)}$
$\Rightarrow \frac{d y}{d x}=\frac{\sec ^{2} x}{1-\tan ^{2} x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\tan ^{2} \mathrm{x}}{1-\tan ^{2} \mathrm{x}}\left(\because \sec ^{2} \theta-\tan ^{2} \theta=1\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1+\frac{\sin ^{2} x}{\cos ^{2} x}}{1-\frac{\sin ^{2} x}{\cos ^{2} x}}$
$\Rightarrow \frac{d y}{d x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x-\sin ^{2} x}$
But, $\cos ^{2} \theta+\sin ^{2} \theta=1$ and $\cos ^{2} \theta-\sin ^{2} \theta=\cos (2 \theta)$.
$\Rightarrow \frac{d y}{d x}=\frac{1}{\cos 2 x}$
$\therefore \frac{d y}{d x}=\sec 2 x$
Thus, $\frac{d y}{d x}=\sec 2 x$

63. Question

If $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, prove that $2 x \frac{d y}{d x}=\sqrt{x}-\frac{1}{\sqrt{x}}$.

Answer

Given $y=\sqrt{x}+\frac{1}{\sqrt{x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(\sqrt{x})+\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})^{\frac{1}{2}}+\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})^{-\frac{1}{2}}$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{1}{2}-1}+\left(-\frac{1}{2}\right)(x)^{-\frac{1}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{-\frac{1}{2}}-\frac{1}{2}(x)^{-\frac{3}{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left[\frac{1}{\mathrm{x}^{\frac{1}{2}}}-\frac{1}{\mathrm{x}^{\frac{3}{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{1}{\sqrt{x}}-\frac{1}{x \sqrt{x}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{x-1}{x \sqrt{x}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{x-1}{2 x \sqrt{x}}$
$\Rightarrow 2 x \frac{d y}{d x}=\frac{x-1}{\sqrt{x}}$
$\Rightarrow 2 x \frac{d y}{d x}=\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}}$
$\therefore 2 \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\mathrm{x}}-\frac{1}{\sqrt{\mathrm{x}}}$
Thus, $2 \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\mathrm{x}}-\frac{1}{\sqrt{\mathrm{x}}}$

64. Question

If $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$, prove that $\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{y}{x}$.

Answer

Given $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}} \frac{d}{d x}\left(x \sin ^{-1} x\right)-\left(x \sin ^{-1} x\right) \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)}{\left(\sqrt{1-x^{2}}\right)^{2}}$

We have (uv)' = vu' $+u v^{\prime}($ product rule $)$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}}\left(\sin ^{-1} x \frac{d}{d x}(x)+x \frac{d}{d x}\left(\sin ^{-1} x\right)\right)-\left(x \sin ^{-1} x\right) \frac{d}{d x}\left(\left(1-x^{2}\right)^{\frac{1}{2}}\right)}{1-x^{2}}$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}$
$=\frac{\sqrt{1-x^{2}}\left(\sin ^{-1} x \times 1+x \times \frac{1}{\sqrt{1-x^{2}}}\right)-\left(x \sin ^{-1} x\right) \frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1-x^{2}\right)}{1-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}}\left(\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}\right)-\frac{x \sin ^{-1} x}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]}{1-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}}\left(\frac{\sqrt{1-x^{2}} \sin ^{-1} x+x}{\sqrt{1-x^{2}}}\right)-\frac{x \sin ^{-1} x}{2 \sqrt{1-x^{2}}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]}{1-x^{2}}$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}} \sin ^{-1} x+x-\frac{x \sin ^{-1} x}{2 \sqrt{1-x^{2}}}(-2 x)}{1-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{1-x^{2}} \sin ^{-1} x+x+\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} \times x}{1-x^{2}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=\sqrt{1-x^{2}} \sin ^{-1} x+x+\frac{x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=x+\sqrt{1-x^{2}} \sin ^{-1} x+\frac{x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{\left(\sqrt{1-x^{2}}\right)^{2} \sin ^{-1} x+x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{\left(1-x^{2}\right) \sin ^{-1} x+x^{2} \sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{\left(1-x^{2}+x^{2}\right) \sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\Rightarrow\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
But, $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} \Rightarrow \frac{y}{x}=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
$\therefore\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{y}{x}$
Thus, $\left(1-x^{2}\right) \frac{d y}{d x}=x+\frac{y}{x}$

65. Question

If $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, prove that $\frac{d y}{d x}=1-y^{2}$.

Answer

Given $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)$
Recall that $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu}^{\prime}-\mathrm{uv}^{\prime}}{\mathrm{v}^{2}}$ (quotient rule)
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right) \frac{d}{d x}\left(e^{x}-e^{-x}\right)-\left(e^{x}-e^{-x}\right) \frac{d}{d x}\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right)\left[\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}\left(e^{-x}\right)\right]-\left(e^{x}-e^{-x}\right)\left[\frac{d}{d x}\left(e^{x}\right)+\frac{d}{d x}\left(e^{-x}\right)\right]}{\left(e^{x}+e^{-x}\right)^{2}}$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right)\left[e^{x}-\left(-e^{-x}\right)\right]-\left(e^{x}-e^{-x}\right)\left[e^{x}+\left(-e^{-x}\right)\right]}{\left(e^{x}+e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right)\left[e^{x}+e^{-x}\right]-\left(e^{x}-e^{-x}\right)\left[e^{x}-e^{-x}\right]}{\left(e^{x}+e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}-\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2}$
But, $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
$\therefore \frac{d y}{d x}=1-y^{2}$
Thus, $\frac{d y}{d x}=1-y^{2}$

66. Question

If $y=(x-1) \log (x-1)-(x+1) \log (x+1)$, prove that $\frac{d y}{d x}=\log \left(\frac{x-1}{1+x}\right)$.

Answer

Given $\mathrm{y}=(\mathrm{x}-1) \log (\mathrm{x}-1)-(\mathrm{x}+1) \log (\mathrm{x}+1)$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[(x-1) \log (x-1)-(x+1) \log (x+1)]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[(x-1) \log (x-1)]-\frac{d}{d x}[(x+1) \log (x+1)]$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}[(x-1) \times \log (x-1)]-\frac{d}{d x}[(x+1) \times \log (x+1)]$
Recall that (uv) $=v u^{\prime}+u v^{\prime}$ (product rule)

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow \frac{d y}{d x}= \log (x-1) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}[\log (x-1)] \\
& \quad-\left(\log (x+1) \frac{d}{d x}(x+1)+(x+1) \frac{d}{d x}[\log (x+1)]\right) \\
& \Rightarrow \frac{d y}{d x}= \log (x-1)\left[\frac{d}{d x}(x)-\frac{d}{d x}(1)\right]+(x-1) \frac{d}{d x}[\log (x-1)] \\
& \quad-\left(\log (x+1)\left[\frac{d}{d x}(x)+\frac{d}{d x}(1)\right]+(x+1) \frac{d}{d x}[\log (x+1)]\right)
\end{aligned}
\end{aligned}
$$

We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(x)=1$.
Also, the derivative of a constant is 0 .

$$
\begin{aligned}
\Rightarrow \frac{d y}{d x}= & \log (x-1)[1-0]+(x-1) \times \frac{1}{x-1} \\
& \quad-\left(\log (x+1)[1+0]+(x+1) \times \frac{1}{x+1}\right)
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\log (x-1)+1-(\log (x+1)+1)$
$\Rightarrow \frac{d y}{d x}=\log (x-1)-\log (x+1)$
$\therefore \frac{d y}{d x}=\log \left(\frac{x-1}{x+1}\right)$
Thus, $\frac{d y}{d x}=\log \left(\frac{x-1}{x+1}\right)$

67. Question

If $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{2} \mathrm{e}^{\mathrm{x}} \cos \left(\mathrm{x}+\frac{\pi}{4}\right)$.

Answer

Given $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \cos (\mathrm{x})$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x} \cos x\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{x} \times \cos x\right)$
Recall that (uv)' = vu' $+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\cos x \frac{d}{d x}\left(e^{x}\right)+e^{x} \frac{d}{d x}(\cos x)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ and $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{d y}{d x}=\cos x\left(e^{x}\right)+e^{x}(-\sin x)$ [chain rule]
$\Rightarrow \frac{d y}{d x}=e^{x} \cos x-e^{x} \sin x$
$\Rightarrow \frac{d y}{d x}=e^{x}(\cos x-\sin x)$
$\Rightarrow \frac{d y}{d x}=e^{x}(\cos x-\sin x) \times \frac{\sqrt{2}}{\sqrt{2}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{2} e^{x}\left(\frac{\cos x-\sin x}{\sqrt{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\sqrt{2} e^{x}\left(\cos x \times \frac{1}{\sqrt{2}}-\sin x \times \frac{1}{\sqrt{2}}\right)$
We know $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{2} \mathrm{e}^{\mathrm{x}}\left(\cos \mathrm{x} \cos \frac{\pi}{4}-\sin \mathrm{x} \sin \frac{\pi}{4}\right)$
However, $\cos (A) \cos (B)-\sin (A) \sin (B)=\cos (A+B)$
$\therefore \frac{d y}{d x}=\sqrt{2} \mathrm{e}^{x} \cos \left(\mathrm{x}+\frac{\pi}{4}\right)$
Thus, $\frac{d y}{d x}=\sqrt{2} e^{x} \cos \left(x+\frac{\pi}{4}\right)$
68. Question

If $y=\frac{1}{2} \log \left(\frac{1-\cos 2 x}{1+\cos 2 x}\right)$, prove that $\frac{d y}{d x}=2 \operatorname{cosec} 2 x$.

Answer

Given $\mathrm{y}=\frac{1}{2} \log \left(\frac{1-\cos 2 \mathrm{x}}{1+\cos 2 \mathrm{x}}\right)$
We have $1+\cos (2 \theta)=2 \cos ^{2} \theta$ and $1+\cos (2 \theta)=2 \sin ^{2} \theta$.
$\Rightarrow \mathrm{y}=\frac{1}{2} \log \left(\frac{2 \sin ^{2} \mathrm{x}}{2 \cos ^{2} \mathrm{x}}\right)$
$\Rightarrow \mathrm{y}=\frac{1}{2} \log \left(\tan ^{2} \mathrm{x}\right)$
$\Rightarrow y=\frac{1}{2} \log (\tan x)^{2}$
$\Rightarrow y=\frac{1}{2} \times 2 \log (\tan x)\left[\because \log \left(a^{m}\right)=m \times \log (a)\right]$
$\Rightarrow \mathrm{y}=\log (\tan \mathrm{x})$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}[\log (\tan x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\tan x} \frac{d}{d x}(\tan x)$ [using chain rule]
However, $\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\tan x} \times \sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\frac{\sec ^{2} x}{\tan x}$
$\Rightarrow \frac{d y}{d x}=\frac{\left(\frac{1}{\cos ^{2} x}\right)}{\left(\frac{\sin x}{\cos x}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\cos ^{2} x} \times \frac{\cos x}{\sin x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{\sin x \cos x}$
We have $\sin (2 \theta)=2 \sin \theta \cos \theta$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\left(\frac{\sin 2 \mathrm{x}}{2}\right)}$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sin 2 x}$
$\therefore \frac{d y}{d x}=2 \operatorname{cosec} 2 x$
Thus, $\frac{d y}{d x}=2 \operatorname{cosec} 2 x$

69. Question

If $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$, prove that $\frac{d y}{d x}=\sin ^{-1} x$.

Answer

Given $\mathrm{y}=\mathrm{x} \sin ^{-1} \mathrm{x}+\sqrt{1-\mathrm{x}^{2}}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)+\frac{d}{d x}\left(\sqrt{1-x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(x \times \sin ^{-1} x\right)+\frac{d}{d x}\left[\left(1-x^{2}\right)^{\frac{1}{2}}\right]$
We have (uv)' $=\mathrm{vu}^{\prime}+\mathrm{uv}^{\prime}$ (product rule)
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x \frac{d}{d x}(x)+x \frac{d}{d x}\left(\sin ^{-1} x\right)+\frac{d}{d x}\left[\left(1-x^{2}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x \times 1+x \times \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1-x^{2}\right)$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2 \sqrt{1-x^{2}}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2 \sqrt{1-x^{2}}}[0-2 x]$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}-\frac{2 x}{2 \sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}}$
$\therefore \frac{d y}{d x}=\sin ^{-1} x$
Thus, $\frac{d y}{d x}=\sin ^{-1} x$
70. Question

If $y=\sqrt{x^{2}+a^{2}}$, prove that $y \frac{d y}{d x}-x=0$.

Answer

Given $\mathrm{y}=\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{x^{2}+a^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(x^{2}+a^{2}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(a^{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x^{2}+a^{2}}}\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(a^{2}\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x^{2}+a^{2}}}[2 x-0]$
$\Rightarrow \frac{d y}{d x}=\frac{2 x}{2 \sqrt{x^{2}+a^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{\sqrt{x^{2}+a^{2}}}$
But, $y=\sqrt{x^{2}+a^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{y}$
$\Rightarrow y \frac{d y}{d x}=x$
$\therefore y \frac{d y}{d x}-x=0$

Thus, $\mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{x}=0$

71. Question

If $y=e^{x}+e^{-x}$, prove that $\frac{d y}{d x}=\sqrt{y^{2}-4}$.

Answer

Given $y=e^{x}+e^{-x}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x}+e^{-x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{x}\right)+\frac{d}{d x}\left(e^{-x}\right)$
We know $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\Rightarrow \frac{d y}{d x}=e^{x}+e^{-x} \frac{d}{d x}(-x)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=e^{x}-e^{-x} \frac{d}{d x}(x)$
We have $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d y}{d x}=e^{x}-e^{-x} \times 1$
$\Rightarrow \frac{d y}{d x}=e^{x}-e^{-x}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(e^{x}-e^{-x}\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(e^{x}\right)^{2}+\left(e^{-x}\right)^{2}-2\left(e^{x}\right)\left(e^{-x}\right)}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(e^{x}\right)^{2}+\left(e^{-x}\right)^{2}-2\left(e^{x}\right)\left(e^{-x}\right)+2\left(e^{x}\right)\left(e^{-x}\right)-2\left(e^{x}\right)\left(e^{-x}\right)}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(\mathrm{e}^{\mathrm{x}}\right)^{2}+\left(\mathrm{e}^{-\mathrm{x}}\right)^{2}+2\left(\mathrm{e}^{\mathrm{x}}\right)\left(\mathrm{e}^{-\mathrm{x}}\right)-4\left(\mathrm{e}^{\mathrm{x}}\right)\left(\mathrm{e}^{-\mathrm{x}}\right)}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\left(e^{x}+e^{-x}\right)^{2}-4}$
But, $y=e^{x}+e^{-x}$
$\therefore \frac{d y}{d x}=\sqrt{y^{2}-4}$
Thus, $\frac{d y}{d x}=\sqrt{y^{2}-4}$

72. Question

If $y=\sqrt{a^{2}-x^{2}}$, prove that $y \frac{d y}{d x}+x=0$.

Answer

Given $y=\sqrt{a^{2}-x^{2}}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left[\left(a^{2}-x^{2}\right)^{\frac{1}{2}}\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(a^{2}-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(a^{2}-x^{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}}\left[\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}\right)=2 \mathrm{x}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}}[0-2 x]$
$\Rightarrow \frac{d y}{d x}=\frac{-2 x}{2 \sqrt{a^{2}-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{\sqrt{a^{2}-x^{2}}}$
But, $y=\sqrt{a^{2}-x^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{-x}{y}$
$\Rightarrow y \frac{d y}{d x}=-x$
$\therefore y \frac{d y}{d x}+x=0$
Thus, $y \frac{d y}{d x}+x=0$
73. Question

If $x y=4$, prove that $x\left(\frac{d y}{d x}+y^{2}\right)=3 y$.

Answer

Given $x y=4$
$\Rightarrow y=\frac{4}{x}$
On differentiating y with respect to x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{4}{x}\right)$
$\Rightarrow \frac{d y}{d x}=4 \frac{d}{d x}\left(\frac{1}{x}\right)$
$\Rightarrow \frac{d y}{d x}=4 \frac{d}{d x}\left(x^{-1}\right)$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=4\left(-1 \mathrm{x}^{-1-1}\right)$
$\Rightarrow \frac{d y}{d x}=-4 x^{-2}$
$\therefore \frac{d y}{d x}=-\frac{4}{x^{2}}$
Now, we will evaluate the LHS of the given equation.
$x\left(\frac{d y}{d x}+y^{2}\right)=x\left(-\frac{4}{x^{2}}+y^{2}\right)$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=x\left(\frac{-4+x^{2} y^{2}}{x^{2}}\right)$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=\frac{x^{2} y^{2}-4}{x}$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=\frac{(x y)^{2}-4}{x}$
However, $x y=4$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=\frac{4^{2}-4}{x}$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=\frac{12}{x}$
$\Rightarrow x\left(\frac{d y}{d x}+y^{2}\right)=3\left(\frac{4}{x}\right)$
$\therefore x\left(\frac{d y}{d x}+y^{2}\right)=3 y[\because x y=4]$
Thus, $x\left(\frac{d y}{d x}+y^{2}\right)=3 y$

74. Question

If prove that $\frac{d}{d x}\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}=\sqrt{a^{2}-x^{2}}$.

Answer

Let $y=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}$
On differentiating y with respect to x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{d}{d x}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{d}{d x}\left(x \sqrt{a^{2}-x^{2}}\right)+\frac{d}{d x}\left(a^{2} \sin ^{-1} \frac{x}{a}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\frac{d}{d x}\left(x \times \sqrt{a^{2}-x^{2}}\right)+a^{2} \frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)\right]$
We have (uv)' = vu' + uv' (product rule)
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}} \frac{d}{d x}(x)+x \frac{d}{d x}\left(\sqrt{a^{2}-x^{2}}\right)+a^{2} \frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}} \frac{d}{d x}(x)+x \frac{d}{d x}\left\{\left(a^{2}-x^{2}\right)^{\frac{1}{2}}\right\}+a^{2} \frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)\right]$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}} \times 1+x\left\{\frac{1}{2}\left(a^{2}-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(a^{2}-x^{2}\right)\right\}\right.$

$$
\left.+\mathrm{a}^{2}\left\{\frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^{2}}} \frac{d}{d x}\left(\frac{x}{a}\right)\right\}\right]
$$

$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\frac{x}{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}\left\{\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right\}+\frac{a^{2}}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}}\left\{\frac{1}{a} \frac{d}{d x}(x)\right\}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\frac{x}{2 \sqrt{a^{2}-x^{2}}}\left\{\frac{d}{d x}\left(a^{2}\right)-\frac{d}{d x}\left(x^{2}\right)\right\}+\frac{a^{2}}{\sqrt{a^{2}-x^{2}}} \frac{d}{d x}(x)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\frac{x}{2 \sqrt{a^{2}-x^{2}}}\{0-2 x\}+\frac{a^{2}}{\sqrt{a^{2}-x^{2}}} \times 1\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\frac{x(-2 x)}{2 \sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{\sqrt{a^{2}-x^{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{\sqrt{a^{2}-x^{2}}}+\frac{a^{2}}{\sqrt{a^{2}-x^{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left[\sqrt{a^{2}-x^{2}}+\sqrt{a^{2}-x^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \times 2 \sqrt{a^{2}-x^{2}}$
$\therefore \frac{d y}{d x}=\sqrt{a^{2}-x^{2}}$
Thus, $\frac{d}{d x}\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}=\sqrt{a^{2}-x^{2}}$

Exercise 11.3

1. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left\{2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right\}, \frac{1}{\sqrt{2}}<\mathrm{x}<1$

Answer

$y=\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\}$
let $x=\cos \theta$
Now
$y=\cos ^{-1}\left\{2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right\}$
$=\cos ^{-1}\left\{2 \cos \theta \sqrt{\sin ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$=\cos ^{-1}(2 \cos \theta \sin \theta)$
$=\cos ^{-1}(\sin 2 \theta)$
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
Considering the limits,
$\frac{1}{\sqrt{2}}<x<1$
$\Rightarrow \frac{1}{\sqrt{2}}<\cos \theta<1$
$\Rightarrow 0<\theta<\frac{\pi}{4}$
$\Rightarrow 0<2 \theta<\frac{\pi}{2}$
$\Rightarrow 0>-2 \theta>-\frac{\pi}{2}$
$\Rightarrow \frac{\pi}{2}>\frac{\pi}{2}-2 \theta>\frac{\pi}{2}-\frac{\pi}{2}$
$\Rightarrow 0<\frac{\pi}{2}-2 \theta<\frac{\pi}{2}$
Therefore,
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-2 \theta\right)\right)$
$y=\left(\frac{\pi}{2}-2 \theta\right)$
$y=\frac{\pi}{2}-2 \cos ^{-1} x$
Differentiating w.r.t x,
$\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=0-2\left(\frac{-1}{\sqrt{1-x^{2}}}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}$
2. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left\{\sqrt{\frac{1+\mathrm{x}}{2}}\right\},-1<\mathrm{x}<1$

Answer

$y=\cos ^{-1}\left\{\sqrt{\frac{1+x}{2}}\right\}$
let $\mathrm{x}=\cos 2 \theta$
Now
$y=\cos ^{-1}\left\{\sqrt{\frac{1+\cos 2 \theta}{2}}\right\}$
$y=\cos ^{-1}\left\{\sqrt{\frac{2 \cos ^{2} \theta}{2}}\right\}$
Using $\cos 2 \theta=2 \cos ^{2} \theta-1$
$y=\cos ^{-1}(\cos \theta)$
Considering the limits,
$-1<x<1$
$-1<\cos 2 \theta<1$
$0<2 \theta<\pi$
$0<\theta<\frac{\pi}{2}$
Now, $y=\cos ^{-1}(\cos \theta)$
$y=\theta$
$y=\frac{1}{2} \cos ^{-1} x$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{1}{2}\left(-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$

3. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\sqrt{\frac{1-\mathrm{x}}{2}}\right\}, 0<\mathrm{x}<1$

Answer

$y=\sin ^{-1}\left\{\sqrt{\frac{1-x}{2}}\right\}$
let $\mathrm{x}=\boldsymbol{\operatorname { c o s } 2 \theta}$
Now
$y=\sin ^{-1}\left\{\sqrt{\frac{1-\cos 2 \theta}{2}}\right\}$
$y=\sin ^{-1}\left\{\sqrt{\frac{2 \sin ^{2} \theta}{2}}\right\}$
Using $\cos 2 \theta=1-2 \sin ^{2} \theta$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0<x<1$
$0<\cos 2 \theta<1$
$0<2 \theta<\frac{\pi}{2}$
$0<\theta<\frac{\pi}{4}$
Now, $y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$\mathrm{y}=\frac{1}{2} \cos ^{-1} \mathrm{x}$
Differentiating w.r.t x , we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$

4. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}, 0<x<1$

Answer

$y=\sin ^{-1}\left\{\sqrt{1-x^{2}}\right\}$
let $x=\cos \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{1-\cos ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}(\sin \theta)$
Considering the limits,
$0<x<1$
$0<\cos \theta<1$
$0<\theta<\frac{\pi}{2}$
Now, $y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\cos ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$

5. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{x}{\sqrt{a^{2}-x^{2}}}\right\}, a<x<a$

Answer

$y=\tan ^{-1}\left\{\frac{x}{\sqrt{a^{2}-x^{2}}}\right\}$
Let $x=a \sin \theta$
Now
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{\cos \theta}\right\}$
$y=\tan ^{-1}(\tan \theta)$
Considering the limits,
$-\mathrm{a}<\mathrm{x}<\mathrm{a}$
$-\mathrm{a}<\mathrm{a} \sin \theta<\mathrm{a}$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
Now, $y=\tan ^{-1}(\tan \theta)$
$y=\theta$
$y=\sin ^{-1}\left(\frac{x}{a}\right)$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1}\left(\frac{x}{a}\right)\right)$
$\frac{d y}{d x}=\frac{a}{\sqrt{a^{2}-x^{2}}} \times \frac{1}{a}$
$\frac{d y}{d x}=\frac{1}{\sqrt{a^{2}-x^{2}}}$

6. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$

Answer

$y=\sin ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$
Let $x=a \tan \theta$
Now
$y=\sin ^{-1}\left\{\frac{a \tan \theta}{\sqrt{a^{2} \tan ^{2} \theta+a^{2}}}\right\}$
Using $1+\tan ^{2} \theta=\sec ^{2} \theta$
$y=\sin ^{-1}\left\{\frac{\operatorname{atan} \theta}{a \sqrt{\tan ^{2} \theta+1}}\right\}$
$y=\sin ^{-1}\left\{\frac{a \tan \theta}{a \sqrt{\sec ^{2} \theta}}\right\}$
$y=\sin ^{-1}\left\{\frac{\tan \theta}{\sec \theta}\right\}$
$y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\tan ^{-1}\left(\frac{x}{a}\right)$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(\frac{x}{a}\right)\right)$
$\frac{d y}{d x}=\frac{a^{2}}{a^{2}+x^{2}} \times \frac{1}{a}$
$\frac{d y}{d x}=\frac{a}{a^{2}+x^{2}}$

7. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(2 x^{2}-1\right), 0<x<1$

Answer

$y=\sin ^{-1}\left\{2 x^{2}-1\right\}$
let $x=\cos \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{2 \cos ^{2} \theta-1}\right\}$
Using $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\sin ^{-1}(\cos 2 \theta)$
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
Considering the limits,
$0<x<1$
$0<\cos \theta<1$
$0<\theta<\frac{\pi}{2}$
$0<2 \theta<\pi$
$0>-2 \theta>-\pi$
$\frac{\pi}{2}>\frac{\pi}{2}-2 \theta>-\frac{\pi}{2}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
$y=\frac{\pi}{2}-2 \theta$
$y=\frac{\pi}{2}-2 \cos ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)$
$\frac{d y}{d x}=0-2\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}$

8. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(1-2 x^{2}\right), 0<x<1$

Answer

$y=\sin ^{-1}\left\{1-2 x^{2}\right\}$
let $x=\sin \theta$
Now
$y=\sin ^{-1}\left\{\sqrt{1-2 \sin ^{2} \theta}\right\}$
Using $1-2 \sin ^{2} \theta=\cos 2 \theta$
$y=\sin ^{-1}(\cos 2 \theta)$
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$

Considering the limits,
$0<x<1$
$0<\sin \theta<1$
$0<\theta<\frac{\pi}{2}$
$0<2 \theta<\pi$
$0>-2 \theta>-\pi$
$\frac{\pi}{2}>\frac{\pi}{2}-2 \theta>-\frac{\pi}{2}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\frac{\pi}{2}-2 \theta\right)\right\}$
$y=\frac{\pi}{2}-2 \theta$
$y=\frac{\pi}{2}-2 \sin ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-2 \cos ^{-1} x\right)$
$\frac{d y}{d x}=0-2\left(\frac{1}{\sqrt{1-x^{2}}}\right)$
$\frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}$

9. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$

Answer

$y=\cos ^{-1}\left\{\frac{x}{\sqrt{x^{2}+a^{2}}}\right\}$
Let $x=a \cot \theta$
Now
$y=\cos ^{-1}\left\{\frac{a \cot \theta}{\sqrt{a^{2} \cot ^{2} \theta+a^{2}}}\right\}$
Using $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$y=\cos ^{-1}\left\{\frac{a \cot \theta}{a \sqrt{\cot ^{2} \theta+1}}\right\}$
$y=\cos ^{-1}\left\{\frac{a \cot \theta}{a \sqrt{\operatorname{cosec}^{2} \theta}}\right\}$
$y=\cos ^{-1}\left\{\frac{\cot \theta}{\operatorname{cosec} \theta}\right\}$
$y=\cos ^{-1}(\cos \theta)$
$y=\theta$
$y=\cot ^{-1}\left(\frac{x}{a}\right)$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1}\left(\frac{x}{a}\right)\right)$
$\frac{d y}{d x}=\frac{-a^{2}}{a^{2}+x^{2}} \times \frac{1}{a}$
$\frac{d y}{d x}=\frac{-a}{a^{2}+x^{2}}$

10. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\},-\frac{3 \pi}{4}<x<\frac{\pi}{4}$

Answer

$y=\sin ^{-1}\left\{\frac{\sin x+\cos x}{\sqrt{2}}\right\}$
Now
$y=\sin ^{-1}\left\{\sin x \frac{1}{\sqrt{2}}+\cos x \frac{1}{\sqrt{2}}\right\}$
$y=\sin ^{-1}\left\{\sin x \cos \left(\frac{\pi}{4}\right)+\cos x \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(x+\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-\frac{3 \pi}{4}<x<\frac{\pi}{4}$
Differentiating it w.r.t x ,
$y=x+\frac{\pi}{4}$
$\frac{d y}{d x}=1$
11. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}, \frac{\pi}{4}<x<\frac{\pi}{4}$

Answer

$y=\cos ^{-1}\left\{\frac{\cos x+\sin x}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\cos x \frac{1}{\sqrt{2}}+\sin x \frac{1}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\cos x \cos \left(\frac{\pi}{4}\right)+\sin x \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$y=\cos ^{-1}\left\{\cos \left(x-\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-\frac{\pi}{4}<x<\frac{\pi}{4}$
$-\frac{\pi}{2}<x-\frac{\pi}{4}<0$
Now,
$y=-x+\frac{\pi}{4}$
Differentiating it w.r.t x ,
$\frac{d y}{d x}=-1$

12. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{\mathrm{x}}{1+\sqrt{1-\mathrm{x}^{2}}}\right\},-1<\mathrm{x}<1$

Answer

$y=\tan ^{-1}\left\{\frac{x}{1+\sqrt{1-x^{2}}}\right\}$
Let $\mathrm{x}=\sin \theta$
Now
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{1-\sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\sqrt{\cos ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\}$
Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\}$
$\mathrm{y}=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$
Now,
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$y=\frac{\theta}{2}$
$y=\frac{1}{2} \sin ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \sin ^{-1} x\right)$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}$

13. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{x}{a+\sqrt{a^{2}-x^{2}}}\right\},-a<x<a$

Answer

$y=\tan ^{-1}\left\{\frac{x}{a+\sqrt{a^{2}-x^{2}}}\right\}$
Let $x=a \sin \theta$
Now
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a+\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\tan ^{-1}\left\{\frac{a \sin \theta}{a+a \sqrt{\cos ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\sin \theta}{1+\cos \theta}\right\}$
Using $2 \cos ^{2} \theta=1+\cos \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
Considering the limits,
$-\mathrm{a}<\mathrm{x}<\mathrm{a}$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{4}$
Now,
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$y=\frac{\theta}{2}$
$y=\frac{1}{2} \sin ^{-1} \frac{x}{a}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \sin ^{-1} \frac{x}{a}\right)$
$\frac{d y}{d x}=\frac{a}{2 \sqrt{a^{2}-x^{2}}} \times \frac{1}{a}$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}-x^{2}}}$

14. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\},-1<x<1$

Answer

$y=\sin ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\}$
Let $x=\sin \theta$
Now
$y=\sin ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\}$
Now
$y=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\pi}{4}\right)+\cos \theta \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$

Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{2}+\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{\pi}{2}+\frac{\pi}{4}$
$-\frac{\pi}{4}<\theta+\frac{\pi}{4}<\frac{3 \pi}{4}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
$y=\theta+\frac{\pi}{4}$
$y=\sin ^{-1} x+\frac{\pi}{4}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x+\frac{\pi}{4}\right)$
$\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$

15. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left\{\frac{\mathrm{x}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{2}}\right\},-1<\mathrm{x}<1$

Answer

$y=\cos ^{-1}\left\{\frac{x+\sqrt{1-x^{2}}}{\sqrt{2}}\right\}$
Let $x=\sin \theta$
Now
$y=\cos ^{-1}\left\{\frac{\sin \theta+\sqrt{1-\sin ^{2} \theta}}{\sqrt{2}}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\cos ^{-1}\left\{\frac{\sin \theta+\cos \theta}{\sqrt{2}}\right\}$
Now
$y=\cos ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\cos ^{-1}\left\{\sin \theta \sin \left(\frac{\pi}{4}\right)+\cos \theta \cos \left(\frac{\pi}{4}\right)\right\}$
Using $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\}$
Considering the limits,
$-1<x<1$
$-1<\sin \theta<1$
$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$-\frac{\pi}{2}-\frac{\pi}{4}<\theta-\frac{\pi}{4}<\frac{\pi}{2}-\frac{\pi}{4}$
$-\frac{3 \pi}{4}<\theta-\frac{\pi}{4}<\frac{\pi}{4}$
Now,
$y=\cos ^{-1}\left\{\cos \left(\theta-\frac{\pi}{4}\right)\right\}$
$y=-\left(\theta-\frac{\pi}{4}\right)$
$y=-\sin ^{-1} x+\frac{\pi}{4}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(-\sin ^{-1} x+\frac{\pi}{4}\right)$
$\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$

16. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{4 \mathrm{x}}{1-4 \mathrm{x}^{2}}\right\},-\frac{1}{2}<\mathrm{x}<\frac{1}{2}$

Answer

$y=\tan ^{-1}\left\{\frac{4 \mathrm{x}}{1-4 \mathrm{x}^{2}}\right\}$
Let $2 \mathrm{x}=\tan \theta$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$
Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\frac{1}{2}<x<\frac{1}{2}$
$-1<2 x<1$
$-1<\tan \theta<1$
$-\frac{\pi}{4}<\theta<\frac{\pi}{4}$
$-\frac{\pi}{2}<2 \theta<\frac{\pi}{2}$
Now,
$y=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}(2 x)$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2 x\right)$
$\frac{d y}{d x}=2 \times \frac{2}{1+(2 x)^{2}}$
$\frac{d y}{d x}=\frac{4}{1+4 x^{2}}$

17. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{2^{x+1}}{1-4^{x}}\right),-\infty<x<0$

Answer

$y=\tan ^{-1}\left\{\frac{2^{x+1}}{1-4^{x}}\right\}$
Let $2^{x}=\tan \theta$
$y=\tan ^{-1}\left\{\frac{2 \times 2^{x}}{1-\left(2^{x}\right)^{2}}\right\}$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$
Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\infty<x<0$
$2^{-\infty}<2^{x}<2^{0}$
$0<\tan \theta<1$
$0<\theta<\frac{\pi}{4}$
$0<2 \theta<\frac{\pi}{2}$
Now,
$y=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}\left(2^{x}\right)$

Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2^{x}\right)$
$\frac{d y}{d x}=2 \times \frac{2^{x} \log 2}{1+\left(2^{x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2^{x+1} \log 2}{1+4^{x}}$

18. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{2 \mathrm{a}^{\mathrm{x}}}{1-\mathrm{a}^{2 \mathrm{x}}}\right), \mathrm{a}<1,-\infty<\mathrm{x}<0$

Answer

$y=\tan ^{-1}\left\{\frac{2 a^{x}}{1-a^{2 x}}\right\}$
Let $\mathrm{a}^{\mathrm{x}}=\tan \theta$
$y=\tan ^{-1}\left\{\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right\}$
Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$y=\tan ^{-1}(\tan 2 \theta)$
Considering the limits,
$-\infty<x<0$
$\mathrm{a}^{-\infty}<\mathrm{a}^{\mathrm{x}}<\mathrm{a}^{0}$
$0<\tan \theta<1$
$0<\theta<\frac{\pi}{4}$
$0<2 \theta<\frac{\pi}{2}$
Now,
$y=\tan ^{-1}(\tan 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}\left(a^{x}\right)$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} a^{x}\right)$
$\frac{d y}{d x}=2 \times \frac{a^{x} \log a}{1+\left(a^{x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2 a^{x} \log a}{1+a^{2 x}}$

19. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left\{\frac{\sqrt{1+\mathrm{x}}+\sqrt{1-\mathrm{x}}}{2}\right\}, 0<\mathrm{x}<1$

Answer

$y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}$
Let $\mathrm{x}=\cos 2 \theta$
Now
$y=\sin ^{-1}\left\{\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{2}\right\}$
Using $1-2 \sin ^{2} \theta=\cos 2 \theta$ and $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\sin ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{2}\right\}$
Now
$y=\sin ^{-1}\left\{\sin \theta \frac{1}{\sqrt{2}}+\cos \theta \frac{1}{\sqrt{2}}\right\}$
$y=\sin ^{-1}\left\{\sin \theta \cos \left(\frac{\pi}{4}\right)+\cos \theta \sin \left(\frac{\pi}{4}\right)\right\}$
Using $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\mathrm{y}=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
Considering the limits,
$0<x<1$
$0<\cos 2 \theta<1$
$0<2 \theta<\frac{\pi}{2}$
$0<\theta<\frac{\pi}{4}$
Now,
$y=\sin ^{-1}\left\{\sin \left(\theta+\frac{\pi}{4}\right)\right\}$
$y=\theta+\frac{\pi}{4}$
$y=\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \cos ^{-1} x+\frac{\pi}{4}\right)$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \times \frac{-1}{\sqrt{1-\mathrm{x}^{2}}}$
$\frac{d y}{d x}=\frac{-1}{2 \sqrt{1-x^{2}}}$

20. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}-1}{\mathrm{ax}}\right\}, \mathrm{x} \neq 0$

Answer

$y=\tan ^{-1}\left\{\frac{\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}-1}{\mathrm{ax}}\right\}$
Let $\mathrm{ax}=\tan \theta$
Now
$y=\tan ^{-1}\left\{\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right\}$
Using $\sec ^{2} \theta=1+\tan ^{2} \theta$
$y=\tan ^{-1}\left\{\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right\}$
$y=\tan ^{-1}\left\{\frac{\sec \theta-1}{\tan \theta}\right\}$
$y=\tan ^{-1}\left\{\frac{1-\cos \theta}{\sin \theta}\right\}$
Using $2 \sin ^{2} \theta=1-\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right\}$
$y=\tan ^{-1}\left\{\tan \frac{\theta}{2}\right\}$
$y=\frac{\theta}{2}$
$y=\frac{1}{2} \tan ^{-1} a x$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{2} \tan ^{-1} a x\right)$
$\frac{d y}{d x}=\frac{1}{2} \times \frac{a}{1+(a x)^{2}}$
$\frac{d y}{d x}=\frac{a}{2\left(1+a^{2} x^{2}\right)}$

21. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{\sin x}{1+\cos x}\right),-\pi<x<\pi$
Answer
$y=\tan ^{-1}\left\{\frac{\sin x}{1+\cos x}\right\}$
Function y is defined for all real numbers where $\cos \mathrm{x} \neq-1$
Using $2 \cos ^{2} \theta=1+\cos 2 \theta$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\tan ^{-1}\left\{\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right\}$
$\mathrm{y}=\tan ^{-1}\left\{\tan \frac{\mathrm{x}}{2}\right\}$
$y=\frac{x}{2}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{2}\right)$
$\frac{d y}{d x}=\frac{1}{2}$
22. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(\frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right)$

Answer

$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+x^{2}}}\right\}$
Let $x=\cot \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{1+\cot ^{2} \theta}}\right\}$
Using, $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
Now
$y=\sin ^{-1}\left\{\frac{1}{\sqrt{\operatorname{cosec}^{2} \theta}}\right\}$
$y=\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \theta}\right\}$
$y=\sin ^{-1}(\sin \theta)$
$y=\theta$
$y=\cot ^{-1} x$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1} x\right)$
$\frac{d y}{d x}=-\frac{1}{1+x^{2}}$

23. Question

Differentiate the following functions with respect to x :
$\cos ^{-1}\left(\frac{1-\mathrm{x}^{2 \mathrm{n}}}{1+\mathrm{x}^{2 \mathrm{n}}}\right), 0<\mathrm{x}<\infty$

Answer

$y=\cos ^{-1}\left\{\frac{1-x^{2 n}}{1+x^{2 n}}\right\}$
Let $\mathrm{x}^{\mathrm{n}}=\tan \theta$
Now
$y=\cos ^{-1}\left\{\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right\}$
Using $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$y=\cos ^{-1}\{\cos 2 \theta\}$
Considering the limits,
$0<x<\infty$
$0<x^{n}<\infty$
$0<\theta<\frac{\pi}{2}$
Now,
$y=\cos ^{-1}(\cos 2 \theta)$
$y=2 \theta$
$y=\tan ^{-1}\left(x^{n}\right)$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(x^{\mathrm{n}}\right)\right)$
$\frac{d y}{d x}=\frac{2 n x^{n-1}}{1+\left(x^{n}\right)^{2}}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{n} \mathrm{x}^{\mathrm{n}-1}}{1+\mathrm{x}^{2 \mathrm{n}}}$

24. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right), x \in R$

Answer

$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)$
Using, $\sec ^{-1} \mathrm{x}=\frac{1}{\cos ^{-1} \mathrm{x}}$
$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Using, $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$
$y=\frac{\pi}{2}$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}\right)$
$\frac{d y}{d x}=0$

25. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{a+x}{1-a x}\right)$

Answer

$y=\tan ^{-1}\left(\frac{a+x}{1-a x}\right)$
Using, $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$y=\tan ^{-1} x+\tan ^{-1} a$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} x+\tan ^{-1} a\right)$
$\frac{d y}{d x}=\frac{1}{1+x^{2}}+0$
$\frac{d y}{d x}=\frac{1}{1+x^{2}}$

26. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{x a}}\right)$

Answer

$y=\tan ^{-1}\left(\frac{\sqrt{x}+\sqrt{a}}{1-\sqrt{x a}}\right)$
Using, $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$y=\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{a}$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} \sqrt{x}+\tan ^{-1} \sqrt{a}\right)$
$\frac{d y}{d x}=\frac{1}{1+(\sqrt{x})^{2}} \frac{d}{d x}(\sqrt{x})$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{x}\left(1+x^{2}\right)}$

27. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{a+b \tan x}{b-a \tan x}\right)$

Answer

$y=\tan ^{-1}\left(\frac{a+b \tan x}{b-a \tan x}\right)$
Dividing numerator and denominator by b
$y=\tan ^{-1}\left(\frac{\frac{a}{b}+\tan x}{1-\frac{a}{b} \tan x}\right)$
$y=\tan ^{-1}\left(\frac{\tan \left(\tan ^{-1} \frac{a}{b}\right)+\tan x}{1-\tan \left(\tan ^{-1} \frac{a}{b}\right) \tan x}\right)$
Using, $\tan (x+y)=\left(\frac{\tan x+\tan y}{1-\tan x \tan y}\right)$
$y=\tan ^{-1}\left(\tan \left(\tan ^{-1} \frac{a}{b}+x\right)\right)$
$y=\tan ^{-1} \frac{a}{b}+x$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} \frac{a}{b}+x\right)$
$\frac{d y}{d x}=0+1$
$\frac{d y}{d x}=1$

28. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{a+b x}{b-a x}\right)$

Answer

$y=\tan ^{-1}\left(\frac{a+b x}{b-a x}\right)$
Dividing numerator and denominator by b
$y=\tan ^{-1}\left(\frac{\frac{a}{b}+x}{1-\frac{a}{b} x}\right)$

Using, $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$y=\tan ^{-1} \frac{a}{b}+\tan ^{-1} x$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} \frac{a}{b}+\tan ^{-1} x\right)$
$\frac{d y}{d x}=0+\frac{1}{1+x^{2}}$
$\frac{d y}{d x}=\frac{1}{1+x^{2}}$

29. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left(\frac{x-a}{x+a}\right)$

Answer

$y=\tan ^{-1}\left(\frac{x-a}{x+a}\right)$
Dividing numerator and denominator by x
$y=\tan ^{-1}\left(\frac{1-\frac{a}{x}}{1+1 \times \frac{a}{x}}\right)$
Using, $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
$y=\tan ^{-1} 1-\tan ^{-1} \frac{a}{x}$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1} 1-\tan ^{-1} \frac{a}{x}\right)$
$\frac{d y}{d x}=0-\frac{1}{1+\left(\frac{a}{x}\right)^{2}} \frac{d}{d x}\left(\frac{a}{x}\right)$
$\frac{d y}{d x}=-\frac{x^{2}}{a^{2}+x^{2}}\left(-\frac{a}{x^{2}}\right)$
$\frac{d y}{d x}=\frac{a}{a^{2}+x^{2}}$

30. Question

Differentiate the following functions with respect to x :

$$
\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)
$$

Answer

$y=\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)$

Arranging the terms in equation
$y=\tan ^{-1}\left(\frac{3 x-2 x}{1+3 x \times 2 x}\right)$
Using, $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
$y=\tan ^{-1}(3 x)-\tan ^{-1}(2 x)$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}(3 x)-\tan ^{-1}(2 x)\right)$
$\frac{d y}{d x}=\frac{3}{1+(3 x)^{2}}-\frac{2}{1+(2 x)^{2}}$
$\frac{d y}{d x}=\frac{3}{1+9 x^{2}}-\frac{2}{1+4 x^{2}}$

31. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{5 x}{1-6 x^{2}}\right\},-\frac{1}{\sqrt{6}}<x<\frac{1}{\sqrt{6}}$

Answer

$y=\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)$
Arranging the terms in equation
$y=\tan ^{-1}\left(\frac{3 x+2 x}{1-3 x \times 2 x}\right)$
Using, $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$y=\tan ^{-1}(3 x)+\tan ^{-1}(2 x)$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}(3 x)+\tan ^{-1}(2 x)\right)$
$\frac{d y}{d x}=\frac{3}{1+(3 x)^{2}}+\frac{2}{1+(2 x)^{2}}$
$\frac{d y}{d x}=\frac{3}{1+9 x^{2}}+\frac{2}{1+4 x^{2}}$

32. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{\cos x+\sin x}{\cos x-\sin x}\right\},-\frac{\pi}{4}<x<\frac{\pi}{4}$

Answer

$y=\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)$
Dividing numerator and denominator by cosx
$y=\tan ^{-1}\left(\frac{1+\frac{\sin x}{\cos x}}{1-\frac{\sin x}{\cos x}}\right)$
$y=\tan ^{-1}\left(\frac{1+\tan x}{1-\tan x}\right)$
$y=\tan ^{-1}\left(\frac{\tan \left(\frac{\pi}{4}\right)+\tan x}{1-\tan \left(\frac{\pi}{4}\right) \tan x}\right)$
Using, $\tan (x+y)=\left(\frac{\tan x+\tan y}{1-\tan x \tan y}\right)$
$y=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+x\right)\right)$
$y=\frac{\pi}{4}+x$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}+x\right)$
$\frac{d y}{d x}=0+1$
$\frac{d y}{d x}=1$

33. Question

Differentiate the following functions with respect to x :
$\tan ^{-1}\left\{\frac{x^{1 / 3}+a^{1 / 3}}{1-(a x)^{1 / 3}}\right\}$

Answer

$y=\tan ^{-1}\left(\frac{x^{\frac{1}{3}}+a^{\frac{1}{3}}}{1-(a x)^{\frac{1}{3}}}\right)$
Arranging the terms in equation
$y=\tan ^{-1}\left(\frac{x^{\frac{1}{3}}+a^{\frac{1}{3}}}{1-x^{\frac{1}{3}} \times a^{\frac{1}{3}}}\right)$
Using, $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$y=\tan ^{-1}\left(x^{\frac{1}{3}}\right)+\tan ^{-1}\left(a^{\frac{1}{3}}\right)$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}\left(x^{\frac{1}{3}}\right)+\tan ^{-1}\left(a^{\frac{1}{3}}\right)\right)$
$\frac{d y}{d x}=\frac{3}{1+\left(x^{\frac{1}{3}}\right)^{2}} \times \frac{d}{d x}\left(x^{\frac{1}{3}}\right)$
$\frac{d y}{d x}=\frac{3}{1+\left(x^{\frac{1}{3}}\right)^{2}} \times \frac{1}{3}\left(x^{-\frac{2}{3}}\right)$
$\frac{d y}{d x}=\frac{1}{3 x^{\frac{2}{3}}\left(1+\left(x^{\frac{1}{3}}\right)^{2}\right)}$

34. Question

Differentiate the following functions with respect to x :
$\sin ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$

Answer

$y=\sin ^{-1}\left\{\frac{2^{x+1}}{1+4^{x}}\right\}$
For function to be defined
$-1 \leq \frac{2^{\mathrm{x}+1}}{1+4^{\mathrm{x}}} \leq 1$
Since the quantity is positive always
$\Rightarrow 0 \leq \frac{2^{\mathrm{x}+1}}{1+4^{\mathrm{x}}} \leq 1$
$\Rightarrow 0<2^{x+1} \leq 1+4^{x}$
$\Rightarrow 0<2 \leq 2^{-x}+2^{x}$
This condition is always true, hence function is always defined.
$y=\sin ^{-1}\left\{\frac{2 \times 2^{x}}{1+\left(2^{2}\right)^{x}}\right\}$
Let $2^{x}=\tan \theta$
$y=\sin ^{-1}\left\{\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right\}$
Using $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
Now,
$y=\sin ^{-1}(\sin 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}\left(2^{x}\right)$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 2^{x}\right)$
$\frac{d y}{d x}=2 \times \frac{2^{x} \log 2}{1+\left(2^{x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2^{x+1} \log 2}{1+4^{x}}$

35. Question

If $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right), 0<x<1$, prove that $\frac{d y}{d x}=\frac{4}{1+x^{2}}$.

Answer

$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)$
Put $x=\tan \theta$
Using, $\sec ^{-1} x=\frac{1}{\cos ^{-1} x}$
$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
Using, $\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$ and $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$y=\sin ^{-1}(\sin 2 \theta)+\cos ^{-1}(\cos 2 \theta)$
Considering the limits
$0<x<1$
$0<\tan \theta<1$
$0<\theta<\frac{\pi}{4}$
$0<2 \theta<\frac{\pi}{2}$
Now,
$y=2 \theta+2 \theta$
$y=4 \theta$
$y=4 \tan ^{-1} x$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(4 \tan ^{-1} x\right)$
$\frac{d y}{d x}=\frac{4}{1+x^{2}}$
36. Question

If $y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right), 0<x<\infty$, prove that $\frac{d y}{d x}=\frac{2}{1+x^{2}}$.

Answer

$y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)$
Put $x=\tan \theta$
$y=\sin ^{-1}\left(\frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{1+\tan ^{2} \theta}}\right)$
Using, $\sec ^{2} \theta=1+\tan ^{2} \theta$
$y=\sin ^{-1}\left(\frac{\tan \theta}{\sqrt{\sec ^{2} \theta}}\right)+\cos ^{-1}\left(\frac{1}{\sqrt{\sec ^{2} \theta}}\right)$
$y=\sin ^{-1}\left(\frac{\tan \theta}{\sec \theta}\right)+\cos ^{-1}\left(\frac{1}{\sec \theta}\right)$
$y=\sin ^{-1}(\sin \theta)+\cos ^{-1}(\cos \theta)$
Considering the limits
$0<x<\infty$
$0<\tan \theta<\infty$
$0<\theta<\frac{\pi}{2}$
Now,
$y=\theta+\theta$
$y=2 \theta$
$y=2 \tan ^{-1} x$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\frac{d y}{d x}=\frac{2}{1+x^{2}}$

37 A. Question

Differentiate the following with respect to x :
$\cos -1(\sin x)$

Answer

$y=\cos ^{-1}(\sin x)$
Function is defined for all x
$y=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-x\right)\right)$
$y=\frac{\pi}{2}-x$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}-x\right)$
$\frac{d y}{d x}=-1$

37 B. Question

Differentiate the following with respect to x :
$\cot ^{-1}\left(\frac{1-x}{1+x}\right)$

Answer

$$
y=\cot ^{-1}\left(\frac{1-x}{1+x}\right)
$$

Put $x=\tan \theta$
$y=\cot ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)$
$y=\cot ^{-1}\left(\frac{\tan \left(\frac{\pi}{4}\right)-\tan \theta}{1+\tan \left(\frac{\pi}{4}\right) \tan \theta}\right)$
Using, $\tan (x-y)=\left(\frac{\tan x-\tan y}{1+\tan x \tan y}\right)$
$y=\cot ^{-1}\left(\tan \left(\frac{\pi}{4}-\theta\right)\right)$
$y=\cot ^{-1}\left(\cot \left(\frac{\pi}{2}-\frac{\pi}{4}+\theta\right)\right)$
$y=\frac{\pi}{4}+\theta$
$y=\frac{\pi}{4}+\tan ^{-1} x$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}+\tan ^{-1} x\right)$
$\frac{d y}{d x}=0+\frac{1}{1+x^{2}}$
$\frac{d y}{d x}=\frac{1}{1+x^{2}}$

38. Question

If $y=\cot ^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\}$, show that $\frac{d y}{d x}$ is independent of x.

Answer

$y=\cot ^{-1}\left\{\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right\}$
Multiplying numerator and denominator
$y=\cot ^{-1}\left\{\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})}\right\}$
$y=\cot ^{-1}\left\{\frac{1+\sin x+1-\sin x+2 \sqrt{1+\sin x} \sqrt{1-\sin x}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}}\right\}$
$y=\cot ^{-1}\left\{\frac{2+2 \sqrt{1-\sin ^{2} x}}{(1+\sin x)-(1-\sin x)}\right\}$
$y=\cot ^{-1}\left\{\frac{2+2 \sqrt{1-\sin ^{2} x}}{2 \sin x}\right\}$
$y=\cot ^{-1}\left\{\frac{2(1+\cos x)}{2 \sin x}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\cot ^{-1}\left\{\frac{1+\cos x}{\sin x}\right\}$
Using $2 \sin \theta \cos \theta=\sin 2 \theta$ and $2 \cos ^{2} \theta-1=\cos 2 \theta$
$y=\cot ^{-1}\left\{\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}\right\}$
Now
$y=\cot ^{-1}\left\{\cot \frac{x}{2}\right\}$
$y=\frac{x}{2}$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{2}\right)$
$\frac{d y}{d x}=\frac{1}{2}$

39. Question

If $y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right), x>0$, prove that $\frac{d y}{d x}=\frac{4}{1+x^{2}}$.

Answer

$y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\sec ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)$
Using, $\sec ^{-1} \mathrm{x}=\frac{1}{\cos ^{-1} \mathrm{x}}$
$y=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Put $x=\tan \theta$
$y=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)+\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
Using, $\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan 2 \theta$ and $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$y=\sin ^{-1}(\sin 2 \theta)+\cos ^{-1}(\cos 2 \theta)$
Considering the limits
$0<x<\infty$
$0<\tan \theta<\infty$
$0<\theta<\frac{\pi}{2}$
$0<2 \theta<\pi$

Now,
$y=2 \theta+2 \theta$
$y=4 \theta$
$y=4 \tan ^{-1} x$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(4 \tan ^{-1} x\right)$
$\frac{d y}{d x}=\frac{4}{1+x^{2}}$

40. Question

If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right), x>0$. Find $\frac{d y}{d x}$.

Answer

$y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$
Using, $\sec ^{-1} x=\frac{1}{\cos ^{-1} x}$
$y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$
Using, $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$
$y=\frac{\pi}{2}$
Now differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{2}\right)$
$\frac{d y}{d x}=0$

41. Question

If $y=\sin \left[2 \tan ^{-1}\left\{\sqrt{\frac{1-x}{1+x}}\right\}\right]$, find $\frac{d y}{d x}$.

Answer

$y=\sin \left[2 \tan ^{-1}\left\{\sqrt{\frac{1-x}{1+x}}\right\}\right]$
Put $x=\cos 2 \theta$
$y=\sin \left[2 \tan ^{-1}\left\{\sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}}\right\}\right]$
Using $2 \cos ^{2} \theta-1=\cos 2 \theta$ and $1-2 \sin ^{2} \theta=\cos 2 \theta$
$y=\sin \left[2 \tan ^{-1}\left\{\sqrt{\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}}\right\}\right]$
$y=\sin \left[2 \tan ^{-1}(\tan \theta)\right]$
$y=\sin (2 \theta)$
$y=\sin \left[\frac{2}{2} x \cos ^{-1} x\right]$
Using $\cos ^{-1} \mathrm{x}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$
$y=\sin \left[\sin ^{-1} \sqrt{1-x^{2}}\right]$
$y=\sqrt{1-x^{2}}$
Differentiating w.r.t \times we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{1-x^{2}}\right)$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}} \frac{d}{d x}\left(1-x^{2}\right)$
$\frac{d y}{d x}=-\frac{2 x}{2 \sqrt{1-x^{2}}}$
$\frac{d y}{d x}=-\frac{x}{\sqrt{1-x^{2}}}$
42. Question

If $y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}, 0<x<\frac{1}{2}$, find $\frac{d y}{d x}$.

Answer

$y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}$
Put $2 x=\cos \theta$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1} \sqrt{1-\cos ^{2} \theta}$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}(\sin \theta)$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$
Considering the limits
$0<\mathrm{x}<\frac{1}{2}$
$0<2 x<1$
$0<\cos \theta<1$
$0<\theta<\frac{\pi}{2}$
$0>-\theta>-\frac{\pi}{2}$
$\frac{\pi}{2}>\frac{\pi}{2}-\theta>0$

Now,
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$
$y=\theta+2\left(\frac{\pi}{2}-\theta\right)$
$y=\pi-\theta$
$y=\pi-\cos ^{-1}(2 x)$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\pi-\cos ^{-1}(2 x)\right)$
$\frac{d y}{d x}=0-\left[\frac{-2}{\sqrt{1-(2 x)^{2}}}\right]$
$\frac{d y}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}$

43. Question

If the derivative of $\tan ^{-1}(a+b x)$ takes the value 1 at $x=0$, prove that $1+a^{2}=b$.

Answer

$y=\tan ^{-1}(a+b x)$
And $y^{\prime}(0)=1$
Now
$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}(a+b x)\right)$
$\frac{d y}{d x}=\frac{b}{1+(a+b x)^{2}}$
At $x=0$,
$\frac{d y}{d x}=\frac{b}{1+(a+b(0))^{2}}$
$\frac{b}{1+a^{2}}=1$
$\Rightarrow b=1+a^{2}$

44. Question

If $y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}},<x<0$, find $\frac{d y}{d x}$.

Answer

$y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}$
Put $2 x=\cos \theta$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1} \sqrt{1-\cos ^{2} \theta}$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}(\sin \theta)$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$

Considering the limits
$-\frac{1}{2}<\mathrm{x}<0$
$-1<2 x<0$
$-1<\cos \theta<0$
$\frac{\pi}{2}<\theta<\pi$
$-\frac{\pi}{2}>-\theta>-\pi$
$0>\frac{\pi}{2}-\theta>-\frac{\pi}{2}$
Now,
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$
$y=\theta+2\left\{-\left(\frac{\pi}{2}-\theta\right)\right\}$
$y=-\pi+3 \theta$
$y=-\pi+\cos ^{-1}(2 x)$
Differentiating w.r.t x we get
$\frac{d y}{d x}=\frac{d}{d x}\left(-\pi+3 \cos ^{-1}(2 x)\right)$
$\frac{d y}{d x}=0+3\left[\frac{-2}{\sqrt{1-(2 x)^{2}}}\right]$
$\frac{d y}{d x}=\frac{-6}{\sqrt{1-4 x^{2}}}$
45. Question

If $y=\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}$, find $\frac{d y}{d x}$.

Answer

$y=\tan ^{-1}\left\{\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right\}$
Put $x=\cos 2 \theta$
$y=\tan ^{-1}\left\{\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right\}$
Using $2 \cos ^{2} \theta-1=\cos 2 \theta$ and $1-2 \sin ^{2} \theta=\cos 2 \theta$
$y=\tan ^{-1}\left\{\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right\}$
Dividing by $\cos \theta$ both numerator and denominator,
$y=\tan ^{-1}\left\{\frac{\frac{\cos \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}\right\}$
$y=\tan ^{-1}\left\{\frac{1-\tan \theta}{1+\tan \theta}\right\}$
$y=\tan ^{-1}\left\{\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \tan \theta}\right\}$
$y=\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}-\theta\right)\right\}$
$y=\frac{\pi}{4}-\theta$
$y=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x\right)$
$\frac{d y}{d x}=0-\frac{1}{2}\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}$

46. Question

If $y=\cos ^{-1}\left\{\frac{2 x-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right\}$, find $\frac{d y}{d x}$.

Answer

$y=\cos ^{-1}\left\{\frac{2 x-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right\}$
Put $x=\cos \theta$
$y=\cos ^{-1}\left\{\frac{2 \cos \theta-3 \sqrt{1-\cos ^{2} \theta}}{\sqrt{13}}\right\}$
$y=\cos ^{-1}\left\{\frac{2}{\sqrt{13}} \cos \theta-\frac{3}{\sqrt{13}} \sin \theta\right\}$
let $\cos \phi=\frac{2}{\sqrt{13}}$
Now,
$\Rightarrow \sin ^{2} \phi=1-\cos ^{2} \phi$
$\Rightarrow \sin \phi=\sqrt{1-\cos ^{2} \phi}$
$\Rightarrow \sin \phi=\sqrt{1-\frac{4}{13}}$
$\Rightarrow \sin \phi=\frac{3}{\sqrt{13}}$

Again,
$y=\cos ^{-1}\{\cos \phi \cos \theta-\sin \phi \sin \theta\}$
Using $\cos A \cos B-\sin A \sin B=\cos (A+B)$
$y=\cos ^{-1}\{\cos (\phi+\theta)\}$
$y=\phi+\theta$
$y=\cos ^{-1}\left\{\frac{2}{\sqrt{13}}\right\}+\cos ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\cos ^{-1}\left\{\frac{2}{\sqrt{13}}\right\}+\cos ^{-1} x\right)$
$\frac{d y}{d x}=0+\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$

47. Question

Differentiate $\sin ^{-1}\left\{\frac{2^{x+1} \cdot 3^{x}}{1+(36)^{x}}\right\}$ with respect to x.

Answer

$y=\sin ^{-1}\left\{\frac{2^{x+1} \cdot 3^{x}}{1+(36)^{x}}\right\}$
$y=\sin ^{-1}\left\{\frac{2 \times 2^{x} \times 3^{x}}{1+\left(6^{2}\right)^{x}}\right\}$
$y=\sin ^{-1}\left\{\frac{2 \times 6^{x}}{1+\left(6^{x}\right)^{2}}\right\}$
Put $6^{x}=\tan \theta$
$y=\sin ^{-1}\left\{\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right\}$
Using $\sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
Now,
$y=\sin ^{-1}(\sin 2 \theta)$
$y=2 \theta$
$y=2 \tan ^{-1}\left(6^{x}\right)$
Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} 6^{x}\right)$
$\frac{d y}{d x}=2 \times \frac{6^{x} \log 6}{1+\left(6^{x}\right)^{2}}$
$\frac{d y}{d x}=\frac{2 \times 6^{x} \log 6}{1+6^{2 x}}$

48. Question

If $\mathrm{y}=\sin ^{-1}\left(6 \mathrm{x} \sqrt{1-9 \mathrm{x}^{2}}\right),-\frac{1}{3 \sqrt{2}}<\mathrm{x}<\frac{1}{3 \sqrt{2}}$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Answer

$y=\sin ^{-1}\left\{6 x \sqrt{1-9 x^{2}}\right\}$
$y=\sin ^{-1}\left\{2 \times 3 x \sqrt{1-(3 x)^{2}}\right\}$
let $3 x=\cos \theta$
$y=\sin ^{-1}\left\{2 \times \sin \theta \sqrt{1-\cos ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}\{2 \times \sin \theta \cos \theta\}$
Using $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\sin ^{-1}(\sin 2 \theta)$
Considering the limits,
$-\frac{1}{3 \sqrt{2}}<\mathrm{x}<\frac{1}{3 \sqrt{2}}$
$-\frac{1}{\sqrt{2}}<3 x<\frac{1}{\sqrt{2}}$
$-\frac{1}{\sqrt{2}}<\cos \theta<\frac{1}{\sqrt{2}}$
$-\frac{\pi}{4}<\theta<\frac{\pi}{4}$
$-\frac{\pi}{2}<2 \theta<\frac{\pi}{2}$
For
$0<2 \theta<\frac{\pi}{2}$
Now, $y=\sin ^{-1}(\sin 2 \theta)$
$y=2 \theta$
$y=2 \cos ^{-1} x$
Differentiating w.r.t x, we get
$\frac{d y}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
For
$-\frac{\pi}{2}<2 \theta<0$
Now, $y=\sin ^{-1}(\sin 2 \theta)$
$y=-2 \theta$
$y=-2 \cos ^{-1} x$

Differentiating w.r.t x , we get
$\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$

Exercise 11.4

1. Question

Find $\frac{d y}{d x}$ in each of the following:
$x y=c^{2}$

Answer

We are given with an equation $x y=c^{2}$; we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,

By using the product rule on the left hand side,
$\frac{d(x y)}{d x}=\frac{d c^{2}}{d x}$
$x \frac{d y}{d x}+y(1)=0$
$\frac{d y}{d x}=\frac{-y}{x}$
Or we can further solve it by putting the value of y,
$\frac{d y}{d x}=\frac{-c^{2}}{x^{2}}$

2. Question

Find $\frac{d y}{d x}$ in each of the following:
$y^{3}-3 x y^{2}=x^{3}+3 x^{2} y$

Answer

We are given with an equation $y^{3}-3 x y^{2}=x^{3}+3 x^{2} y$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$3 y^{2} \frac{d y}{d x}-3\left[y^{2}(1)+2 x y \frac{d y}{d x}\right]=3 x^{2}+3\left[2 x y+x^{2} \frac{d y}{d x}\right]$
Taking $\frac{d y}{d x}$ terms to left hand side and taking common $\frac{d y}{d x}$, we get,
$\frac{d y}{d x}\left[3 y^{2}-6 x y-3 x^{2}\right]=3 x^{2}+6 x y+3 y^{2}$
$\frac{d y}{d x}=\frac{3 x^{2}+3 y^{2}+6 x y}{3 y^{2}-3 x^{2}-6 x y}=\frac{x^{2}+y^{2}+2 x y}{y^{2}-x^{2}-2 x y}$

3. Question

Find $\frac{d y}{d x}$ in each of the following:
$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$

Answer

We are given with an equation $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$\frac{2}{3} \frac{1}{x^{1 / 3}}+\frac{2}{3} \frac{1}{y^{1 / 3}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-y^{1 / 3}}{x^{1 / 3}}$
Or we can write it as,
$\frac{d y}{d x}=\frac{-\sqrt{a^{2 / 3}-x^{2 / 3}}}{x^{1 / 3}}$

4. Question

Find $\frac{d y}{d x}$ in each of the following:
$4 x+3 y=\log (4 x-3 y)$

Answer

We are given with an equation $4 x+3 y=\log (4 x-3 y)$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$4+3 \frac{d y}{d x}=\frac{1}{(4 x-3 y)}\left[4-3 \frac{d y}{d x}\right]$
$3 \frac{d y}{d x}+\frac{3}{(4 x-3 y)} \frac{d y}{d x}=\frac{4}{(4 x-3 y)}-4$
$\frac{d y}{d x}\left[1+\frac{1}{4 x-3 y}\right]=\frac{12 y-16 x+4}{3(4 x-3 y)}$
$\frac{d y}{d x}=\frac{\frac{12 y-16 x+4}{3(4 x-3 y)}}{\frac{4 x-3 y+1}{4 x-3 y}}=\frac{12 y-16 x+4}{12 x-9 y+3}$

5. Question

Find $\frac{d y}{d x}$ in each of the following:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Answer

We are given with an equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-x b^{2}}{y a^{2}}$

6. Question

Find $\frac{d y}{d x}$ in each of the following:
$x^{5}+y^{5}=5 x y$

Answer

We are given with an equation $x^{5}+y^{5}=5 x y$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$5 x^{4}+5 y \frac{d y}{d x}=5\left[y(1)+x \frac{d y}{d x}\right]$
$\frac{d y}{d x}\left[y^{4}-x\right]=y-x^{4}$
$\frac{d y}{d x}=\frac{y-x^{4}}{y^{4}-x}$

7. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$ in each of the following:
$(x+y)^{2}=2 a x y$

Answer

We are given with an equation $(x+y)^{2}=2 a x y$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$2(x+y)\left(1+\frac{d y}{d x}\right)=2 a\left[y+x \frac{d y}{d x}\right]$
$x+y+\frac{d y}{d x}[x+y]=a\left[y+x \frac{d y}{d x}\right]$
$\frac{d y}{d x}[x+y-a x]=a y-x-y$
$\frac{d y}{d x}=\frac{y(a-1)-x}{y+x(1-a)}$

8. Question

Find $\frac{d y}{d x}$ in each of the following:
$\left(x^{2}+y^{2}\right)^{2}=x y$

Answer

We are given with an equation $\left(x^{2}+y^{2}\right)^{2}=x y$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$2\left(x^{2}+y^{2}\right)\left[2 x+2 y \frac{d y}{d x}\right]=y(1)+x \frac{d y}{d x}$
$\frac{d y}{d x}\left[4 y\left(x^{2}+y^{2}\right)-x\right]=y-4 x\left(x^{2}+y^{2}\right)$
$\frac{d y}{d x}=\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$

9. Question

Find $\frac{d y}{d x}$ in each of the following:
$\tan ^{-1}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=a$

Answer

We are given with an equation $\tan ^{-1}\left(x^{2}+y^{2}\right)=a$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$\frac{1}{x^{2}+y^{2}}\left(2 x+2 y \frac{d y}{d x}\right)=0$
$\frac{d y}{d x}=\frac{-x}{y}$

10. Question

Find $\frac{d y}{d x}$ in each of the following:
$e^{x-y}=\log \left(\frac{x}{y}\right)$

Answer

We are given with an equation $e^{x-y}=\log \left(\frac{x}{y}\right)=\log x-\log y$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$e^{x-y}\left(1-\frac{d y}{d x}\right)=\frac{1}{x \ln 10}-\frac{1}{y \ln 10} \frac{d y}{d x}$
$\frac{d y}{d x}\left[\frac{1}{y \ln 10}-e^{x-y}\right]=\frac{1}{x \ln 10}-e^{x-y}$
$\frac{d y}{d x}=\frac{\frac{1}{x \ln 10}-e^{x-y}}{\frac{1}{y \ln 10}-e^{x-y}}$
$\frac{d y}{d x}=\frac{\frac{1-x \ln 10 e^{x-y}}{x}}{\frac{1-y \ln 10 e^{x-y}}{y}}=\frac{y\left(1-x \ln 10 e^{x-y}\right)}{x\left(1-y \ln 10 e^{x-y}\right)}$

11. Question

Find $\frac{d y}{d x}$ in each of the following:
$\sin x y+\cos (x+y)=1$

Answer

We are given with an equation $\sin x y+\cos (x+y)=1$, we have to find $\frac{d y}{d x}$ of it, so by differentiating the equation on both sides with respect to x, we get,
$\cos x y\left(y+x \frac{d y}{d x}\right)-\sin (x+y)\left(1+\frac{d y}{d x}\right)=0$
$\frac{d y}{d x}[x \cos x y-\sin (x+y)]=\sin (x+y)-y \cos x y$
$\frac{d y}{d x}=\frac{\sin (x+y)-y \cos x y}{x \cos x y-\sin (x+y)}$

12. Question

If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.

Answer

We are given with an equation $\sqrt{1-\mathrm{x}^{2}}+\sqrt{1-\mathrm{y}^{2}}=\mathrm{a}(\mathrm{x}-\mathrm{y})$, we have to prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\frac{1-\mathrm{y}^{2}}{1-\mathrm{x}^{2}}}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,

Put $x=\sin A$ and $y=\sin B$ in the given equation,
$\sqrt{1-\sin ^{2} \mathrm{~A}}+\sqrt{1-\sin ^{2} \mathrm{~B}}=\mathrm{a}(\sin \mathrm{A}-\sin \mathrm{B})$
$\cos A+\cos B=a(\sin A-\sin B)$
$2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)=a 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$
By using $\cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}-\mathrm{B}}{2}\right) \cos \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)$ and $\sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right) \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)$
$a=\cot \left(\frac{A-B}{2}\right)$
$\cot ^{-1} \mathrm{a}=\frac{\mathrm{A}-\mathrm{B}}{2}$
$2 \cot ^{-1} \mathrm{a}=\mathrm{A}-\mathrm{B}$
$2 \cot ^{-1} a=\sin ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}$
$0=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-\mathrm{x}^{2}}}$

13. Question

If $y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.

Answer

We are given with an equation $\mathrm{y} \sqrt{1-\mathrm{x}^{2}}+\mathrm{x} \sqrt{1-\mathrm{y}^{2}}=1$, we have to prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\sqrt{\frac{1-\mathrm{y}^{2}}{1-\mathrm{x}^{2}}}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x , we get,

Put $x=\sin A$ and $y=\sin B$ in the given equation,
$\sin B \sqrt{1-\sin ^{2} A}+\sin A \sqrt{1-\sin ^{2} B}=1$
$\sin B \cos A+\sin A \cos B=1$
$\sin (A+B)=1$
$\sin ^{-1} 1=A+B$
$\frac{\pi}{2}=\sin ^{-1} x+\sin ^{-1} y$
Differentiating we get,
$0=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}+\frac{1}{\sqrt{1-\mathrm{y}^{2}}} \frac{\mathrm{dy}}{\mathrm{dx}}$
$\frac{d y}{d x}=\frac{-\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$

14. Question

If $x y=1$, prove that $\frac{d y}{d x}+y^{2}=0$.

Answer

We are given with an equation $x y=1$, we have to prove that $\frac{d y}{d x}+y^{2}=0$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,

By using product rule, we get,
$y(1)+x \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-y}{x}$
Or we can further solve it by using the given equation,
$\frac{d y}{d x}=\frac{-y}{\frac{1}{y}}=-y^{2}$
By putting this value in the L.H.S. of the equation, we get,
$-y^{2}+y^{2}=0=$ R.H.S.

15. Question

If $x y^{2}=1$, prove that $2 \frac{d y}{d x}+y^{3}=0$.

Answer

We are given with an equation $x y^{2}=1$, we have to prove that $2 \frac{d y}{d x}+y^{3}=0$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$y^{2}(1)+2 x y \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-y}{2 x}$
Or we can further solve it by using the given equation,
$\frac{d y}{d x}=\frac{-y}{2 \frac{1}{y^{2}}}$
$\frac{d y}{d x}=\frac{-y^{3}}{2}$

By putting this value in the L.H.S. of the equation, we get,
$2\left(\frac{-y^{3}}{2}\right)+y^{3}=0=$ R.H.S.

16. Question

If $\sqrt{1+y}+y \sqrt{1+x}=0$, prove that $(1+x)^{2} \frac{d y}{d x}+1=0$.

Answer

We are given with an equation $x y^{2}=1$, we have to prove that $2 \frac{d y}{d x}+y^{3}=0$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove

But first we need to simplify this equation in accordance with our result, which is that in our result there is no square root and our derivative is only in the form of x.
$\mathrm{x} \sqrt{1+\mathrm{y}}+\mathrm{y} \sqrt{1+\mathrm{x}}=0$
$x \sqrt{1+y}=-y \sqrt{1+x}$
Squaring both sides,
$x^{2}(1+y)=y^{2}(1+x)$
$x^{2}+x^{2} y=y^{2}+x y^{2}$
$x^{2}-y^{2}=x y^{2}-x^{2} y$
$(x-y)(x+y)=x y(y-x)$
$x+y=-x y$
$y=\frac{-x}{1+x}$
So, now by differentiating the equation on both sides with respect to x, we get,
By using quotient rule, we get,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(1+x)(-1)-(-x)(1)}{(1+x)^{2}} \\
& \frac{d y}{d x}=\frac{-1}{(1+x)^{2}}
\end{aligned}
$$

17. Question

If $\log \sqrt{x^{2}+y^{2}}=\tan ^{-1}\left(\frac{y}{x}\right)$, prove that $\frac{d y}{d x}=\frac{x+y}{x-y}$.

Answer

We are given with an equation $\log \sqrt{x^{2}+y^{2}}=\tan ^{-1}\left(\frac{y}{x}\right)$, we have to prove that $\frac{d y}{d x}=\frac{y+x}{y-x}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1}\left(\frac{y}{x}\right)$
$\frac{2 x+2 y \frac{d y}{d x}}{x^{2}+y^{2}}=\frac{2}{1+\left(\frac{y}{x}\right)^{2}} \frac{x \frac{d y}{d x}-y(1)}{x^{2}}$
$x+y \frac{d y}{d x}=x \frac{d y}{d x}-y$
$\frac{d y}{d x}=\frac{x+y}{x-y}$

18. Question

If $\sec \left(\frac{x+y}{x-y}\right)=a$, prove that $\frac{d y}{d x}=\frac{y}{x}$.

Answer

We are given with an equation $\sec \left(\frac{x+y}{x-y}\right)=a$, we have to prove that $\frac{d y}{d x}=\frac{y}{x}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\sec \left(\frac{x+y}{x-y}\right) \tan \left(\frac{x+y}{x-y}\right)\left[\frac{(x-y)\left(1+\frac{d y}{d x}\right)-(x+y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}}\right]=0$
$\left[\frac{(x-y)\left(1+\frac{d y}{d x}\right)-(x+y)\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}}\right]=0$
$-2 y+2 x \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{y}{x}$

19. Question

If $\tan ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$, prove that $\frac{d y}{d x}=\frac{x}{y} \frac{(1-\tan a)}{(1+\tan a)}$.

Answer

We are given with an equation $\tan ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=a$, we have to prove that $\frac{d y}{d x}=\frac{x(1-\operatorname{tana})}{y(1+\operatorname{tana})}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\tan a$
$x^{2}-y^{2}=\left(x^{2}+y^{2}\right) \tan a$
Now differentiating with respect to x, we get,
$2 x-2 y \frac{d y}{d x}=\left(2 x+2 y \frac{d y}{d x}\right) \tan a$
$\frac{d y}{d x}[y \tan a+y]=x-x \tan x$
$\frac{d y}{d x}=\frac{x-x \tan a}{y+y \tan a}$
$\frac{d y}{d x}=\frac{x}{y} \frac{(1-\tan a)}{(1+\tan a)}$
20. Question

If $x y \log (x+y)=1$, prove that $\frac{d y}{d x}=\frac{y\left(x^{2} y+x+y\right)}{x\left(x y^{2}+x+y\right)}$.

Answer

We are given with an equation $x y \log (x+y)=1$, we have to prove that $\frac{d y}{d x}=\frac{y\left(x^{2} y+x+y\right)}{x\left(y^{2} x+x+y\right)}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
By using the triple product rule, which is, $\frac{d(u v w)}{d x}=u w \frac{d v}{d x}+v w \frac{d u}{d x}+u v \frac{d w}{d x}$,
(1) $y \log (x+y)+x \frac{d y}{d x} \log (x+y)+x y \frac{\left(1+\frac{d y}{d x}\right)}{(x+y)}=0$

From the equation put $\log (x+y)=\frac{1}{x y}$
$\frac{y}{x y}+\frac{x}{x y} \frac{d y}{d x}+\frac{x y}{(x+y)}\left(1+\frac{d y}{d x}\right)=0$
$\frac{1}{x}+\frac{1 d y}{y d x}+\frac{x y}{(x+y)}+\frac{x y}{(x+y) d y} d x$
$\frac{x^{2} y+x+y}{(x+y) x}+\frac{d y}{d x}\left[\frac{y^{2} x+x+y}{(x+y) y}\right]=0$
$\frac{d y}{d x}=-\frac{\frac{x^{2} y+x+y}{(x+y) x}}{\frac{y^{2} x+x+y}{(x+y) y}}=\frac{-\left(x^{2} y+x+y\right) y}{\left(y^{2} x+x+y\right) x}$

21. Question

If $y=x \sin (a+y)$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin (a+y)-y \cos (a+y)}$.

Answer

We are given with an equation $y=x \sin (a+y)$, we have to prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin (a+y)-y \cos (a+y)}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\frac{d y}{d x}=(1) \sin (a+y)+x \cos (a+y) \frac{d y}{d x}$
$\frac{d y}{d x}=\frac{\sin (a+y)}{1-x \cos (a+y)}$
We can further solve it by using the given equation,
$\frac{d y}{d x}=\frac{\sin (a+y)}{1-\frac{y}{\sin (a+y)} \cos (a+y)}$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin (a+y)-y \cos (a+y)}$

22. Question

If $x \sin (a+y)+\sin a \cos (a+y)=0$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.

Answer

We are given with an equation $x \sin (a+y)+\operatorname{sina} \cos (a+y)=0$, we have to prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\tan (a+y)=\frac{-\sin a}{x}$
$\sec ^{2}(a+y) \frac{d y}{d x}=\frac{\sin a}{x^{2}}$
we can further solve it by using the given equation,
$\sec ^{2}(a+y) \frac{d y}{d x}=\frac{\tan ^{2}(a+y)}{\sin ^{2} a} \sin a$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$

23. Question

If $y-x \sin y$, prove that $\frac{d y}{d x}=\frac{\sin y}{(1-x \cos y)}$.

Answer

We are given with an equation $\mathrm{y}=\mathrm{x} \sin \mathrm{y}$, we have to prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin \mathrm{y}}{1-\mathrm{xcosy}}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\frac{d y}{d x}=\sin y+x \cos y \frac{d y}{d x}$
$\frac{d y}{d x}[1-x \cos y]=\sin y$
$\frac{d y}{d x}=\frac{\sin y}{1-x \cos y}$

24. Question

If $y \sqrt{x^{2}+1}=\log \left(\sqrt{x^{2}+1}-x\right)$, show that $\left(x^{2}+1\right) \frac{d y}{d x}+x y+1=0$.

Answer

We are given with an equation $y \sqrt{x^{2}+1}=\log \left(\sqrt{x^{2}+1}-x\right)$, we have to prove that
$\left(x^{2}+1\right) \frac{d y}{d x}+x y+1=0$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x , we get,
$\frac{2 x}{2 \sqrt{x^{2}+1}} y+\sqrt{x^{2}+1} \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+1}-x}\left[\frac{2 x}{2 \sqrt{x^{2}+1}}-1\right]$
$\frac{x}{\sqrt{x^{2}+1}} y+\sqrt{x^{2}+1} \frac{d y}{d x}=\frac{1}{\sqrt{x^{2}+1}-x}\left[\frac{x-\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}\right]$
$\frac{x y+\left(x^{2}+1\right) \frac{d y}{d x}}{\sqrt{x^{2}+1}}=\left[\frac{-1}{\sqrt{x^{2}+1}}\right]$
$x y+\left(x^{2}+1\right) \frac{d y}{d x}=-1$
$x y+\left(x^{2}+1\right) \frac{d y}{d x}+1=0$

25. Question

If $\sin (x y)+\frac{y}{x}=x^{2}-y^{2}$, find $\frac{d y}{d x}$.

Answer

We are given with an equation $\sin (x y)+\frac{y}{x}=x^{2}-y^{2}$, we have to find $\frac{d y}{d x}$ by using the given equation, so by differentiating the equation on both sides with respect to x, we get,
$\cos (x y)\left[(1) y+x \frac{d y}{d x}\right]+\frac{\frac{d y}{d x}-y(1)}{x^{2}}=2 x-2 y \frac{d y}{d x}$
$y \cos (x y)+x \cos (x y) \frac{d y}{d x}+\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=2 x-2 y \frac{d y}{d x}$
$\frac{d y}{d x}\left[x \cos (x y)+\frac{1}{x}+2 y\right]=2 x-y \cos (x y)+\frac{y}{x^{2}}$
$\frac{d y}{d x}=\frac{2 x-y \cos (x y)+\frac{y}{x^{2}}}{x \cos (x y)+\frac{1}{x}+2 y}$
$\frac{d y}{d x}=\frac{2 x^{3}-y^{2} \cos (x y)+y}{x\left[x^{2} \cos (x y)+1+2 x y\right]}$

26. Question

If $\tan (x+y)+\tan (x-y)=1$, find $\frac{d y}{d x}$.

Answer

We are given with an equation $\tan (x+y)+\tan (x-y)=1$, we have to find $\frac{d y}{d x}$ by using the given equation, so by differentiating the equation on both sides with respect to x, we get,
$\sec ^{2}(x+y)\left[1+\frac{d y}{d x}\right]+\sec ^{2}(x-y)\left[1-\frac{d y}{d x}\right]=0$
$\frac{d y}{d x}\left[\sec ^{2}(x+y)-\sec ^{2}(x-y)\right]+\sec ^{2}(x+y)+\sec ^{2}(x-y)=0$
$\frac{d y}{d x}=\frac{\sec ^{2}(x+y)+\sec ^{2}(x-y)}{\sec ^{2}(x-y)-\sec ^{2}(x+y)}$

27. Question

If $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$, prove that $\frac{d y}{d \mathrm{x}}=-\frac{\mathrm{e}^{\mathrm{x}}\left(\mathrm{e}^{\mathrm{y}}-1\right)}{\mathrm{e}^{\mathrm{y}}\left(\mathrm{e}^{\mathrm{x}}-1\right)}$ or, $\frac{d y}{d \mathrm{~d}}, \mathrm{e}^{\mathrm{y}-\mathrm{x}}=0$

Answer

We are given with an equation $e^{x}+e^{y}=e^{x+y}$, we have to prove that $\frac{d y}{d x}=\frac{-e^{x}\left(e^{y}-1\right)}{e^{y}\left(e^{x}-1\right)}$ by using the given
equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$e^{x}+e^{y d y} \frac{d x}{d x}=e^{(x+y)}\left[1+\frac{d y}{d x}\right]$
$\frac{d y}{d x}\left[e^{y}-e^{x+y}\right]=e^{x+y}-e^{x}$
$\frac{d y}{d x}=\frac{e^{x+y}-e^{x}}{e^{y}-e^{x+y}}$
$\frac{d y}{d x}=\frac{-e^{x}\left(e^{y}-1\right)}{e^{y}\left(e^{x}-1\right)}$

28. Question

If $\cos y=x \cos (a+y)$, with $\cos a \neq \pm 1$, prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$.

Answer

We are given with an equation cosy $=x \cos (a+y)$, we have to prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$ by using the given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x , we get,
$-\sin y \frac{d y}{d x}=\cos (a+y)-x \sin (a+y) \frac{d y}{d x}$
$\frac{d y}{d x}[x \sin (a+y)-\sin y]=\cos (a+y)$
$\frac{d y}{d x}=\frac{\cos (a+y)}{x \sin (a+y)-\sin y}$
We can further solve it by using the given equation,
$\frac{d y}{d x}=\frac{\cos (a+y)}{\frac{\cos y}{\cos (a+y)} \times \sin (a+y)-\sin y}$
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\cos y \sin (a+y)-\sin y \cos (a+y)}$
By using $\sin A \cos B-\cos A \sin B=\sin (A-B)$
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin (a+y-y)}=\frac{\cos ^{2}(a+y)}{\sin a}$

29. Question

If $\sin ^{2} y+\cos x y=k$, find $\frac{d y}{d x}$ at $x=1, y=\frac{\pi}{4}$.

Answer

We are given with an equation $\sin ^{2} y+\cos (x y)=k$, we have to find $\frac{d y}{d x}$ at $x=1, y=\frac{\pi}{4}$ by using the given equation, so by differentiating the equation on both sides with respect to x, we get,
$2 \sin y \cos y \frac{d y}{d x}-\sin (x y)\left[(1) y+x \frac{d y}{d x}\right]=0$
$\frac{d y}{d x}[2 \sin y \cos y-x \sin (x y)]=y \sin (x y)$
$\frac{d y}{d x}=\frac{y \sin (x y)}{2 \sin y \cos y-x \sin (x y)}$
By putting the value of point in the derivative, which is $x=1, y=\frac{\pi}{4}$,
$\frac{d y}{d x}(x=1, y=\pi / 4)=\frac{\frac{\pi}{4} \sin \left(\frac{\pi}{4}\right)}{2 \sin \frac{\pi}{4} \cos \frac{\pi}{4}-(1) \sin \frac{\pi}{4}}$
$\frac{d y}{d x}(x=1, y=\pi / 4)=\frac{\frac{\pi}{4 \sqrt{2}}}{1-\frac{1}{\sqrt{2}}}=\frac{\frac{\pi}{4 \sqrt{2}}}{\frac{\sqrt{2}-1}{\sqrt{2}}}=\frac{\pi}{4(\sqrt{2}-1)}$

30. Question

If $y=\left\{\log _{\cos x} \sin x\right\}\left\{\log _{\sin x} \cos x\right\}^{-1}+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{4}$.

Answer

We are given with an equation $y=\left\{\log _{\cos x} \sin x\right\}\left\{\log _{\sin x} \cos x\right\}^{-1+} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, we have to find $\frac{d y}{d x}$ at
$x=\frac{\pi}{4}$ by using the given equation, so by differentiating the equation on both sides with respect to x, we get, By using the properties of logarithms,
$y=\left\{\log _{\cos x} \sin x\right\}^{2}+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$y=\left\{\frac{\ln \sin x}{\ln \cos x}\right\}^{2}+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$\frac{d y}{d x}=2\left\{\frac{\ln \sin x}{\ln \cos x}\right\} \frac{\ln \cos x \cos x}{(\sin x \ln \cos x)^{2} x} \frac{-\sin x}{\cos x}+\frac{1}{\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}}} \frac{\left(1+x^{2}\right) 2-2 x(2 x)}{\left(1+x^{2}\right)^{2}}$
$\frac{d y}{d x}=2\left\{\frac{\ln \sin x}{\ln \cos x}\right\} \frac{\ln \cos x(\cot x)-\ln \sin x(-\tan x)}{(\ln \cos x)^{2}}+\frac{\sqrt{\left(1+x^{2}\right)^{2}}}{\sqrt{\left(1-x^{2}\right)^{2}}} \frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$
$\frac{d y}{d x}=2\left\{\frac{\ln \sin x}{\ln \cos x}\right\} \frac{\ln \cos x(\cot x)+\ln \sin x(\tan x)}{(\ln \cos x)^{2}}+\frac{2}{1+x^{2}}$
Now putting the value of $x=\frac{\pi}{4}$ in the derivative solved above, we get,
$\frac{\mathrm{dy}}{\mathrm{dx}}(x=\pi / 4)=2\{1\} \frac{\ln \frac{1}{\sqrt{2}}(1)+\ln \frac{1}{\sqrt{2}}(1)}{\left(\ln _{\sqrt{2}}\right)^{2}}+\frac{2}{1+\left(\frac{\pi}{4}\right)^{2}}$
$\frac{d y}{d x}(x=\pi / 4)=2\{1\} \frac{\ln \frac{1}{z}}{\left(\frac{1}{2} \ln 2\right)^{2}}+\frac{2}{\frac{16+\pi^{2}}{16}}$
$\frac{\mathrm{dy}}{\mathrm{dx}}(\mathrm{x}=\pi / 4)=2\{1\} \frac{-4 \ln 2}{(\ln 2)^{2}}+\frac{32}{16+(\pi)^{2}}$
$\frac{d y}{d x}(x=\pi / 4)=\frac{-8}{\ln 2}+\frac{32}{16+(\pi)^{2}}$

31. Question

If $\sqrt{y+x}+\sqrt{y-x}=c$, show that $\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}$.

Answer

We are given with an equation $\sqrt{y+x}+\sqrt{y-x}=c$, we have to prove that $\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}$ by using the
given equation we will first find the value of $\frac{d y}{d x}$ and we will put this in the equation we have to prove, so by differentiating the equation on both sides with respect to x, we get,
$\frac{\left(1+\frac{d y}{d x}\right)}{2 \sqrt{y+x}}+\frac{\left.\frac{d y}{d x}-1\right)}{2 \sqrt{y-x}}=0$
$\frac{\sqrt{y-x}+\sqrt{y-x} \frac{d y}{d x}+\sqrt{y+x} \frac{d y}{d x}-\sqrt{y+x}}{2 \sqrt{y+x} \sqrt{y-x}}=0$
$\sqrt{y-x}+\sqrt{y-x} \frac{d y}{d x}+\sqrt{y+x} \frac{d y}{d x}-\sqrt{y+x}=0$
$\frac{d y}{d x}[\sqrt{y-x}+\sqrt{y+x}]=\sqrt{y+x}-\sqrt{y-x}$
$\frac{d y}{d x}=\frac{\sqrt{y+x}-\sqrt{y-x}}{\sqrt{y-x}+\sqrt{y+x}}$
$\frac{d y}{d x}=\frac{\sqrt{y+x}-\sqrt{y-x}}{\sqrt{y-x}+\sqrt{y+x}} \times \frac{\sqrt{y+x}-\sqrt{y-x}}{\sqrt{y+x}-\sqrt{y-x}}$
$\frac{d y}{d x}=\frac{2 y-2 \sqrt{y+x} \sqrt{y-x}}{2 x}$
$\frac{d y}{d x}=\frac{y-\sqrt{y^{2}-x^{2}}}{x}$
$\frac{d y}{d x}=\frac{y}{x}-\frac{\sqrt{y^{2}-x^{2}}}{x}$
$\frac{d y}{d x}=\frac{y}{x}-\frac{\sqrt{y^{2}-x^{2}}}{\sqrt{x^{2}}}$
$\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}-x^{2}}{x^{2}}}$
$\frac{d y}{d x}=\frac{y}{x}-\sqrt{\frac{y^{2}}{x^{2}}-1}$

Exercise 11.5

1. Question

Differentiate the following functions with respect to x :
$x^{1 / x}$

Answer

Let $y=x^{\frac{1}{x}}$
Taking log both the sides:
$\Rightarrow \log y=\log x^{\frac{1}{x}}$
$\Rightarrow \log y=\frac{1}{x} \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\frac{1}{x} \log x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\frac{1}{x} \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x^{-1}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x} \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{-1}{x^{2}}\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=n \mathrm{u}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1-\log x}{x^{2}}$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{1-\log x}{x^{2}}\right)$
Put the value of $y=x^{\frac{1}{x}}$:
$\Rightarrow \frac{d y}{d x}=x^{\frac{1}{x}}\left(\frac{1-\log x}{x^{2}}\right)$

2. Question

Differentiate the following functions with respect to x :
$x^{\sin x}$

Answer

Let $y=x^{\sin x}$
Taking log both the sides:
$\log y=\log \left(x^{\sin x}\right)$
$\log y=\sin x \log x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\sin x \log x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\sin x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\sin x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\sin x \times \frac{1}{x} \frac{d x}{d x}+\log x(\cos x)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} \& \frac{\mathrm{~d}(\sin \mathrm{x})}{\mathrm{dx}}=\cos \mathrm{x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\sin x}{x}+\log x \cos x$
$\Rightarrow \frac{d y}{d x}=y\left(\frac{\sin x}{x}+\log x \cos x\right)$
Put the value of $y=x^{\sin x}$:
$\Rightarrow \frac{d y}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)$

3. Question

Differentiate the following functions with respect to x :
$(1+\cos x)^{x}$

Answer

Let $\mathrm{y}=(1+\cos \mathrm{x})^{x}$
Taking log both the sides:
$\Rightarrow \log y=\log (1+\cos x)^{x}$
$\Rightarrow \log y=x \log (1+\cos x)\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}[\mathrm{x} \log (1+\cos \mathrm{x})]}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d[\log (1+\cos x)]}{d x}+\log (1+\cos x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{(1+\cos x)} \frac{d(1+\cos x)}{d x}+\log (1+\cos x)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{(1+\cos x)}(-\sin x)+\log (1+\cos x)$
$\left\{\frac{d(1+\cos x)}{d x}=\frac{d(1)}{d x}+\frac{d(\cos x)}{d x}=0+(-\sin x) \frac{d x}{d x}=-\sin x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)\right\}$
Put the value of $y=(1+\cos x)^{x}$:
$\Rightarrow \frac{d y}{d x}=(1+\cos x)^{x}\left\{\frac{-x \sin x}{1+\cos x}+\log (1+\cos x)\right\}$

4. Question

Differentiate the following functions with respect to x :
$x^{\cos ^{-1} x}$

Answer

Let $y=x^{\cos ^{-1} x}$

Taking log both the sides:
$\Rightarrow \log y=\log x^{\cos ^{-1} x}$
$\Rightarrow \log y=\cos ^{-1} x \log x\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\cos ^{-1} x \log x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\cos ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\cos ^{-1} x\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos ^{-1} x}{x}+\log x\left(\frac{-1}{\sqrt{1-x^{2}}}\right)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} \& \frac{d\left(\cos ^{-1} x\right)}{d x}=\frac{-1}{\sqrt{1-x^{2}}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
Put the value of $y=x^{\cos ^{-1} x}$:
$\Rightarrow \frac{d y}{d x}=x^{\cos ^{-1} x}\left\{\frac{\cos ^{-1} x}{x}-\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
5. Question

Differentiate the following functions with respect to x :
$(\log x)^{x}$

Answer

Let $y=(\log x)^{x}$
Taking log both the sides:
$\Rightarrow \log y=\log (\log x)^{x}$
$\Rightarrow \log y=x \log (\log x)\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(x \log \log x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d(\log \log x)}{d x}+\log \log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\log x} \times \frac{1}{x}+\log \log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1}{\log x}+\log \log x\right\}$
Put the value of $y=(\log x)^{x}$
$\Rightarrow \frac{d y}{d x}=(\log x)^{x}\left\{\frac{1}{\log x}+\log \log x\right\}$

6. Question

Differentiate the following functions with respect to x :
$(\log x)^{\cos x}$

Answer

Let $y=(\log x)^{\cos x}$
Taking log both the sides:
$\Rightarrow \log y=\log (\log x)^{\cos x}$
$\Rightarrow \log y=\cos x \log \log x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\cos x \log \log x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\cos x \times \frac{d(\log \log x)}{d x}+\log \log x \times \frac{d(\cos x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x(-\sin x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} \& \frac{d(\cos x)}{d x}=-\sin x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos x}{\log x} \times \frac{1}{x}-\sin x \log \log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\cos x}{x \log x}-\sin x \log \log x\right\}$
Put the value of $y=(\log x)^{\cos x}$:
$\Rightarrow \frac{d y}{d x}=(\log x)^{\cos x}\left\{\frac{\cos x}{x \log x}-\sin x \log \log x\right\}$

7. Question

Differentiate the following functions with respect to x :
$(\sin x)^{\cos x}$

Answer

Let $y=(\sin x)^{\cos x}$
Taking log both the sides:
$\Rightarrow \log y=\log (\sin x)^{\cos x}$
$\Rightarrow \log y=\cos x \log \sin x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(\cos \mathrm{x} \log \sin \mathrm{x})}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log y)}{d x}=\cos x \times \frac{d(\log \sin x)}{d x}+\log \sin x \times \frac{d(\cos x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cos x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x(-\sin x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cot x(\cos x)-\sin x \log \sin x$
$\Rightarrow \frac{d y}{d x}=y\{\cos x \cot x-\sin x \log \sin x\}$
Put the value of $y=(\sin x)^{\cos x}$:
$\Rightarrow \frac{d y}{d x}=(\sin x)^{\cos x}\{\cos x \cot x-\sin x \log \sin x\}$

8. Question

Differentiate the following functions with respect to x :
$\mathrm{e}^{\mathrm{x} \log \mathrm{x}}$

Answer

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x} \log \mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log y=\log (e)^{x \log x}$
$\Rightarrow \log y=x \log x \log e\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log y=x \log x\{\log e=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(x \log x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{x}+\log x$
$\Rightarrow \frac{d y}{d x}=y\{1+\log x\}$
Put the value of $y=e^{x \log x}$:
$\Rightarrow \frac{d y}{d x}=e^{x \log x}\{1+\log x\}$
$\Rightarrow \frac{d y}{d x}=e^{\log x^{x}}\{1+\log x\}\left\{e^{\log a}=a ; a \log x=x^{a}\right\}$
$\Rightarrow \frac{d y}{d x}=x^{x}\{1+\log x\}$

9. Question

Differentiate the following functions with respect to x :
$(\sin x)^{\log x}$

Answer

Let $y=(\sin x)^{\log x}$
Taking log both the sides:
$\Rightarrow \log y=\log (\sin x)^{\log x}$
$\Rightarrow \log y=\log x \log \sin x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\log x \log \sin x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\log x \times \frac{d(\log \sin x)}{d x}+\log \sin x \times \frac{d(\log x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x\left(\frac{1}{x} \frac{d x}{d x}\right)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log x}{\sin x}(\cos x)+\frac{\log \sin x}{x}$
$\Rightarrow \frac{d y}{d x}=y\left\{\log x \cot x+\frac{\log \sin x}{x}\right\}$
Put the value of $y=(\sin x)^{\log x}$:
$\Rightarrow \frac{d y}{d x}=(\sin x)^{\log x}\left\{\log x \cot x+\frac{\log \sin x}{x}\right\}$
10. Question

Differentiate the following functions with respect to x :
$10^{\log \sin x}$

Answer

Let $\mathrm{y}=10^{\log \sin \mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log y=\log 10^{\log \sin x}$
$\Rightarrow \log y=\log \sin x \log 10\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(\log 10 \log \sin x)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\log 10 \times \frac{d(\log \sin x)}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log 10 \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log 10}{\sin x}(\cos x)$
$\Rightarrow \frac{d y}{d x}=y\{\log 10 \cot x\}$
Put the value of $y=10^{\log \sin x}$:
$\Rightarrow \frac{d y}{d x}=10^{\log \sin x}\{\log 10 \cot x\}$

11. Question

Differentiate the following functions with respect to x :
$(\log x)^{\log x}$

Answer

Let $y=(\log x)^{\log x}$
Taking log both the sides:
$\Rightarrow \log y=\log (\log x)^{\log x}$
$\Rightarrow \log y=\log x \log (\log x)\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(\log \mathrm{x} \log (\log \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{\mathrm{d}(\log y)}{\mathrm{dx}}=\log \mathrm{x} \times \frac{\mathrm{d}(\log (\log x))}{\mathrm{dx}}+\log (\log x) \times \frac{\mathrm{d}(\log \mathrm{x})}{\mathrm{dx}}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log x \times \frac{1}{\log x} \frac{d(\log x)}{d x}+\log \log x\left(\frac{1}{x} \frac{d x}{d x}\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\log x}{\log x}\left(\frac{1}{x} \frac{d x}{d x}\right)+\frac{\log (\log x)}{x}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1}{x}+\frac{\log (\log x)}{x}\right\}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{1+\log (\log x)}{x}\right\}$
Put the value of $y=(\log x)^{\log x}$:
$\Rightarrow \frac{d y}{d x}=(\log x)^{\log x}\left\{\frac{1+\log (\log x)}{x}\right\}$

12. Question

Differentiate the following functions with respect to x :
$10^{(10 x)}$

Answer

Let $\mathrm{y}=10^{10 \mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log y=\log 10^{10 x}$
$\Rightarrow \log y=10 x \log 10\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log y=(10 \log 10) x$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\{(10 \log 10) x\}}{d x}$
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=10 \times \log (10) \times \frac{\mathrm{d}(\mathrm{x})}{\mathrm{dx}}\{$ Here $10 \log (10)$ is a constant term \}
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{y} \frac{\mathrm{dy}}{\mathrm{dx}}=10 \log (10)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=10 \log (10)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}\{10 \log (10)\}$
Put the value of $y=10^{10} \mathrm{x}$:
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=10^{10 \mathrm{x}}\{10 \log (10)\}$

13. Question

Differentiate the following functions with respect to x :
$\sin \left(x^{x}\right)$

Answer

Let $\mathrm{y}=\sin \left(\mathrm{x}^{\mathrm{x}}\right)$

Take sin inverse both sides:
$\Rightarrow \sin ^{-1} y=\sin ^{-1}\left(\sin x^{x}\right)$
$\Rightarrow \sin ^{-1} y=x^{x}$
Taking log both the sides:
$\Rightarrow \log \left(\sin ^{-1} y\right)=\log x^{x}$
$\Rightarrow \log \left(\sin ^{-1} y\right)=x \log x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d\left(\log \left(\sin ^{-1} y\right)\right)}{d x}=\frac{d(x \log x)}{d x}$
$\Rightarrow \frac{d\left(\log \left(\sin ^{-1} y\right)\right)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{\sin ^{-1} y} \frac{d\left(\sin ^{-1} y\right)}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{\sin ^{-1} y} \times \frac{1}{\sqrt{1-y^{2}}} \frac{d y}{d x}=\frac{x}{x}+\log x$
$\left\{\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{\sin ^{-1} y\left(\sqrt{1-y^{2}}\right)} \frac{d y}{d x}=1+\log x$
$\Rightarrow \frac{d y}{d x}=\sin ^{-1} y\left(\sqrt{1-y^{2}}\right)(1+\log x)$
Put the value of $y=\sin \left(x^{x}\right)$:
$\Rightarrow \frac{d y}{d x}=\sin ^{-1}\left(\sin x^{x}\right)\left(\sqrt{1-\sin ^{2}\left(x^{x}\right)}\right)(1+\log x)$
$\Rightarrow \frac{d y}{d x}=x^{x}\left(\sqrt{\cos ^{2}\left(x^{x}\right)}\right)(1+\log x)$
$\left\{\sin ^{2} x+\cos ^{2} x=1\right\}$
$\Rightarrow \frac{d y}{d x}=x^{x} \cos x^{x}(1+\log x)$

14. Question

Differentiate the following functions with respect to x :
$\left(\sin ^{-1} x\right)^{x}$

Answer

Let $y=\left(\sin ^{-1} x\right)^{x}$
Taking log both the sides:
$\Rightarrow \log y=\log \left(\sin ^{-1} x\right)^{x}$
$\Rightarrow \log y=x \log \left(\sin ^{-1} x\right)\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{x} \log \left(\sin ^{-1} \mathrm{x}\right)\right)}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log y)}{d x}=x \times \frac{d\left(\log \left(\sin ^{-1} x\right)\right)}{d x}+\log \left(\sin ^{-1} x\right) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=x \times \frac{1}{\sin ^{-1} x} \frac{d\left(\sin ^{-1} x\right)}{d x}+\log \left(\sin ^{-1} x\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\sin ^{-1} x} \times \frac{1}{\sqrt{1-x^{2}}} \frac{d x}{d x}+\log \left(\sin ^{-1} x\right)$
$\left\{\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)\right\}$
Put the value of $y=\left(\sin ^{-1} x\right)^{x}$:
$\left.\Rightarrow \frac{d y}{d x}=\left(\sin ^{-1} x\right)^{x}\left\{\frac{x}{\sin ^{-1} x \sqrt{1-x^{2}}}+\log \left(\sin ^{-1} x\right)\right\}\right\}$
15. Question

Differentiate the following functions with respect to x :
$x^{\sin ^{-1} x}$

Answer

Let $y=x^{\sin ^{-1} x}$
Taking log both the sides:
$\Rightarrow \log y=\log x^{\sin ^{-1} x}$
$\Rightarrow \log y=\sin ^{-1} x \log x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\sin ^{-1} x \log x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\sin ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\sin ^{-1} x\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\sin ^{-1} x \times \frac{1}{x} \frac{d x}{d x}+\log x \times \frac{1}{\sqrt{1-x^{2}}} \frac{d x}{d x}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}\right\}$
Put the value of $y=x^{\sin ^{-1} x}$:
$\Rightarrow \frac{d y}{d x}=x^{\sin ^{-1} x}\left\{\frac{\sin ^{-1} x}{x}+\frac{\log x}{\sqrt{1-x^{2}}}\right\}$

16. Question

Differentiate the following functions with respect to x :
$(\tan \mathrm{x})^{1 / \mathrm{x}}$

Answer

Let $y=(\tan \mathrm{x})^{\frac{1}{\mathrm{x}}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{y}=\log (\tan \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log y=\frac{1}{x} \log \tan x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\frac{1}{x} \log \tan x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\frac{1}{x} \times \frac{d(\log \tan x)}{d x}+\log \tan x \times \frac{d\left(x^{-1}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x} \times \frac{1}{\tan x} \frac{d(\tan x)}{d x}+\log \tan x\left(-x^{-2}\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{x \tan x}\left(\sec ^{2} x\right)-\frac{\log \tan x}{x^{2}}$
$\left\{\frac{d(\tan x)}{d x}=\sec ^{2} x\right\}$
$\frac{d y}{d x}=y\left\{\frac{\sec ^{2} x}{x \tan x}-\frac{\log \tan x}{x^{2}}\right\}$
Put the value of $y=(\tan x)^{\frac{1}{x}}$:
$\frac{d y}{d x}=(\tan x)^{\frac{1}{x}}\left\{\frac{\sec ^{2} x}{x \tan x}-\frac{\log \tan x}{x^{2}}\right\}$

17. Question

Differentiate the following functions with respect to x :
$x^{\tan ^{-1} x}$

Answer

Lety $=x^{\tan ^{-1} x}$
Taking log both the sides:
$\Rightarrow \log y=\log x^{\tan ^{-1} x}$
$\Rightarrow \log y=\tan ^{-1} x \log x\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\tan ^{-1} x \log x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\tan ^{-1} x \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(\tan ^{-1} x\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\tan ^{-1} x \times \frac{1}{x} \frac{d x}{d x}+\log x \times \frac{1}{x^{2}+1} \frac{d x}{d x}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\tan ^{-1} \mathrm{u}\right)}{\mathrm{dx}}=\frac{1}{\mathrm{u}^{2}+1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}\right\}$
Put the value of $y=x^{\tan ^{-1} x}$:
$\Rightarrow \frac{d y}{d x}=x^{\tan ^{-1} x}\left\{\frac{\tan ^{-1} x}{x}+\frac{\log x}{x^{2}+1}\right\}$

18 A. Question

Differentiate the following functions with respect to x :
$\left(\mathrm{x}^{\mathrm{x}}\right) \sqrt{\mathrm{x}}$

Answer

Let $y=(x)^{x} \sqrt{x}$
Taking log both the sides:
$\Rightarrow \log y=\log (x)^{x} \sqrt{x}$
$\Rightarrow \log y=\log (x)^{x}+\log \sqrt{x}\{\log (a b)=\log a+\log b\}$
$\Rightarrow \log y=\log (x)^{x}+\log x^{\frac{1}{2}}$
$\Rightarrow \log y=x \log x+\frac{1}{2} \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log y=\left(x+\frac{1}{2}\right) \log x$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d\left(\left(x+\frac{1}{2}\right) \log x\right)}{d x}$
$\Rightarrow \frac{d(\log y)}{d x}=\left(x+\frac{1}{2}\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x+\frac{1}{2}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\left(x+\frac{1}{2}\right) \times \frac{1}{x} \frac{d x}{d x}+\log x \frac{d x}{d x}$
$\left\{\begin{array}{c}\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \\ \text { Using chain rule } \frac{d(u+a)}{d x}=\frac{d u}{d x} \text { where a is any constant and } u \text { is any variable }\end{array}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{(2 x+1)}{2} \times \frac{1}{x}+\log x$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{(2 x+1)}{2 x}+\log x\right\}$
Put the value of $y=(x)^{x} \sqrt{x}$:
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{\frac{(2 x+1)}{2 x}+\log x\right\}$
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{\frac{2 x}{2 x}+\frac{1}{2 x}+\log x\right\}$
$\Rightarrow \frac{d y}{d x}=(x)^{x} \sqrt{x}\left\{1+\frac{1}{2 x}+\log x\right\}$

18 B. Question

Differentiate the following functions with respect to x :
$x^{(\sin x-\cos x)}+\frac{x^{2}-1}{x^{2}+1}$

Answer

Let $y=x^{(\sin x-\cos x)}+\frac{x^{2}-1}{x^{2}+1}$
$\Rightarrow y=a+b$
where $a=x^{(\sin x-\cos x)} ; b=\frac{x^{2}-1}{x^{2}+1}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$\mathrm{a}=\mathrm{x}^{(\sin \mathrm{x}-\cos \mathrm{x})}$

Taking log both the sides:
$\Rightarrow \log a=\log \mathrm{x}^{(\sin \mathrm{x}-\cos \mathrm{x})}$
$\Rightarrow \log a=(\sin x-\cos x) \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d((\sin x-\cos x) \log x)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=(\sin x-\cos x) \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\sin x-\cos x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=(\sin x-\cos x) \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{d(\sin x)}{d x}-\frac{d(\cos x)}{d x}\right)$
$\left\{\begin{array}{c}\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \\ \text { Using chain rule, } \frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x} \text { where a and u are any variables }\end{array}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{(\sin x-\cos x)}{x}+\log x(\cos x-(-\sin x))$
$\left\{\frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{(\sin x-\cos x)}{x}+\log x(\cos x+\sin x)$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}$
Put the value of $a=x^{(\sin x-\cos x)}$:
$\Rightarrow \frac{d a}{d x}=x^{(\sin x-\cos x)}\left\{\frac{\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}$
$b=\frac{x^{2}-1}{x^{2}+1}$
$\Rightarrow \frac{d b}{d x}=\frac{\left(x^{2}+1\right) \frac{d\left(x^{2}-1\right)}{d x}-\left(x^{2}-1\right) \frac{d\left(x^{2}+1\right)}{d x}}{\left(x^{2}+1\right)^{2}}$
$\left\{\frac{d\left(\frac{\mathrm{u}}{\mathrm{V}}\right)}{d x}=\frac{\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=n \mathrm{u}^{\mathrm{n}-1} \frac{\mathrm{du}}{d x}\right\}$
$\Rightarrow \frac{d b}{d x}=\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\left(2 \mathrm{x}^{3}+2 \mathrm{x}\right)-\left(2 \mathrm{x}^{3}-2 \mathrm{x}\right)}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\left(2 \mathrm{x}^{3}+2 \mathrm{x}-2 \mathrm{x}^{3}+2 \mathrm{x}\right)}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{d b}{d x}=\frac{4 x}{\left(x^{2}+1\right)^{2}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{(\sin x-\cos x)}\left\{\frac{\sin x-\cos x}{x}+\log x(\cos x+\sin x)\right\}+\frac{4 x}{\left(x^{2}+1\right)^{2}}$

18 C. Question

Differentiate the following functions with respect to x :
$x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$

Answer

Let $y=x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}$
$\Rightarrow y=a+b$
where $a=x^{x \cos x} ; b=\frac{x^{2}+1}{x^{2}-1}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=x^{x \cos x}$
Taking log both the sides:
$\Rightarrow \log a=\log x^{x \cos x}$
$\Rightarrow \log a=x \cos x \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(x \cos x \log x)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=x \cos x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(x \cos x)}{d x}$
$\left\{\begin{array}{c}\text { Using product rule, } \frac{d(u v w)}{d x}=u v \frac{d w}{d x}+w \frac{d u v}{d x} \\ =u v \frac{d w}{d x}+w\left\{u \frac{d v}{d x}+v \frac{d u}{d x}\right\}\end{array}\right\}$
$\Rightarrow \frac{d(\log a)}{d x}=x \cos x \times \frac{d(\log x)}{d x}+\log x\left\{x \frac{d(\cos x)}{d x}+\cos x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \cos x \times \frac{1}{x} \frac{d x}{d x}+\log x\{x(-\sin x)+\cos x\}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x \cos x}{x}+\log x(\cos x-x \sin x)$
$\left\{\frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{d a}{d x}=a\{\cos x+\log x(\cos x-x \sin x)\}$
Put the value of $a=x^{x \cos x}$:
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x+\log x(\cos x-x \sin x)\}$
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x+\log x \cos x-x \sin x \log x\}$
$\Rightarrow \frac{d a}{d x}=x^{x \cos x}\{\cos x(1+\log x)-x \sin x \log x\}$
$b=\frac{x^{2}+1}{x^{2}-1}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{\left(\mathrm{x}^{2}-1\right) \frac{\mathrm{d}\left(\mathrm{x}^{2}+1\right)}{\mathrm{dx}}-\left(\mathrm{x}^{2}+1\right) \frac{\mathrm{d}\left(\mathrm{x}^{2}-1\right)}{\mathrm{dx}}}{\left(\mathrm{x}^{2}-1\right)^{2}}$
$\left\{\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} ; \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{\left(\mathrm{x}^{2}-1\right)(2 \mathrm{x})-\left(\mathrm{x}^{2}+1\right)(2 \mathrm{x})}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{\left(2 \mathrm{x}^{3}-2 \mathrm{x}\right)-\left(2 \mathrm{x}^{3}+2 \mathrm{x}\right)}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\left(2 \mathrm{x}^{3}-2 \mathrm{x}-2 \mathrm{x}^{3}-2 \mathrm{x}\right)}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{-4 \mathrm{x}}{\left(\mathrm{x}^{2}+1\right)^{2}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{x \cos x}\{\cos x(1+\log x)-x \sin x \log x\}-\frac{4 x}{\left(x^{2}+1\right)^{2}}$

18 D. Question

Differentiate the following functions with respect to x :
$(x \cos x)^{x}+(x \sin x)^{1 / x}$

Answer

Let $y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $a=(x \cos x)^{x} ; b=(x \sin x)^{\frac{1}{x}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables $\}$
$a=(x \cos x)^{x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\mathrm{x} \cos \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log (\mathrm{x} \cos \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\mathrm{x} \cos \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d(\log (x \cos x))}{d x}+\log (x \cos x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{x \cos x} \frac{d(x \cos x)}{d x}+\log (x \cos x)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{x \cos x}\left\{x \frac{d(\cos x)}{d x}+\cos x\right\}+\log (x \cos x)$
$\left\{\right.$ Again using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\left.\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{1}{\cos x}\{x(-\sin x)+\cos x\}\right\}+\log (x \cos x)$
$\left\{\frac{d(\cos x)}{d x}=-\sin x\right\}$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\cos x-x \sin x}{\cos x}+\log (x \cos x)\right\}$
Put the value of $a=(x \cos x)^{x}$:
$\Rightarrow \frac{d a}{d x}=(x \cos x)^{x}\left\{\frac{\cos x-x \sin x}{\cos x}+\log (x \cos x)\right\}$
$\Rightarrow \frac{d a}{d x}=(x \cos x)^{x}\{1-x \tan x+\log (x \cos x)\}$
$b=(x \sin x)^{\frac{1}{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log (\mathrm{x} \sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log \mathrm{b}=\frac{1}{\mathrm{x}} \log (\mathrm{x} \sin \mathrm{x})\left\{\log \mathrm{x}^{\mathrm{a}}=\operatorname{alog} \mathrm{x}\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d\left(\frac{1}{x} \log (x \sin x)\right)}{d x}$
$\Rightarrow \frac{d(\log b)}{d x}=\frac{1}{x} \times \frac{d(\log (x \sin x))}{d x}+\log (x \sin x) \times \frac{d\left(x^{-1}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x} \times \frac{1}{x \sin x} \frac{d(x \sin x)}{d x}+\log (x \sin x)\left(-x^{-2}\right)$
$\left\{\right.$ Again using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=n u^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x^{2} \sin x}\left(x \frac{d(\sin x)}{d x}+\sin x \frac{d x}{d x}\right)-\frac{\log (x \sin x)}{x^{2}}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}}{\mathrm{x}^{2} \sin \mathrm{x}}-\frac{\log (\mathrm{x} \sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
$\left\{\frac{d(\sin x)}{d x}=\cos x\right\}$
Put the value of $b=(x \sin x)^{\frac{1}{x}}$:
$\Rightarrow \frac{d b}{d x}=(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cos x+\sin x}{x^{2} \sin x}-\frac{\log (x \sin x)}{x^{2}}\right\}$
$\Rightarrow \frac{d b}{d x}=(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cot x+1}{x^{2}}-\frac{\log (x \sin x)}{x^{2}}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=(\mathrm{x} \sin \mathrm{x})^{\frac{1}{\mathrm{x}}}\left\{\frac{\mathrm{x} \cot \mathrm{x}+1-\log (\mathrm{x} \sin \mathrm{x})}{\mathrm{x}^{2}}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(x \cos x)^{x}\{1-x \tan x+\log (x \cos x)\}$
$+(x \sin x)^{\frac{1}{x}}\left\{\frac{x \cot x+1-\log (x \sin x)}{x^{2}}\right\}$

18 E. Question

Differentiate the following functions with respect to x :
$\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}$

Answer

Let $\mathrm{y}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}+\mathrm{x}^{\left(1+\frac{1}{\mathrm{x}}\right)}$
$\Rightarrow y=a+b$
where $a=\left(x+\frac{1}{x}\right)^{x} ; b=x^{\left(1+\frac{1}{x}\right)}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables $\}$
$a=\left(x+\frac{1}{x}\right)^{x}$
Taking log both the sides:
$\Rightarrow \log a=\log \left(x+\frac{1}{x}\right)^{x}$
$\Rightarrow \log a=x \log \left(x+\frac{1}{x}\right)$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d\left(x \log \left(x+\frac{1}{x}\right)\right)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d\left(\log \left(x+\frac{1}{x}\right)\right)}{d x}+\log \left(x+\frac{1}{x}\right) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{x+\frac{1}{x}} \frac{d\left(x+\frac{1}{x}\right)}{d x}+\log \left(x+\frac{1}{x}\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{\frac{x^{2}+1}{x}}\left\{\frac{d x}{d x}+\frac{d\left(\frac{1}{x}\right)}{d x}\right\}+\log \left(x+\frac{1}{x}\right)$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+1}\left\{1+\left(-\frac{1}{\mathrm{x}^{2}}\right)\right\}+\log \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)$
$\left\{\frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{x^{2}}{x^{2}+1}\left\{1-\frac{1}{x^{2}}\right\}+\log \left(x+\frac{1}{x}\right)\right\}$
Put the value of $a=\left(x+\frac{1}{x}\right)^{x}$:
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}\left\{\frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+1}\left\{1-\frac{1}{\mathrm{x}^{2}}\right\}+\log \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\right\}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}\left\{\frac{\mathrm{x}^{2}}{\mathrm{x}^{2}+1}-\frac{1}{\mathrm{x}^{2}+1}+\log \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\right\}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}\left\{\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}+1}+\log \left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)\right\}$
$b=x^{\left(1+\frac{1}{x}\right)}$
Taking log both the sides:
$\Rightarrow \log b=\log x^{\left(1+\frac{1}{x}\right)}$
$\Rightarrow \log \mathrm{b}=\left(1+\frac{1}{\mathrm{x}}\right) \log \mathrm{x}\left\{\log \mathrm{x}^{\mathrm{a}}=\operatorname{alog} \mathrm{x}\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d\left(\left(1+\frac{1}{x}\right) \log x\right)}{d x}$
$\Rightarrow \frac{d(\log b)}{d x}=\left(1+\frac{1}{x}\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(1+\frac{1}{x}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x+1}{x} \times \frac{1}{x} \frac{d x}{d x}+\log x\left(\frac{d(1)}{d x}+\frac{d\left(\frac{1}{x}\right)}{d x}\right)$
$\left\{\begin{array}{c}\frac{d(\log \mathrm{u})}{d x}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{d \mathrm{x}} ; \\ \text { Using chain rule }, \frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{d \mathrm{dx}}+\frac{d \mathrm{a}}{\mathrm{dx}} \text { where a and u are any variables }\end{array}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x+1}{x^{2}}+\log x\left(-\frac{1}{x^{2}}\right)$
$\left\{\frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}+1}{\mathrm{x}^{2}}-\frac{\log \mathrm{x}}{\mathrm{x}^{2}}\right\}$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}+1-\log \mathrm{x}}{\mathrm{x}^{2}}\right\}$
Put the value of $b=x^{\left(1+\frac{1}{x}\right)}$:
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x}^{\left(1+\frac{1}{\mathrm{x}}\right)}\left\{\frac{\mathrm{x}+1-\log \mathrm{x}}{\mathrm{x}^{2}}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{x}\left\{\frac{x^{2}-1}{x^{2}+1}+\log \left(x+\frac{1}{x}\right)\right\}+x^{\left(1+\frac{1}{x}\right)}\left\{\frac{x+1-\log x}{x^{2}}\right\}$

18 F. Question

Differentiate the following functions with respect to x :
$\mathrm{e}^{\sin \mathrm{x}}+(\tan \mathrm{x})^{\mathrm{x}}$

Answer

let $\mathrm{y}=\mathrm{e}^{\sin \mathrm{x}}+(\tan \mathrm{x})^{\mathrm{x}}$
$\Rightarrow y=a+b$
where $a=e^{\sin x} ; b=(\tan x)^{x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables
$a=e^{\sin x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log \mathrm{e}^{\sin \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\sin \mathrm{x} \log \mathrm{e}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log \mathrm{a}=\sin \times\{\log \mathrm{e}=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\sin x)}{d x}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\cos \mathrm{x}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}(\cos \mathrm{x})$
Put the value of $a=e^{\sin x}$
$\Rightarrow \frac{d a}{d x}=e^{\sin x} \cos x$
$\mathrm{b}=(\tan \mathrm{x})^{\mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log (\tan \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{b}=\mathrm{x} \log (\tan \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\tan \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=x \times \frac{d(\log (\tan x))}{d x}+\log (\tan x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x} \times \frac{1}{\tan \mathrm{x}} \frac{\mathrm{d}(\tan \mathrm{x})}{\mathrm{dx}}+\log (\tan \mathrm{x})$
$\left\{\frac{d(\tan x)}{d x}=\sec ^{2} x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x}{\tan x}\left(\sec ^{2} x\right)+\log (\tan x)$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x} \cos \mathrm{x}}{\sin \mathrm{x}}\left(\frac{1}{\cos ^{2} \mathrm{x}}\right)+\log (\tan \mathrm{x})$
$\Rightarrow \frac{1}{b} \frac{d \mathrm{~b}}{\mathrm{dx}}=\frac{\mathrm{x}}{\sin \mathrm{x}}\left(\frac{1}{\cos \mathrm{x}}\right)+\log (\tan \mathrm{x})$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\mathrm{b}\left\{\frac{\mathrm{x}}{\sin \mathrm{x} \cos \mathrm{x}}+\log (\tan \mathrm{x})\right\}$
Put the value of $b=(\tan x)^{x}$:
$\Rightarrow \frac{d b}{d x}=(\tan x)^{x}\left\{\frac{x}{\sin x \cos x}+\log (\tan x)\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=e^{\sin x} \cos x+(\tan x)^{x}\left\{\frac{x}{\sin x \cos x}+\log (\tan x)\right\}$

18 G. Question

Differentiate the following functions with respect to x :
$(\cos x)^{x}+(\sin x)^{1 / x}$

Answer

Let $y=(\cos x)^{x}+(\sin x)^{\frac{1}{x}}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $a=(\cos x)^{x} ; b=(\sin x)^{\frac{1}{x}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables\}
$a=(\cos x)^{x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\cos \mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log (\cos \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\cos \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d(\log (\cos x))}{d x}+\log (\cos x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{\cos x} \frac{d(\cos x)}{d x}+\log (\cos x)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{\cos x}(-\sin x)+\log (\cos x)$
$\left\{\frac{d(\cos x)}{d x}=-\sin x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{-x \sin x}{\cos x}+\log (\cos x)$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}\{-\mathrm{x} \tan \mathrm{x}+\log (\cos \mathrm{x})\}$
Put the value of $a=(\cos x)^{x}$:
$\Rightarrow \frac{d a}{d x}=(\cos x)^{x}\{-x \tan x+\log (\cos x)\}$
$b=(\sin x)^{\frac{1}{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log (\sin \mathrm{x})^{\frac{1}{\mathrm{x}}}$
$\Rightarrow \log b=\frac{1}{x} \log (\sin x)\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d\left(\frac{1}{\mathrm{x}} \log (\sin \mathrm{x})\right)}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=\frac{1}{x} \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d\left(x^{-1}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x} \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)\left(-x^{-2}\right)$
$\left\{\frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{1}{x \sin x}(\cos x)-\frac{\log (\sin x)}{x^{2}}$
$\left\{\frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{\cos x}{x \sin x}-\frac{\log (\sin x)}{x^{2}}$
$\Rightarrow \frac{d b}{d x}=b\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\}$
Put the value of $b=(\sin x)^{\frac{1}{x}}$:
$\Rightarrow \frac{d b}{d x}=(\sin x)^{\frac{1}{x}}\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(\cos x)^{x}\{-x \tan x+\log (\cos x)\}+(\sin x)^{\frac{1}{x}}\left\{\frac{\cot x}{x}-\frac{\log (\sin x)}{x^{2}}\right\}$

18 H. Question

Differentiate the following functions with respect to x :
$x^{x^{2}-3}+(x-3)^{x^{2}}$

Answer

Let $y=x^{x^{2}-3}+(x-3)^{x^{2}}$
$\Rightarrow y=a+b$
where $a=x^{x^{2}-3} ; b=(x-3)^{x^{2}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$\mathrm{a}=\mathrm{x}^{\mathrm{x}^{2}-3}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log \mathrm{x}^{\mathrm{x}^{2}-3}$
$\Rightarrow \log a=\left(x^{2}-3\right) \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d\left(\left(x^{2}-3\right) \log x\right)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\left(x^{2}-3\right) \times \frac{d(\log x)}{d x}+\log x \times \frac{d\left(x^{2}-3\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\left(x^{2}-3\right) \times \frac{1}{x} \frac{d x}{d x}+\log x \times(2 x)$
$\left\{\begin{array}{c}\frac{d(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}} ; \\ \text { Using chain rule}, \frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}} \text { where a and u are any variables }\end{array}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\left(x^{2}-3\right)}{x}+2 x \log x$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}$
Put the value of $a=x^{x^{2}-3}$:
$\Rightarrow \frac{d a}{d x}=x^{x^{2}-3}\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}$
$b=(x-3)^{x^{2}}$
Taking log both the sides:
$\Rightarrow \log b=(x-3)^{x^{2}}$
$\Rightarrow \log b=x^{2} \log (x-3)\left\{\log x^{a}=a \log x\right\}$

Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d\left(x^{2} \log (x-3)\right)}{d x}$
$\Rightarrow \frac{d(\log b)}{d x}=x^{2} \times \frac{d(\log (x-3))}{d x}+\log (x-3) \times \frac{d\left(x^{2}\right)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=x^{2} \times \frac{1}{(x-3)} \frac{d(x-3)}{d x}+\log (x-3) \times(2 x)$
$\left\{\begin{array}{c}\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x} \\ \text { Using chain rule, } \frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x} \text { where a and u are any variables }\end{array}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x^{2}}{(x-3)}\left(\frac{d x}{d x}-\frac{d(3)}{d x}\right)+2 x \log (x-3)$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x^{2}}{(x-3)}(1)+2 x \log (x-3)$
$\Rightarrow \frac{d b}{d x}=b\left\{\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right\}$
Put the value of $b=(x-3)^{x^{2}}$:
$\Rightarrow \frac{d b}{d x}=(x-3)^{x^{2}}\left\{\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{x^{2}-3}\left\{\frac{\left(x^{2}-3\right)}{x}+2 x \log x\right\}+(x-3)^{x^{2}}\left\{\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right\}$

19. Question

Find $\frac{d y}{d x}$, when
$1 y=e^{x}+10^{x}+x^{x}$

Answer

let $y=e^{x}+10^{x}+x^{x}$
$\Rightarrow y=a+b+c$
where $a=e^{x} ; b=10^{x} ; c=x^{x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=e^{x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log \mathrm{e}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log \mathrm{e}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log \mathrm{a}=\mathrm{x}\{\log \mathrm{e}=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d x}{d x}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=1$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}$
Put the value of $a=e^{x}$
$\Rightarrow \frac{d a}{d x}=e^{x}$
$\mathrm{b}=10^{\mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log 10^{\mathrm{x}}$
$\Rightarrow \log \mathrm{b}=\mathrm{x} \log 10$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log \mathrm{~b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log 10)}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=\log 10 \times \frac{d x}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log 10)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log 10)$
Put the value of $b=10^{x}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=10^{\mathrm{x}}(\log 10)$
$c=x^{x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{c}=\log \mathrm{x}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{c}=\mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$

Differentiating with respect to x :
$\Rightarrow \frac{d(\log c)}{d x}=\frac{d(x \log x)}{d x}$
$\Rightarrow \frac{d(\log c)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{c} \frac{\mathrm{dc}}{\mathrm{dx}}=\mathrm{x} \times \frac{1}{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dx}}+\log \mathrm{x}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{c} \frac{d c}{d x}=1+\log x$
$\Rightarrow \frac{\mathrm{dc}}{\mathrm{dx}}=\mathrm{c}\{1+\log \mathrm{x}\}$
Put the value of $c=x^{x}$
$\Rightarrow \frac{d c}{d x}=x^{x}\{1+\log x\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}$
$\Rightarrow \frac{d y}{d x}=e^{x}+10^{x}(\log 10)+x^{x}\{1+\log x\}$
20. Question

Find $\frac{d y}{d x}$, when
$y=x^{n}+n^{x}+x^{x}+n^{n}$

Answer

let $y=x^{n}+n^{x}+x^{x}+n^{n}$
$\Rightarrow y=a+b+c+m$
where $a=x^{n} ; b=n^{x} ; c=x^{x} ; m=n^{n}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}+\frac{d m}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=x^{n}$
Taking log both the sides:
$\Rightarrow \log a=\log x^{n}$
$\Rightarrow \log \mathrm{a}=\mathrm{n} \log \mathrm{x}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log \mathrm{a}=\mathrm{n} \log \mathrm{x}\{\log \mathrm{e}=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(n \log x)}{d x}$
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{a})}{\mathrm{dx}}=\mathrm{n} \frac{\mathrm{d}(\log \mathrm{x})}{\mathrm{dx}}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{n} \times \frac{1}{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dx}}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\frac{\mathrm{n}}{\mathrm{x}}$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\frac{\mathrm{an}}{\mathrm{x}}$
Put the value of $a=x^{n}$
$\frac{d a}{d x}=\frac{n x^{n}}{x}$
$\frac{d a}{d x}=n x^{n-1}$
$\left\{\frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\mathrm{b}=\mathrm{n}^{\mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log \mathrm{n}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{b}=\mathrm{x} \log \mathrm{n}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log \mathrm{n})}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=\log n \times \frac{d x}{d x}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\log \mathrm{n})$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}(\operatorname{logn})$
Put the value of $b=n^{x}$:
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{n}^{\mathrm{x}}(\log \mathrm{n})$
$c=x^{x}$

Taking log both the sides:
$\Rightarrow \log \mathrm{c}=\log \mathrm{x}^{\mathrm{x}}$
$\Rightarrow \log \mathrm{c}=\mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log c)}{d x}=\frac{d(x \log x)}{d x}$
$\Rightarrow \frac{d(\log c)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{c} \frac{d c}{d x}=x \times \frac{1}{x} \frac{d x}{d x}+\log x$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{c} \frac{d c}{d x}=1+\log x$
$\Rightarrow \frac{\mathrm{dc}}{\mathrm{dx}}=\mathrm{c}\{1+\log \mathrm{x}\}$
Put the value of $c=x^{x}$
$\Rightarrow \frac{\mathrm{dc}}{\mathrm{dx}}=\mathrm{x}^{\mathrm{x}}\{1+\log \mathrm{x}\}$
$\mathrm{m}=\mathrm{n}^{\mathrm{n}}$
$\Rightarrow \frac{\mathrm{dm}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{n}^{\mathrm{n}}\right)}{\mathrm{dx}}$
$\Rightarrow \frac{d m}{d x}=0$
$\left\{\frac{d u}{d x}=0\right.$ if u is any contant $\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}+\frac{d c}{d x}+\frac{d m}{d x}$
$\Rightarrow \frac{d y}{d x}=n x^{n-1}+n^{x}(\log n)+x^{x}\{1+\log x\}+0$
$\Rightarrow \frac{d y}{d x}=n x^{n-1}+n^{x}(\log n)+x^{x}\{1+\log x\}$

21. Question

Find $\frac{d y}{d x}$, when
$y=\frac{\left(x^{2}-1\right)^{3}(2 x-1)}{\sqrt{(x-3)(4 x-1)}}$
Answer

Let $\mathrm{y}=\frac{\left(\mathrm{x}^{2}-1\right)^{3}(2 \mathrm{x}-1)}{\sqrt{(\mathrm{x}-3)(4 \mathrm{x}-1)}}$
$\Rightarrow \mathrm{y}=\frac{\left(\mathrm{x}^{2}-1\right)^{3}(2 \mathrm{x}-1)}{((\mathrm{x}-3)(4 \mathrm{x}-1))^{\frac{1}{2}}}$
$\Rightarrow \mathrm{y}=\frac{\left(\mathrm{x}^{2}-1\right)^{3}(2 \mathrm{x}-1)}{(\mathrm{x}-3)^{\frac{1}{2}}(4 \mathrm{x}-1)^{\frac{1}{2}}}$
Take log both sides:
$\Rightarrow \log y=\log \left\{\frac{\left(x^{2}-1\right)^{3}(2 x-1)}{(x-3)^{\frac{1}{2}}(4 x-1)^{\frac{1}{2}}}\right\}$
$\left\{\log (\mathrm{ab})=\log a+\log b ; \log \left(\frac{\mathrm{a}}{\mathrm{b}}\right)=\log \mathrm{a}-\log \mathrm{b}\right\}$
$\Rightarrow \log y=\left\{\log \left(x^{2}-1\right)^{3}+\log (2 x-1)\right\}-\left\{\log (x-3)^{\frac{1}{2}}+\log (4 x-1)^{\frac{1}{2}}\right\}$
$\Rightarrow \log y=\log \left(x^{2}-1\right)^{3}+\log (2 x-1)-\log (x-3)^{\frac{1}{2}}-\log (4 x-1)^{\frac{1}{2}}$
$\Rightarrow \log y=3 \log \left(x^{2}-1\right)+\log (2 x-1)-\frac{1}{2} \log (x-3)-\frac{1}{2} \log (4 x-1)\left\{\log x^{a}=a \log x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=3 \frac{d\left(\log \left(x^{2}-1\right)\right)}{d x}+\frac{d(\log (2 x-1))}{d x}-\frac{1}{2} \frac{d(\log (x-3))}{d x}$

$$
-\frac{1}{2} \frac{\mathrm{~d}(\log (4 \mathrm{x}-1))}{\mathrm{dx}}
$$

$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables $\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{3}{x^{2}-1} \frac{d\left(x^{2}-1\right)}{d x}+\frac{1}{(2 x-1)} \frac{d(2 x-1)}{d x}-\frac{1}{2(x-3)} \frac{d(x-3)}{d x}$ $-\frac{1}{2(4 x-1)} \frac{d(4 x-1)}{d x}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{3}{x^{2}-1}(2 x)+\frac{1}{(2 x-1)}(2)-\frac{1}{2(x-3)}(1)-\frac{1}{2(4 x-1)}(4)$
$\left\{\begin{array}{c}\text { Using chain rule, } \frac{d(a+u)}{d x}=\frac{d u}{d x} \text { where } a \text { is any constant and } u \text { is any variable; } \\ \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}\end{array}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{6 x}{x^{2}-1}+\frac{2}{(2 x-1)}-\frac{1}{2(x-3)}-\frac{4}{2(4 x-1)}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{6 x}{x^{2}-1}+\frac{2}{(2 x-1)}-\frac{1}{2(x-3)}-\frac{2}{(4 x-1)}$
$\Rightarrow \frac{d y}{d x}=y\left\{\frac{6 x}{x^{2}-1}+\frac{2}{(2 x-1)}-\frac{1}{2(x-3)}-\frac{2}{(4 x-1)}\right\}$
Put the value of $y=\frac{\left(x^{2}-1\right)^{3}(2 x-1)}{\sqrt{(x-3)(4 x-1)}}$:
$\Rightarrow \frac{d y}{d x}=\frac{\left(x^{2}-1\right)^{3}(2 x-1)}{\sqrt{(x-3)(4 x-1)}}\left\{\frac{6 x}{x^{2}-1}+\frac{2}{(2 x-1)}-\frac{1}{2(x-3)}-\frac{2}{(4 x-1)}\right\}$

22. Question

Find $\frac{d y}{d x}$, when
$y=\frac{e^{a x} \operatorname{sex} x \log x}{\sqrt{1-2 \mathrm{x}}}$

Answer

Let $y=\frac{e^{a x} \sec ^{x} x \log x}{\sqrt{1-2 x}}$
$\Rightarrow y=\frac{e^{a x} \sec ^{x} x \log x}{(1-2 x)^{\frac{1}{2}}}$
Take log both sides:
$\Rightarrow \log y=\log \left(\frac{\mathrm{e}^{a \mathrm{x}} \sec ^{\mathrm{x}} \mathrm{x} \log \mathrm{x}}{(1-2 \mathrm{x})^{\frac{1}{2}}}\right)$
$\Rightarrow \log y=\log \mathrm{e}^{\mathrm{ax}}+\log \sec ^{\mathrm{x}} \mathrm{x}+\log \log \mathrm{x}-\log (1-2 \mathrm{x})^{\frac{1}{2}}$
$\left\{\log (a b)=\log a+\log b ; \log \left(\frac{a}{b}\right)=\log a-\log b\right\}$
$\Rightarrow \log y=a x \log e+x \log \sec x+\log \log x-\frac{1}{2} \log (1-2 x)\left\{\log x^{a}=a \log x\right\}$
$\Rightarrow \log y=a x+x \log \sec x+\log \log x-\frac{1}{2} \log (1-2 x)\{\log e=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log y)}{d x}=\frac{d(a x)}{d x}+\frac{d(x \log \sec x)}{d x}+\frac{d(\log \log x)}{d x}-\frac{1}{2} \frac{d(\log (1-2 x))}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables\}

$$
\begin{aligned}
\Rightarrow \frac{1}{y} \frac{d y}{d x}= & a \frac{d x}{d x}+\left\{x \frac{d(\log \sec x)}{d x}+\log \sec x \frac{d x}{d x}\right\}+\frac{1}{\log x} \frac{d(\log x)}{d x} \\
& -\frac{1}{2(1-2 x)} \frac{d(1-2 x)}{d x}
\end{aligned}
$$

$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=a+\left\{x \times \frac{1}{\sec x} \frac{d(\sec x)}{d x}+\log \sec x\right\}+\frac{1}{\log x} \times \frac{1}{x} \frac{d x}{d x}-\frac{1}{2(1-2 x)}(-2)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=n \mathrm{u}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=a+\left\{\frac{x}{\sec x}(\sec x \tan x)+\log \sec x\right\}+\frac{1}{x \log x}-\frac{(-2)}{2(1-2 x)}$
$\left\{\frac{d(\sec x)}{d x}=\sec x \tan x\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=a+\left\{\frac{x \sec x \tan x}{\sec x}+\log \sec x\right\}+\frac{1}{x \log x}+\frac{1}{(1-2 x)}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=a+\{x \tan x+\log \sec x\}+\frac{1}{x \log x}+\frac{1}{(1-2 x)}$
$\Rightarrow \frac{d y}{d x}=y\left\{a+x \tan x+\log \sec x+\frac{1}{x \log x}+\frac{1}{(1-2 x)}\right\}$
Put the value of $y=\frac{e^{a x} \sec ^{x} x \log x}{\sqrt{1-2 x}}$:
$\Rightarrow \frac{d y}{d x}=\frac{e^{a x} \sec ^{x} x \log x}{\sqrt{1-2 x}}\left\{a+x \tan x+\log \sec x+\frac{1}{x \log x}+\frac{1}{(1-2 x)}\right\}$

23. Question

Find $\frac{d y}{d x}$, when
$y=e^{3 x} \sin 4 x 2^{x}$

Answer

Let $\mathrm{y}=\mathrm{e}^{3 \mathrm{x}} \sin 4 \mathrm{x} 2^{\mathrm{x}}$
Take log both sides:
$\Rightarrow \log y=\log \left(e^{3 x} \sin 4 x 2^{x}\right)$
$\Rightarrow \log y=\log \left(e^{3 x}\right)+\log (\sin 4 x)+\log \left(2^{x}\right)$
$\left\{\log (a b)=\log a+\log b ; \log \left(\frac{a}{b}\right)=\log a-\log b\right\}$
$\Rightarrow \log y=3 x \log e+\log (\sin 4 x)+x \log 2\left\{\log x^{a}=\operatorname{alog} x\right\}$
$\Rightarrow \log y=3 x+\log (\sin 4 x)+x \log 2\{\log e=1\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(3 \mathrm{x})}{\mathrm{dx}}+\frac{\mathrm{d}(\log \sin 4 \mathrm{x})}{\mathrm{dx}}+\frac{\mathrm{d}(\mathrm{x} \log 2)}{\mathrm{dx}}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables $\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=3 \frac{d x}{d x}+\frac{1}{\sin 4 x} \frac{d(\sin 4 x)}{d x}+\log 2 \frac{d x}{d x}$
$\left\{\begin{array}{c}\text { Using chain rule, } \frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}} \text { where } \mathrm{a} \text { is any constant and } \mathrm{u} \text { is any variable; ; } \\ \frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\end{array}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=3+\frac{\cos 4 x}{\sin 4 x} \frac{d(4 x)}{d x}+\log 2$
$\left\{\frac{d(\sin u)}{d x}=\cos u \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=3+\cot 4 x \times 4 \frac{d x}{d x}+\log 2$
$\Rightarrow \frac{d y}{d x}=y\{3+4 \cot 4 x+\log 2\}$

Put the value of $y=e^{3 x} \sin 4 x 2^{x}$:
$\Rightarrow \frac{d y}{d x}=e^{3 x} \sin 4 x 2^{x}\{3+4 \cot 4 x+\log 2\}$

24. Question

Find $\frac{d y}{d x}$, when
$y=\sin x \sin 2 x \sin 3 x \sin 4 x$

Answer

Let $y=\sin x \sin 2 x \sin 3 x \sin 4 x$
Take log both sides:
$\Rightarrow \log y=\log (\sin x \sin 2 x \sin 3 x \sin 4 x)$
$\Rightarrow \log y=\log (\sin x)+\log (\sin 2 x)+\log (\sin 3 x)+\log (\sin 4 x)$
$\left\{\log (a b)=\log a+\log b ; \log \left(\frac{a}{b}\right)=\log a-\log b\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{y})}{\mathrm{dx}}=\frac{\mathrm{d}(\log (\sin \mathrm{x}))}{\mathrm{dx}}+\frac{\mathrm{d}(\log (\sin 2 \mathrm{x}))}{\mathrm{dx}}+\frac{\mathrm{d}(\log (\sin 3 \mathrm{x}))}{\mathrm{dx}}+\frac{\mathrm{d}(\log (\sin 4 \mathrm{x}))}{\mathrm{dx}}$ $\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{1}{\sin x} \frac{d(\sin x)}{d x}+\frac{1}{\sin 2 x} \frac{d(\sin 2 x)}{d x}+\frac{1}{\sin 3 x} \frac{d(\sin 3 x)}{d x}+\frac{1}{\sin 4 x} \frac{d(\sin 4 x)}{d x}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{\cos x}{\sin x} \frac{d x}{d x}+\frac{\cos 2 x}{\sin 2 x} \frac{d(2 x)}{d x}+\frac{\cos 3 x}{\sin 3 x} \frac{d(3 x)}{d x}+\frac{\cos 4 x}{\sin 4 x} \frac{d(4 x)}{d x}$
$\left\{\frac{d(\sin u)}{d x}=\cos u \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cot x+\cot 2 x \times 2 \frac{d x}{d x}+\cot 3 x \times 3 \frac{d x}{d x}+\cot 4 x \times 4 \frac{d x}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{au})}{\mathrm{dx}}=\mathrm{a} \frac{\mathrm{du}}{\mathrm{dx}}$ where a is any constant and u is any variable $\}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\cot x+2 \cot 2 x+3 \cot 3 x+4 \cot 4 x$
$\Rightarrow \frac{d y}{d x}=y\{\cot x+2 \cot 2 x+3 \cot 3 x+4 \cot 4 x\}$
Put the value of $y=\sin x \sin 2 x \sin 3 x \sin 4 x$:
$\Rightarrow \frac{d y}{d x}=\sin x \sin 2 x \sin 3 x \sin 4 x\{\cot x+2 \cot 2 x+3 \cot 3 x+4 \cot 4 x\}$

25. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
$y=x^{\sin x}+(\sin x)^{x}$

Answer

let $y=x^{\sin x}+(\sin x)^{x}$
$\Rightarrow y=a+b$
where $a=x^{\sin x} ; b=(\sin x)^{x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=x^{\sin x}$
Taking log both the sides:
$\Rightarrow \log a=\log x^{\sin x}$
$\Rightarrow \log a=\sin x \log x$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\sin x \log x)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\sin x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\sin x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\sin x \times \frac{1}{x} \frac{d x}{d x}+\log x(\cos x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} \& \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\sin x}{x}+\log x \cos x$
$\Rightarrow \frac{d a}{d x}=a\left(\frac{\sin x}{x}+\log x \cos x\right)$
Put the value of $a=x^{\sin x}$:
$\Rightarrow \frac{d a}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)$
$b=(\sin x)^{x}$
Taking log both the sides:
$\Rightarrow \log b=\log (\sin x)^{x}$
$\Rightarrow \log b=x \log (\sin x)$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d(x \log (\sin x))}{d x}$
$\Rightarrow \frac{d(\log b)}{d x}=x \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x} \times \frac{1}{\sin \mathrm{x}} \frac{\mathrm{d}(\sin \mathrm{x})}{\mathrm{dx}}+\log (\sin \mathrm{x})$
$\left\{\frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x}{\sin x}(\cos x)+\log (\sin x)$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{x \cos x}{\sin x}+\log (\sin x)$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{x} \cot \mathrm{x}+\log (\sin \mathrm{x})$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\{\mathrm{x} \cot \mathrm{x}+\log (\sin \mathrm{x})\}$
Put the value of $b=(\sin x)^{x}$:
$\Rightarrow \frac{d b}{d x}=(\sin x)^{x}\{x \cot x+\log (\sin \mathrm{x})\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{\sin x}\left(\frac{\sin x}{x}+\log x \cos x\right)+(\sin x)^{x}\{x \cot x+\log (\sin x)\}$

26. Question

Find $\frac{d y}{d x}$, when
$y=(\sin x)^{\cos x}+(\cos x)^{\sin x}$

Answer

let $y=(\sin x)^{\cos x}+(\cos x)^{\sin x}$
$\Rightarrow y=a+b$
where $a=(\sin x)^{\cos x} ; b=(\cos x)^{\sin x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables $\}$
$a=(\sin x)^{\cos x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\sin \mathrm{x})^{\cos \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\cos \mathrm{x} \log (\sin \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\cos x \log (\sin x))}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\cos x \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d(\cos x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cos x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)(-\sin x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cot x(\cos x)-\sin x \log (\sin x)$
$\Rightarrow \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{a}\{\cos \mathrm{x} \cot \mathrm{x}-\sin \mathrm{x} \log (\sin \mathrm{x})\}$
Put the value of $a=(\sin x)^{\cos x}$:
$\Rightarrow \frac{d a}{d x}=(\sin x)^{\cos x}\{\cos x \cot x-\sin x \log (\sin x)\}$
$b=(\cos x)^{\sin x}$
Taking log both the sides:
$\Rightarrow \log b=\log (\cos x)^{\sin x}$
$\Rightarrow \log \mathrm{b}=\sin \mathrm{x} \log (\cos \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\sin \mathrm{x} \log (\cos \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=\sin x \times \frac{d(\log (\cos x))}{d x}+\log (\cos x) \times \frac{d(\sin x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\sin x \times \frac{1}{\cos x} \frac{d(\cos x)}{d x}+\log (\cos x)\{\cos x\}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\cos x)}{d x}=-\sin x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\tan x(-\sin x)+\cos x \log (\cos x)$
$\Rightarrow \frac{d \mathrm{~b}}{\mathrm{dx}}=\mathrm{b}\{-\sin \mathrm{x} \tan \mathrm{x}+\cos \mathrm{x} \log (\cos \mathrm{x})\}$
Put the value of $b=(\cos x)^{\sin x}$:
$\Rightarrow \frac{d b}{d x}=(\cos x)^{\sin x}\{\cos x \log (\cos x)-\sin x \tan x\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(\sin x)^{\cos x}\{\cos x \cot x-\sin x \log (\sin x)\}+(\cos x)^{\sin x}\{\cos x \log (\cos x)$
$-\sin \mathrm{x} \tan \mathrm{x}\}$

27. Question

Find $\frac{d y}{d x}$, when
$y=(\tan x)^{\cot x}+(\cot x)^{\tan x}$

Answer

let $\mathrm{y}=(\tan \mathrm{x})^{\cot \mathrm{x}}+(\cot \mathrm{x})^{\tan \mathrm{x}}$
$\Rightarrow \mathrm{y}=\mathrm{a}+\mathrm{b}$
where $\mathrm{a}=(\tan \mathrm{x})^{\cot \mathrm{x}} ; \mathrm{b}=(\cot \mathrm{x})^{\tan \mathrm{x}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where a and u are any variables \}
$a=(\tan \mathrm{x})^{\cot \mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\tan \mathrm{x})^{\cot \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\cot \mathrm{x} \log (\tan \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\cot x \log (\tan x))}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\cot x \times \frac{d(\log (\tan x))}{d x}+\log (\tan x) \times \frac{d(\cot x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cot x \times \frac{1}{\tan x} \frac{d(\tan x)}{d x}+\log (\tan x)\left(-\operatorname{cosec}^{2} x\right)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\tan x)}{d x}=\sec ^{2} x ; \frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cot ^{2} x\left(\sec ^{2} x\right)-\operatorname{cosec}^{2} x \log (\tan x)$
$\left\{\tan x=\frac{1}{\cot x}\right\}$
$\Rightarrow \frac{d a}{d x}=a\left\{\cot ^{2} x \sec ^{2} x-\operatorname{cosec}^{2} x \log (\tan x)\right\}$
Put the value of $a=(\tan x)^{\cot x}$:
$\Rightarrow \frac{d a}{d x}=(\tan x)^{\cot x}\left\{\cot ^{2} x \sec ^{2} x-\operatorname{cosec}^{2} x \log (\tan x)\right\}$
$b=(\cot x)^{\tan x}$

Taking log both the sides:
$\Rightarrow \log \mathrm{b}=\log (\cot x)^{\tan x}$
$\Rightarrow \log b=\tan x \log (\cot x)$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log b)}{d x}=\frac{d(\tan x \log (\cot x))}{d x}$
$\Rightarrow \frac{d(\log b)}{d x}=\tan x \times \frac{d(\log (\cot x))}{d x}+\log (\cot x) \times \frac{d(\tan x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\tan x \times \frac{1}{\cot x} \frac{d(\cot x)}{d x}+\log (\cot x)\left\{\sec ^{2} x\right\}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\tan x)}{d x}=\sec ^{2} x ; \frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\tan ^{2} x\left(-\operatorname{cosec}^{2} x\right)+\sec ^{2} x \log (\cot x)$
$\left\{\cot x=\frac{1}{\tan x}\right\}$
$\Rightarrow \frac{d b}{d x}=\mathrm{b}\left\{-\tan ^{2} \mathrm{x} \operatorname{cosec}^{2} \mathrm{x}+\sec ^{2} \mathrm{x} \log (\cot \mathrm{x})\right\}$
Put the value of $b=(\cot x)^{\tan x}$:
$\Rightarrow \frac{d b}{d x}=(\cot x)^{\tan x}\left\{\sec ^{2} x \log (\cot x)-\tan ^{2} x \operatorname{cosec}^{2} x\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(\tan x)^{\cot x}\left\{\cot ^{2} x \sec ^{2} x-\operatorname{cosec}^{2} x \log (\tan x)\right\}$
$+(\cot x)^{\tan x}\left\{\sec ^{2} x \log (\cot x)-\tan ^{2} x \operatorname{cosec}^{2} x\right\}$
28. Question

Find $\frac{d y}{d x}$, when
$y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$

Answer

Let $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$
$\Rightarrow y=a+b$
where, $a=(\sin x)^{x} ; b=\sin ^{-1} \sqrt{x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=(\sin x)^{x}$
Taking log both the sides:
$\Rightarrow \log a=\log (\sin x)^{x}$
$\Rightarrow \log a=x \log (\sin x)$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(x \log (\sin x))}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)$
$\left\{\frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x}{\sin x}(\cos x)+\log (\sin x)$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{x \cos x}{\sin x}+\log (\sin x)$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=x \cot x+\log (\sin x)$
$\Rightarrow \frac{d a}{d x}=a\{x \cot x+\log (\sin x)\}$
Put the value of $a=(\sin x)^{x}$:
$\Rightarrow \frac{d a}{d x}=(\sin x)^{x}\{x \cot x+\log (\sin x)\}$
$b=\sin ^{-1} \sqrt{x}$
$\Rightarrow \mathrm{b}=\sin ^{-1}(\mathrm{x})^{\frac{1}{2}}$
Differentiating with respect to x :
$\frac{d b}{d x}=\frac{d\left(\sin ^{-1}(x)^{\frac{1}{2}}\right)}{d x}$
$\Rightarrow \frac{d b}{d x}=\frac{1}{\sqrt{1-\left(x^{\frac{1}{2}}\right)^{2}}} \frac{d(x)^{\frac{1}{2}}}{d x}$
$\left\{\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}}}\left(\frac{1}{2} \mathrm{x}^{\left(\frac{1}{2}-1\right)}\right)$
$\left\{\frac{\mathrm{d}\left(\mathrm{u}^{\mathrm{n}}\right)}{\mathrm{dx}}=\mathrm{nu}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{2 \sqrt{1-\mathrm{x}}}\left(\mathrm{x}\left(-\frac{1}{2}\right)\right)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{2 \sqrt{1-\mathrm{x}}}\left(\frac{1}{\sqrt{\mathrm{x}}}\right)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}} \sqrt{1-\mathrm{x}}}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{1}{2 \sqrt{\mathrm{x}(1-\mathrm{x})}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(\sin x)^{x}\{x \cot x+\log (\sin x)\}+\frac{1}{2 \sqrt{x(1-x)}}$

29 A. Question

Find $\frac{d y}{d x}$, when
$y=x^{\cos x}+(\sin x)^{\tan x}$

Answer

let $y=x^{\cos x}+(\sin x)^{\tan x}$
$\Rightarrow y=a+b$
where $\mathrm{a}=\mathrm{x}^{\cos \mathrm{x}} ; \mathrm{b}=(\sin \mathrm{x})^{\tan \mathrm{x}}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule,$\frac{\mathrm{d}(\mathrm{u}+\mathrm{a})}{\mathrm{dx}}=\frac{\mathrm{du}}{\mathrm{dx}}+\frac{\mathrm{da}}{\mathrm{dx}}$ where and u are any variables \}
$a=x^{\cos x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\mathrm{x})^{\cos \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\cos \mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\cos x \log x)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\cos x \times \frac{d(\log x)}{d x}+\log x \times \frac{d(\cos x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\cos x \times \frac{1}{x} \frac{d x}{d x}+\log x(-\sin x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\cos x)}{d x}=-\sin x\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\cos x}{x}-\sin x \log x$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\cos x}{x}-\sin x \log x\right\}$
Put the value of $a=x^{\cos x}$:
$\Rightarrow \frac{d a}{d x}=x^{\cos x}\left\{\frac{\cos x}{x}-\sin x \log x\right\}$
$\mathrm{b}=(\sin \mathrm{x})^{\tan \mathrm{x}}$
Taking log both the sides:
$\Rightarrow \log b=\log (\sin x)^{\tan x}$
$\Rightarrow \log \mathrm{b}=\tan \mathrm{x} \log (\sin \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{d}(\log \mathrm{b})}{\mathrm{dx}}=\frac{\mathrm{d}(\tan \mathrm{x} \log (\sin \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=\tan x \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d(\tan x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\tan x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)\left\{\sec ^{2} x\right\}$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\tan x)}{d x}=\sec ^{2} x ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=\frac{\sin x}{\cos x} \times \frac{1}{\sin x}(\cos x)+\sec ^{2} x \log (\sin x)$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\left\{1+\sec ^{2} \mathrm{x} \log (\sin \mathrm{x})\right\}$
Put the value of $b=(\sin x)^{\tan x}$:
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=(\sin \mathrm{x})^{\tan \mathrm{x}}\left\{1+\sec ^{2} \mathrm{x} \log (\sin \mathrm{x})\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{\cos x}\left\{\frac{\cos x}{x}-\sin x \log x\right\}+(\sin x)^{\tan x}\left\{1+\sec ^{2} x \log (\sin x)\right\}$

29 B. Question

Find $\frac{d y}{d x}$, when
$y=x^{x}+(\sin x)^{x}$

Answer

let $\mathrm{y}=\mathrm{x}^{\mathrm{x}}+(\sin \mathrm{x})^{\mathrm{x}}$
$\Rightarrow y=a+b$
where $a=x^{x} ; b=(\sin x)^{x}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables $\}$
$a=x^{x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\mathrm{x})^{\mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\mathrm{x} \log \mathrm{x}$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(x \log x)}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=x \times \frac{d(\log x)}{d x}+\log x \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{\mathrm{d}(\mathrm{uv})}{\mathrm{dx}}=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{\mathrm{a}} \frac{\mathrm{da}}{\mathrm{dx}}=\mathrm{x} \times \frac{1}{\mathrm{x}} \frac{\mathrm{dx}}{\mathrm{dx}}+\log \mathrm{x}$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=1+\log x$
$\Rightarrow \frac{d a}{d x}=a\{1+\log x\}$
Put the value of $\mathrm{a}=\mathrm{x}^{\mathrm{x}}$:
$\Rightarrow \frac{d a}{d x}=x^{x}\{1+\log x\}$
$b=(\sin x)^{x}$
Taking log both the sides:
$\Rightarrow \log b=\log (\sin x)^{x}$
$\Rightarrow \log b=x \log (\sin x)$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log \mathrm{~b})}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x} \log (\sin \mathrm{x}))}{\mathrm{dx}}$
$\Rightarrow \frac{d(\log b)}{d x}=x \times \frac{d(\log (\sin x))}{d x}+\log (\sin x) \times \frac{d x}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{b} \frac{d b}{d x}=x \times \frac{1}{\sin x} \frac{d(\sin x)}{d x}+\log (\sin x)$
$\left\{\frac{d(\log u)}{d x}=\frac{1}{u} \frac{d u}{d x} ; \frac{d(\sin x)}{d x}=\cos x\right\}$
$\Rightarrow \frac{1}{\mathrm{~b}} \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{x}}{\sin \mathrm{x}}(\cos \mathrm{x})+\log (\sin \mathrm{x})$
$\left\{\cot x=\frac{\cos x}{\sin X}\right\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\mathrm{b}\{\mathrm{x} \cot \mathrm{x}+\log (\sin \mathrm{x})\}$
Put the value of $b=(\sin x)^{x}$:
$\Rightarrow \frac{d b}{d x}=(\sin x)^{x}\{x \cot x+\log (\sin x)\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=x^{x}\{1+\log x\}+(\sin x)^{x}\{x \cot x+\log (\sin x)\}$

30. Question

Find $\frac{d y}{d x}$, when
$y=(\tan x)^{\log x}+\cos ^{2}\left(\frac{\pi}{4}\right)$

Answer

Let $y=(\tan x)^{\log x}+\cos ^{2}\left(\frac{\pi}{4}\right)$
$\Rightarrow y=a+b$
where, $a=(\tan x)^{\log x} ; b=\cos ^{2}\left(\frac{\pi}{4}\right)$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\left\{\right.$ Using chain rule, $\frac{d(u+a)}{d x}=\frac{d u}{d x}+\frac{d a}{d x}$ where a and u are any variables \}
$a=(\tan x)^{\log x}$
Taking log both the sides:
$\Rightarrow \log \mathrm{a}=\log (\tan \mathrm{x})^{\log \mathrm{x}}$
$\Rightarrow \log \mathrm{a}=\log \mathrm{x} . \log (\tan \mathrm{x})$
$\left\{\log x^{a}=\operatorname{alog} x\right\}$
Differentiating with respect to x :
$\Rightarrow \frac{d(\log a)}{d x}=\frac{d(\log x \log (\tan x))}{d x}$
$\Rightarrow \frac{d(\log a)}{d x}=\log x \times \frac{d(\log (\tan x))}{d x}+\log (\tan x) \times \frac{d(\log x)}{d x}$
$\left\{\right.$ Using product rule, $\left.\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\log x \times \frac{1}{\tan x} \frac{d(\tan x)}{d x}+\log (\tan x)\left(\frac{1}{x} \frac{d x}{d x}\right)$
$\left\{\frac{\mathrm{d}(\log \mathrm{u})}{\mathrm{dx}}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}} ; \frac{\mathrm{d}(\tan \mathrm{x})}{\mathrm{dx}}=\sec ^{2} \mathrm{x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\log x}{\tan x}\left(\sec ^{2} x\right)+\frac{\log (\tan x)}{x}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\log x \cos x}{\sin x}\left(\frac{1}{\cos ^{2} x}\right)+\frac{\log (\tan x)}{x}$
$\left\{\tan x=\frac{\sin x}{\cos x} ; \sec x=\frac{1}{\cos x}\right\}$
$\Rightarrow \frac{1}{a} \frac{d a}{d x}=\frac{\log x}{\sin x \cos x}+\frac{\log (\tan x)}{x}$
$\Rightarrow \frac{d a}{d x}=a\left\{\frac{\log x}{\sin x \cos x}+\frac{\log (\tan x)}{x}\right\}$
Put the value of $a=(\tan x)^{\log x}$:
$\Rightarrow \frac{d a}{d x}=(\tan x)^{\log x}\left\{\frac{\log x}{\sin x \cos x}+\frac{\log (\tan x)}{x}\right\}$
$\mathrm{b}=\cos ^{2}\left(\frac{\pi}{4}\right)$
Differentiating with respect to x :
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\cos ^{2}\left(\frac{\pi}{4}\right)\right)}{\mathrm{dx}}$
$\left\{\frac{d u}{d x}=0\right.$, where u is any constant $\}$
$\Rightarrow \frac{\mathrm{db}}{\mathrm{dx}}=0$
$\left\{\begin{array}{c}\text { Here, } \cos ^{2}\left(\frac{\pi}{4}\right) \text { is a constant value } \\ \text { As, } \frac{\pi}{4}=45^{\circ} \\ \cos ^{2}\left(\frac{\pi}{4}\right)=\cos ^{2} 45^{\circ}=\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2}\end{array}\right\}$
$\frac{d y}{d x}=\frac{d a}{d x}+\frac{d b}{d x}$
$\Rightarrow \frac{d y}{d x}=(\tan x)^{\log x}\left\{\frac{\log x}{\sin x \cos x}+\frac{\log (\tan x)}{x}\right\}+0$
$\Rightarrow \frac{d y}{d x}=(\tan x)^{\log x}\left\{\frac{\log x}{\sin x \cos x}+\frac{\log (\tan x)}{x}\right\}$

31. Question

Find $\frac{d y}{d x}$, when
$y=x^{x}+x^{1 / x}$

Answer

Here,
$y=x^{x}+x^{1 / x}$
$=e^{\log x^{x}}+e^{\log x^{\frac{1}{x}}}$
$y=e^{x \log x}+e^{\left(\frac{1}{x} \log x\right)}$
[Sincelog $a^{b}=b \log a$]
Differentiating it with respect to x using the chain rule and product rule,
$\frac{d y}{d x}=\frac{d}{d x}\left(e^{x \log x}\right)+\frac{d}{d x}\left(e^{\frac{1}{x} \log x}\right)$
$=e^{x \log x}+\frac{d}{d x}(x \log x)+e^{\frac{1}{x} \log x} \frac{d}{d x}\left(\frac{1}{x} \log x\right)$
$=e^{\log x^{x}}\left[x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)\right]+e^{\log x^{\frac{1}{x}}}\left[\frac{1}{x} \frac{d}{d x}(\log x)+\log x \frac{d}{d x}\left(\frac{1}{x}\right)\right]$
$=x^{x}\left[x\left(\frac{1}{x}\right)+\log x(1)\right]+x^{\frac{1}{x}}\left[\left(\frac{1}{x}\right)\left(\frac{1}{x}\right)+\log x\left(-\frac{1}{x^{2}}\right)\right]$
$=x^{x}[1+\log x]+x^{\frac{1}{x}}\left(\frac{1}{x^{2}}-\frac{1}{x^{2}} \log x\right)$
$\frac{d y}{d x}=x^{x}[1+\log x]+x^{\frac{1}{x}} \frac{(1-\log x)}{x^{2}}$

32. Question

Find $\frac{d y}{d x}$, when
$y=x^{\log x}+(\log x)^{x}$

Answer

Here,

$y=x^{\log x}+(\log x)^{x}$
Let
$\mathrm{u}=(\log \mathrm{x})^{\mathrm{x}}$, and $\mathrm{v}=\mathrm{x}^{\log \mathrm{x}}$
$\therefore \mathrm{y}=\mathrm{u}+\mathrm{v}$
$\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$\mathrm{u}=(\log \mathrm{x})^{\mathrm{x}}$
$\log u=\log \left[(\log x)^{x}\right]$
$\log u=x \log (\log x)$
Differentiating both sides with respect to x, we get
$\frac{1}{\mathrm{u}} \cdot \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}) \times \log (\log \mathrm{x})+\mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}[\log (\log \mathrm{x})]$
$\frac{d u}{d x}=u\left[1 \times \log (\log x)+x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right]$
$\frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{x}{\log x} \cdot \frac{1}{x}\right]$
$\frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]$
$\frac{d u}{d x}=(\log x)^{x}\left[\frac{\{\log (\log x) \times \log x\}+1}{\log x}\right]$
$\frac{d u}{d x}=(\log x)^{x-1}[1+\{\log (\log x) \times \log x\}]$
$\frac{1}{v} \cdot \frac{d v}{d x}=\frac{d}{d x}\left[(\log x)^{2}\right]$
$\frac{1}{v} \cdot \frac{d v}{d x}=2(\log x) \cdot \frac{d}{d x}(\log x)$
$\frac{d v}{d x}=2 v(\log x) \cdot \frac{1}{x}$
$\frac{d v}{d x}=2 x^{\log x} \frac{\log x}{x}$
$\frac{d v}{d x}=2 x^{\log x-1} \cdot \log x$.
Therefore from (i), (ii), (iii), we get
$\frac{d y}{d x}=(\log x)^{x-1}[1+\{\log (\log x) \times \log x\}]+2 x^{\log x-1} \cdot \log x$

33. Question

If $x^{13} y^{7}=(x+y)^{20}$, prove that $\frac{d y}{d x}=\frac{y}{x}$

Answer

Here,
$x^{13} y^{7}=(x+y)^{20}$
Taking log on both sides,
$\log \left(x^{13} y^{7}\right)=\log (x+y)^{20}$
$13 \log x+7 \log y=20 \log (x+y)$

[Since, $\left.\log (A B)=\log A+\log B ; \log a^{b}=b \log a\right]$

Differentiating it with respect to x using the chain rule,
$13 \frac{\mathrm{~d}}{\mathrm{dx}}(\log \mathrm{x})+7 \frac{\mathrm{~d}}{\mathrm{dx}}(\log y)=20 \frac{\mathrm{~d}}{\mathrm{dx}} \log (\mathrm{x}+\mathrm{y})$
$\frac{13}{x}+\frac{7}{y} \frac{d y}{d x}=\frac{20}{x+y} \frac{d}{d x}(x+y)$
$\frac{7}{y} \frac{d y}{d x}-\frac{20}{x+y}=\frac{20}{x+y}-\frac{13}{x}$
$\frac{d y}{d x}\left[\frac{7}{y}-\frac{20}{x+y}\right]=\frac{20}{x+y}-\frac{13}{x}$
$\frac{d y}{d x}\left[\frac{7(x+y)-20 y}{y(x+y)}\right]=\frac{20 x-13(x+y)}{(x+y) x}$
$\frac{d y}{d x}=\left[\frac{20 x-13(x+y)}{(x+y) x}\right] \times\left[\frac{y(x+y)}{7(x+y)-20 y}\right]$
$\frac{d y}{d x}=\left[\frac{20 x-13 x-13 y}{(x+y) x}\right] \times\left[\frac{y(x+y)}{7 x+7 y-20 y}\right]$
$\frac{d y}{d x}=\frac{y}{x}\left[\frac{7 x-13 y}{7 x-13 y}\right]$
$\frac{d y}{d x}=\frac{y}{x}$
Hence, Proved.

34. Question

If $x^{16} y^{9}=\left(x^{2}+y\right)^{17}$, prove that $x \frac{d y}{d x}=2 y$

Answer

Here,
$x^{16} y^{9}=\left(x^{2}+y\right)^{17}$
Taking log on both sides,
$\log \left(x^{16} y^{9}\right)=\log \left(x^{2}+y\right)^{17}$
$16 \log x+9 \log y=17 \log \left(x^{2}+y\right)$
[Since, $\log (A B)=\log A+\log B ; \log a^{b}=b \log a$]
Differentiating it with respect to x using the chain rule,
$16 \frac{d}{d x}(\log x)+9 \frac{d}{d x}(\log y)=17 \frac{d}{d x} \log \left(x^{2}+y\right)$
$\frac{16}{x}+\frac{9}{y} \frac{d y}{d x}=17 \cdot \frac{1}{\left(x^{2}+y\right)} \frac{d}{d x}\left(x^{2}+y\right)$
$\frac{16}{x}+\frac{9}{y} \frac{d y}{d x}=\frac{17}{\left(x^{2}+y\right)}\left[2 x+\frac{d y}{d x}\right]$
$\frac{16}{x}+\frac{9}{y} \frac{d y}{d x}=\left[\frac{17}{\left(x^{2}+y\right)}\right] \frac{d y}{d x}+\left[\frac{34 x}{\left(x^{2}+y\right)}\right]$
$\frac{9}{y} \frac{d y}{d x}-\frac{17}{\left(x^{2}+y\right)} \frac{d y}{d x}=\left(\frac{34 x}{x^{2}+y}\right)-\frac{16}{x}$
$\frac{d y}{d x}\left[\frac{9}{y}-\frac{17}{\left(x^{2}+y\right)}\right]=\frac{34 x^{2}-16\left(x^{2}+y\right)}{\left(x^{2}+y\right) x}$
$\frac{d y}{d x}\left[\frac{9\left(x^{2}+y\right)-17 y}{y\left(x^{2}+y\right)}\right]=\frac{34 x^{2}-16 x^{2}-16 y}{\left(x^{2}+y\right) x}$
$\frac{d y}{d x}\left[\frac{9 x^{2}+9 y-17 y}{y\left(x^{2}+y\right)}\right]=\frac{18 x^{2}-16 y}{\left(x^{2}+y\right) x}$
$\frac{d y}{d x}\left[\frac{9 x^{2}+9 y-17 y}{y\left(x^{2}+y\right)}\right]=\frac{2\left(9 x^{2}-8 y\right)}{\left(x^{2}+y\right) x}$
$\frac{d y}{d x}\left[\frac{9 x^{2}-8 y}{y\left(x^{2}+y\right)}\right]=\frac{2\left(9 x^{2}-8 y\right)}{\left(x^{2}+y\right) x}$
$\frac{d y}{d x}=\left[\frac{2\left(9 x^{2}-8 y\right)}{\left(x^{2}+y\right) x}\right]\left[\frac{y\left(x^{2}+y\right)}{9 x^{2}-8 y}\right]$
$\frac{d y}{d x}=\frac{2 y}{x}$
Hence, Proved.

35. Question

If $y=\sin \left(x^{x}\right)$, prove that $\frac{d y}{d x}=\cos \left(x^{x}\right) \cdot x^{x}(1+\log x)$

Answer

Here,
$y=\sin \left(x^{x}\right)$
Let $\mathrm{u}=\mathrm{x}^{\mathrm{x}} \ldots \ldots$. ii)
Taking log on both sides,
$\log u=\log _{x^{x}}$
$\log u=x \log x$
Differentiating both sides with respect to x,
$\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x} \log \mathrm{x})$
$=x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)$
$=x\left(\frac{1}{x}\right)+\log x(1)$
$\frac{1}{u} \frac{d u}{d x}=1+\log x$
$\frac{d u}{d x}=u(1+\log x)$
$\frac{\mathrm{du}}{\mathrm{dx}}=\mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x}) \ldots \ldots$ (iii) [from (ii)]
Now, using equation (ii) in (i)
$y=\sin u$
Differentiating both sides with respect to x,
$\frac{d y}{d x}=\frac{d}{d x}(\sin u)$
$=\cos u \frac{d u}{d x}$
Using equation (ii) and (iii),
$\frac{d y}{d x}=\cos x^{x} \cdot x^{x}(1+\log x)$
Hence Proved.

36. Question

If $x^{x}+y^{x}=1$, prove that $\frac{d y}{d x}=-\left\{\frac{x^{x}(1+\log x)+y^{x} \cdot \log y}{x \cdot y^{(x-1)}}\right\}$

Answer

Here

$$
x^{x}+y^{x}=1
$$

$e^{\log x^{x}}+e^{\log y^{x}}=1$
$e^{x \log x}+e^{x \log y}=1$
$\left[\right.$ Since $\left.e^{\log a}=a, \log a^{b}=b \log a\right]$
Differentiating it with respect to x using chain rule and product rule,
$\frac{d}{d x} e^{x \log x}+\frac{d}{d x} e^{x \log y}=\frac{d}{d x}(1)$
$e^{x \log x} \frac{d}{d x}(x \log x)+e^{x \log y} \frac{d}{d x}(x \log y)=0$
$e^{\log x^{x}}\left[x \frac{d}{d x}(\log x)+\log x \frac{d}{d x}(x)\right]+e^{\log y^{x}}\left[x \frac{d}{d x}(\log y)+\log y \frac{d}{d x}(x)\right]=0$
$x^{x}\left[x\left(\frac{1}{x}\right)+\log x(1)\right]+y^{x}\left[x\left(\frac{1}{y}\right)+\log y(1)\right]=0$
$x^{x}[1+\log x]+y^{x}\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)=0$
$y^{x} \times \frac{x}{y} \frac{d y}{d x}=-\left[x^{x}(+\log x)+y^{x} \log y\right]=0$
$\left(x y^{x-1}\right) \frac{d y}{d x}=-\left[x^{x}(1+\log x)+y^{x} \log y\right]=0$
$\frac{d y}{d x}=-\left[\frac{x^{x}(1+\log x)+y^{x} \log y}{x y^{x-1}}\right]$
Hence Proved.

37. Question

If $x^{x}+y^{x}=1$, find $\frac{d y}{d x}=-\frac{y(y+x \log y)}{x(y \log x+x)}$

Answer

Let $\mathrm{x}^{\mathrm{x}}=\mathrm{u}$ and $\mathrm{y}^{\mathrm{x}}=\mathrm{v}$
Taking log on both sides we get,
$x \log x=\log u$ \qquad
$x \log y=\log v$
Using $\log a^{b}=b \log a$
Differentiating both sides of equation (1) we get,
$\mathrm{x} \times \frac{1}{\mathrm{x}}+\log \mathrm{x}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}$
$\frac{d u}{d x}=x^{x}(1+\log x)$
Differentiating both sides of equation (2) we get,
$x \times \frac{1}{y} \frac{d y}{d x}+\log y=\frac{1}{v} \frac{d v}{d x}$
$\frac{d v}{d x}=y^{x}\left(\log y+\frac{x}{y} \frac{d y}{d x}\right)$
We know that, from question,
$u+v=1$
Differentiating both sides we get,
$\frac{d u}{d x}+\frac{d v}{d x}=0$
Putinng the value of eq(4) and eq(5) in equation above we get,
$x^{x}(1+\log x)+y^{x}\left(\log y+\frac{x}{y} \frac{d y}{d x}\right)=0$
$y^{x} \frac{x}{y} \frac{d y}{d x}=\frac{-x^{x}(1+\log x)}{y^{x}(\log y)}$
$\frac{d y}{d x}=\frac{-x^{x-1}(1+\log x)}{y^{2 x-1} \log y}$

38. Question

If $x^{y}+y^{x}=(x+y)^{x+y}$, find $\frac{d y}{d x}$

Answer

Here,
$x^{y}+y^{x}=(x+y)^{x+y}$
$e^{\log x^{y}}+e^{\log y^{x}}=e^{\log (x+y)^{x+y}}$
$\mathrm{e}^{\mathrm{y} \log \mathrm{x}}+\mathrm{e}^{\mathrm{x} \log \mathrm{y}}=\mathrm{e}^{(\mathrm{x}+\mathrm{y}) \log (\mathrm{x}+\mathrm{y})}$
Differentiating it with respect to x using chain rule, product rule,
$\frac{d}{d x} e^{\text {ylogx }}+\frac{d}{d x} e^{x \log y}=\frac{d}{d x} e^{(x+y) \log (x+y)}$
$e^{y \operatorname{logx}}\left[y \frac{d}{d x}(\log x)+\log x \frac{d y}{d x}\right]+e^{x \log y}\left[x \frac{d}{d x}(\log y)+\log y \frac{d x}{d x}\right]$ $=e^{(x+y) \log (x+y)} \frac{d}{d x}[(x+y) \log (x+y)]$
$e^{\log x^{y}}\left[y\left(\frac{1}{x}\right)+\log x \frac{d y}{d x}\right]+e^{\log y^{x}}\left[\frac{x}{\frac{x}{y}} \frac{d y}{d x}+\log y(1)\right]$
$=e^{\log (x+y)^{x+y}}\left[(x+y) \frac{d}{d x} \log (x+y)+\log (x+y) \frac{d}{d x}(x+y)\right]$
$x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+y^{x}\left[\frac{x}{\frac{d}{y}} \frac{d y}{d x}+\log y\right]$

$$
=(x+y)^{x+y}\left[(x+y) \cdot \frac{1}{(x+y)} \cdot \frac{d}{d x} \cdot(x+y)+\log (x+y)\left(1+\frac{d y}{d x}\right)\right]
$$

$x^{y} \frac{y}{x}+x^{y} \cdot \log x \frac{d y}{d x}+y^{x} \cdot \frac{x}{y} \cdot \frac{d y}{d x}$
$+y^{x} \log y=(x+y)^{x+y}\left[1 \times\left(1+\frac{d y}{d x}\right)+\log (x+y)\left(1+\frac{d y}{d x}\right)\right]$
$x^{y-1} x y+x^{y} \cdot \log x \frac{d y}{d x}+y^{x} \cdot \frac{x}{y} \cdot \frac{d y}{d x}+y^{x} \log y=(x+y)^{x+y}+(x+y)^{x+y} \frac{d y}{d x}$ $+(x+y)^{x+y} \log (x+y)+(x+y)^{x+y} \log (x+y) \frac{d y}{d x}$
$\frac{d y}{d x}\left[x^{y} \log x+x y^{x-1}-(x+y)^{x+y}(1+\log (x+y))\right]$

$$
=(x+y)^{x+y}(1+\log (x+y))-x^{y-1} \times y-y^{x} \log y
$$

$\frac{d y}{d x}=\left[\frac{(x+y)^{x+y}(1+\log (x+y))-x^{y-1} \times y-y^{x} \log y}{x^{y} \log x+x y^{x-1}-(x+y)^{x+y}(1+\log (x+y))}\right]$

39. Question

If $x^{m} y^{n}=1$, prove that $\frac{d y}{d x}=-\frac{m y}{n x}$

Answer

Here,
$\mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}=1$
Taking log on both sides,
$\log \left(x^{m} y^{n}\right)=\log 1$
$m \log x+n \log y=\log 1\left[\right.$ Since, $\left.\log (A B)=\log A+\log B ; \log a^{b}=b \log a\right]$
Differentiating with respect to x
$\frac{d}{d x}(m \log x)+\frac{d}{d x}(n \log y)=\frac{d}{d x}(\log (1))$
$\frac{m}{x}+\frac{n d y}{y} \frac{d x}{d x}=0$
$\frac{n}{y} \frac{d y}{d x}=-\frac{m}{x}$
$\frac{d y}{d x}=-\frac{m}{x} \times \frac{y}{n}$
$\frac{d y}{d x}=-\frac{m y}{n x}$
Hence Proved.

40. Question

If $\mathrm{y}^{\mathrm{x}}=\mathrm{e}^{\mathrm{y}-\mathrm{x}}$ prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(1+\log \mathrm{y})^{2}}{\log \mathrm{y}}$

Answer

Here, $\mathrm{y}^{\mathrm{x}}=\mathrm{e}^{\mathrm{y}-\mathrm{x}}$
Taking log on both sides,
$\log ^{\mathrm{x}}=\operatorname{loge}^{\mathrm{y}-\mathrm{x}}$
$x \log y=(y-x) \log e\left[\right.$ Since, $\left.\log (A B)=\log A+\log B ; \log a^{b}=b \log a\right]$
$x \log y=(y-x) \ldots \ldots$ (i)
Differentiating with respect to x using product rule,
$\frac{d}{d x}(x \log y)=\frac{d}{d x}(y-x)$
$\left[x \frac{d}{d x}(\log y)+\log y \frac{d}{d x}(x)\right]=\frac{d y}{d x}-1$
$x\left(\frac{1}{y}\right) \frac{d y}{d x}+\log y(1)=\frac{d y}{d x}-1$
$\frac{d y}{d x}\left[\frac{y}{(1+\log y) y}\right]=-(1+\log y)$
$\frac{d y}{d x}\left[\frac{1-1-\log y}{(1+\log y)}\right]=-(1+\log y)$
$\frac{d y}{d x}=-\frac{(1+\log y)^{2}}{-\log y}$
$\frac{d y}{d x}=\frac{(1+\log y)^{2}}{\log y}$
Hence Proved.

41. Question

If $(\sin x)^{y}=(\cos y)^{x}$, prove that $\frac{d y}{d x}=\frac{\log \cos y-y \cot x}{\log \sin x+x \tan y}$

Answer

Here,
$(\sin x)^{y}=(\cos y)^{x}$
Taking log on both sides,
$\log (\sin x)^{y}=\log (\cos y)^{x}$
$y \log (\sin x)=x \log (\cos y)$ [Using $\left.\log a^{b}=b \log a\right]$
Differentiating it with respect to x using product rule and chain rule,
$\frac{d}{d x}[y \log \sin x]=\frac{d}{d x}[x \log \cos y]$
$y \frac{d}{d x}(\log \sin x)+\log \sin x \frac{d y}{d x}=x \frac{d y}{d x} \log \cos y+\log \cos y \frac{d}{d x}(x)$
$y\left(\frac{1}{\sin x}\right) \frac{d}{d x}(\sin x)+\log \sin x \frac{d y}{d x}=\frac{x}{\cos y} \frac{d}{d x}(\cos y)+\log \cos y(1)$
$\frac{y}{\sin x}(\cos x)+\log \sin x \frac{d y}{d x}=\frac{x}{\cos y}(-\sin y) \frac{d y}{d x}+\log \cos y$
$y \cot x+\log \sin x \frac{d y}{d x}=-x \tan y \frac{d y}{d x}+\log \cos y$
$\log \sin x \frac{d y}{d x}+x \tan y \frac{d y}{d x}=\log \cos y-y \cot x$
$\frac{d y}{d x}(\log \sin x+x \tan y)=\log \cos y-y \cot x$
$\frac{d y}{d x}=\frac{\log \cos y-y \cot x}{\log \sin x+x \tan y}$
Hence Proved.

42. Question

If $(\cos x)^{y}=(\tan y)^{x}$, prove that $\frac{d y}{d x}=\frac{\log \tan y+y \tan x}{\log \cos x-x \sec y \operatorname{cosec} y}$

Answer

Here,
$(\cos \mathrm{x})^{\mathrm{y}}=(\tan \mathrm{y})^{\mathrm{x}}$
Taking log on both sides,
$\log (\cos x)^{y}=\log (\tan y)^{x}$
$y \log (\cos \mathrm{x})=\mathrm{x} \log (\tan \mathrm{y})\left[U \operatorname{sing} \log \mathrm{a}^{\mathrm{b}}=\mathrm{b} \log \mathrm{a}\right]$
Differentiating it with respect to x using product rule and chain rule,
$\frac{d}{d x}[y \log \cos x]=\frac{d}{d x}[x \log \tan y]$
$y \frac{d}{d x}(\log \cos x)+\log \cos x \frac{d y}{d x}=x \frac{d}{d x} \log \tan y+\log \tan y \frac{d}{d x}(x)$
$y\left(\frac{1}{\cos x}\right) \frac{d}{d x}(\cos x)+\log \cos x \frac{d y}{d x}=\frac{x}{\tan y} \frac{d}{d x}(\tan y)+\log \tan y(1)$
$\left(\frac{y}{\cos x}(-\sin x)+\log \cos x \frac{d y}{d x}\right)$

$$
\begin{aligned}
& =\left(\frac{x}{\tan y}\left(\sec ^{2} x\right)\right) \frac{d y}{d x} \\
& +\log \tan y \\
& -y \tan x+\log \cos x \frac{d y}{d x}=\left(\sec y \operatorname{cosec} y \times x \frac{d y}{d x}+\log \tan y\right)
\end{aligned}
$$

$\frac{d y}{d x}[\log \cos x-x \sec y \operatorname{cosec} y]=\log \tan y+y \tan x$
$\frac{d y}{d x}=\frac{\log \tan y+y \tan x}{\log \cos x-x \sec y \operatorname{cosec} y}$

43. Question

If $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{e}^{\mathrm{y}-\mathrm{x}}=0$

Answer

Here,
$\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$
Differentiating both the sides using chain rule,
$\frac{d}{d x} e^{x}+\frac{d}{d x} e^{y}=\frac{d}{d x}\left(e^{x+y}\right)$
$e^{x}+e^{y} \frac{d y}{d x}=e^{x+y} \frac{d}{d x}(x+y)$
$e^{x}+e^{y} \frac{d y}{d x}=e^{x+y}\left[1+\frac{d y}{d x}\right]$
$e^{y} \frac{d y}{d x}-e^{x+y} \frac{d y}{d x}=e^{x+y}-e^{x}$
$\frac{d y}{d x}\left(e^{y}-e^{x+y}\right)=e^{x+y}-e^{x}$
$\frac{d y}{d x}=\frac{e^{x+y}-e^{x}}{e^{y}-e^{x+y}}$
$\frac{d y}{d x}=\frac{e^{x}+e^{y}-e^{x}}{e^{y}-\left(e^{x}+e^{y}\right)}$
$\frac{d y}{d x}=\frac{e^{x}+e^{y}-e^{x}}{e^{y}-e^{x}-e^{y}}$
$\frac{d y}{d x}=\frac{e^{y}}{-e^{x}}$
$\frac{d y}{d x}=-e^{y-x}$
$\frac{d y}{d x}+e^{y-x}=0$
Hence Proved.

44. Question

If $e^{y}=y^{x}$, prove that $\frac{d y}{d x}=\frac{(\log y)^{2}}{\log y-1}$

Answer

Here
$\mathrm{e}^{\mathrm{y}}=\mathrm{y}^{\mathrm{x}}$
Taking log on both sides,
$\log e^{y}=\log y^{x}$
$y \log e=x \log y$
[Using $\log a^{b}=b \log a$]
$y=x \log y$
Differentiating it with respect to x using product rule,
$\frac{d y}{d x}=\frac{d}{d x}(x \log y)$
$=x \frac{d y}{d x}(\log y)+\log y \frac{d}{d x}(x)$
$\frac{d y}{d x}=\frac{x}{y} \frac{d y}{d x}+\log y(1)$
$\frac{d y}{d x}\left(1-\frac{x}{y}\right)=\log y$
$\frac{d y}{d x}\left(\frac{y-x}{y}\right)=\log y$
$\frac{d y}{d x}=\left(\frac{y \log y}{y-x}\right)$
$\frac{d y}{d x}=\frac{y \log y}{y-\frac{y}{\log y}}[$ Using (i)]
$=\frac{y \log y \times \log y}{y \log y-y}$
$=\frac{y(\log y)^{2}}{y(\log y-1)}$
$\frac{d y}{d x}=\frac{(\log y)^{2}}{(\log y-1)}$
Hence Proved.

45. Question

If $e^{x+y}-x=0$, prove that $\frac{d y}{d x}=\frac{1-x}{x}$

Answer

Here,
$e^{x+y}-x=0$
$\mathrm{e}^{\mathrm{x}+\mathrm{y}}=\mathrm{x} \ldots \ldots$ (i)
Differentiating it with respect to x using chain rule,
$\frac{d}{d x}\left(e^{x+y}\right)=\frac{d}{d x}(x)$
$e^{x+y} \frac{d}{d x}(x+y)=1$
$x\left[1+\frac{d y}{d x}\right]=1$ [Using (i) $]$
$1+\frac{d y}{d x}=\frac{1}{x}$
$\frac{d y}{d x}=\frac{1}{x}-1$
$\frac{d y}{d x}=\frac{1-x}{x}$
Hence Proved.

46. Question

If $y=x \sin (a+y)$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin (a+y)-y \cos (a+y)}$

Answer

Here
$y=x \sin (a+y)$

Differentiating it with respect to x using the chain rule and product rule,
$\frac{d y}{d x}=x \frac{d}{d x} \sin (a+y)+\sin (a+y) \frac{d x}{d x}$
$\frac{d y}{d x}=x \cos (a+y) \frac{d y}{d x}+\sin (a+y)$
$(1-x \cos (a+y)) \frac{d y}{d x}=\sin (a+y)$
$\frac{d y}{d x}=\frac{\sin (a+y)}{(1-x \cos (a+y))}$
$\frac{d y}{d x}=\frac{\sin (a+y)}{\left(1-\frac{y}{\sin (a+y)} \cos (a+y)\right)}\left[\right.$ Since, $\left.\frac{y}{\sin (a+y)}=x\right]$
$\frac{d y}{d x}=\frac{\sin (a+y)}{\left(\frac{\sin (a+y)-\cos (a+y) \cdot y}{\sin (a+y)}\right)}$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin (a+y)-y \cos (a+y)}$
Hence Proved.

47. Question

If $x \sin (a+y)+\sin a \cos (a+y)=0$, prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$

Answer

Here, $x \sin (a+y)+\sin a \cos (a+y)=0$
$x=\frac{-\sin a \cos (a+y)}{x \sin (a+y)}$
Differentiating it with respect to x using the chain rule and product rule,
$\frac{d}{d x}[x \sin (a+y)+\sin a \cos (a+y)]=0$
$x \frac{d}{d x} \sin (a+y)+\sin (a+y) \frac{d x}{d x}+\sin a \frac{d}{d x} \cos (a+y)+\cos (a+y) \frac{d}{d x} \sin a=0$
$x \cos (a+y)\left(0+\frac{d y}{d x}\right)+\sin (a+y)=\sin a\left(-\sin (a+y) \frac{d y}{d x}\right)+0=0$
$[x \cos (a+y)-\sin a \sin (a+y)] \frac{d y}{d x}+\sin (a+y)=0$
$\frac{d y}{d x}=-\frac{\sin (a+y)}{x \cos (a+y)-\sin a \sin (a+y)}$
$\frac{d y}{d x}=-\frac{\sin (a+y)}{\left(\frac{-\sin a \cos (a+y)}{\sin (a+y)}\right) \cos (a+y)-\sin a \sin (a+y)}\left[\right.$ Since $\left.x=\frac{-\sin a \cos (a+y)}{x \sin (a+y)}\right]$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{(\sin a) \cos ^{2}(a+y)+(\sin a) \sin ^{2}(a+y)}$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{(\sin a)\left[\cos ^{2}(a+y)+\sin ^{2}(a+y)\right]}$
$\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$
[Since $\cos ^{2} \mathrm{a}+\sin ^{2} \mathrm{a}=1$]
Hence Proved.

48. Question

If $(\sin x)^{y}=x+y$, prove that $\frac{d y}{d x}=\frac{1-(x+y) y \cot x}{(x+y) \log \sin x-1}$

Answer

Here
$(\sin \mathrm{x})^{\mathrm{y}}=\mathrm{x}+\mathrm{y}$
Taking log both sides,
$\log (\sin x)^{y}=\log (x+y)$
$y \log (\sin x)=\log (x+y)\left[U \operatorname{sing} \log a^{b}=b \log a\right]$
Differentiating it with respect to x using the chain rule and product rule,
$\frac{d}{d x}(y \log (\sin \mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dx}} \log (\mathrm{x}+\mathrm{y})$
$y \frac{d}{d x} \log (\sin x)+\log \sin x \frac{d y}{d x}=\frac{1}{(x+y)} \frac{d}{d x}(x+y)$
$\frac{y}{\sin x} \frac{d}{d x}(\sin x)+\log \sin x \frac{d y}{d x}=\frac{1}{(x+y)} \frac{d}{d x}(x+y)$
$\frac{y \cos x}{\sin x}+\log \sin x \frac{d y}{d x}=\frac{1}{(x+y)}+\frac{1}{(x+y)} \frac{d y}{d x}$
$\frac{d y}{d x}\left(\log \sin x-\frac{1}{(x+y)}\right)=\frac{1}{(x+y)}-y \cot x$
$\frac{d y}{d x}\left(\frac{(x+y) \log \sin x-1}{x+y}\right)=\frac{1-y(x+y) \cot x}{(x+y)}$
$\frac{d y}{d x}=\frac{1-y(x+y) \cot x}{(x+y)} \times \frac{(x+y)}{(x+y) \log \sin x-1}$
$\frac{d y}{d x}=\frac{1-y(x+y) \cot x}{(x+y) \log \sin x-1}$
Hence Proved.

49. Question

If $x y \log (x+y)=1$, prove that $\frac{d y}{d x}=\frac{y\left(x^{2} y+x+y\right)}{x\left(x y^{2}+x+y\right)}$

Answer

Here,
$x y \log (x+y)=1$
Differentiating it with respect to x using the chain rule and product rule,
$\frac{d y}{d x}(x y \log (x+y))=\frac{d}{d x}(1)$
$x y \frac{d}{d x} \log (x+y)+x \log (x+y) \frac{d y}{d x}+y \log (x+y) \frac{d}{d x}(x)=0$
$\left(\frac{x y}{(x+y)}\right)(1+)+x \log (x+y) \frac{d y}{d x}+y \log (x+y)=0$
$\left(\frac{x y}{(x+y)}\right) \frac{d y}{d x}+\frac{x y}{(x+y)}+x\left(\frac{1}{x y}\right) \frac{d y}{d x}+y\left(\frac{1}{x y}\right)=0[$ Using (i)]
$\frac{d y}{d x}\left[\frac{x y}{(x+y)}+\frac{1}{y}\right]=-\left[\frac{x y}{(x+y)}+\frac{1}{x}\right]$
$\frac{d y}{d x}\left[\frac{x y^{2}+x+y}{(x+y) y}\right]=-\left[\frac{x^{2} y+x+y}{(x+y) x}\right]$
$\frac{d y}{d x}=-\left[\frac{x^{2} y+x+y}{(x+y) x}\right] \times\left[\frac{(x+y) x}{x y^{2}+x+y}\right]$
$\frac{d y}{d x}=-\frac{y}{x}\left(\frac{x^{2} y+x+y}{x y^{2}+x+y}\right)$

Hence Proved.

50. Question

If $y=x \sin y$, prove that $\frac{d y}{d x}=\frac{y}{x(1-x \cos y)}$

Answer

Here,
$y=x \sin y$
$\sin y=\frac{y}{x}$
Differentiating it with respect to x using product rule,
$\frac{d y}{d x}=\frac{d}{d x}(x \sin y)$
$\frac{d y}{d x}=x \frac{d}{d x}(\sin y)+\sin y \frac{d}{d x}(x)$
$\frac{d y}{d x}=x \cos y \frac{d y}{d x}+\sin y(1)$
$\frac{d y}{d x}-x \cos y \frac{d y}{d x}=\sin y$
$\frac{d y}{d x}(1-x \cos y)=\sin y$
$\frac{d y}{d x}=\frac{\sin y}{1-x \cos y}$
$\frac{d y}{d x}=\frac{y}{x(1-x \cos y)}[$ From (i)]
Hence Proved.

51. Question

Find the derivative of the function $f(x)$ given by
$f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$ and hence find $f^{\prime}(1)$

Answer

Here,
$f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)$
$f(1)=(2)(2)(2)(2)=16$
Taking log on both sides we get,
$\log (f(x))=\log (1+x)+\log \left(1+x^{2}\right)+\log \left(1+x^{4}\right)+\log \left(1+x^{8}\right)$
Differentiating it with respect to x we get,
$\frac{1}{f(x)} \frac{d(f(x))}{d x}=\frac{1}{x+1}+\frac{1}{1+x^{2}} 2 x+\frac{1}{1+x^{4}} 4 x^{3}+\frac{1}{1+x^{8}} 8 x^{7}$
$f^{\prime}(x)=f(x)\left[\frac{1}{x+1}+\frac{1}{1+x^{2}} 2 x+\frac{1}{1+x^{4}} 4 x^{3}+\frac{1}{1+x^{8}} 8 x^{7}\right]$
$\mathrm{f}^{\prime}(1)=\mathrm{f}(1)\left[\frac{1}{2}+\frac{2}{1+1}+\frac{4}{1+1}+\frac{8}{1+1}\right]$
$\mathrm{f}^{\prime}(1)=16\left[7+\frac{1}{2}\right]$
$\mathrm{f}^{\prime}(1)=16 \times \frac{15}{2}$
$F^{\prime}(1)=120$

52. Question

If $y=\log \frac{x^{2}+x+1}{x^{2}-x+1}+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{3} x}{1-x^{2}}\right)$, find $\frac{d y}{d x}$.

Answer

Here, $y=\log \frac{x^{2}+x+1}{x^{2}-x+1}+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{3} x}{1-x^{2}}\right)$
Differentiating it with respect to x using chain and quotient rule,
$\frac{d y}{d x}=\frac{d}{d x} \log \frac{x^{2}+x+1}{x^{2}-x+1}+\frac{2}{\sqrt{3}} \frac{d}{d x} \tan ^{-1}\left(\frac{\sqrt{3} x}{1-x^{2}}\right)$
$\frac{d y}{d x}=\frac{1}{\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)} \frac{d}{d x}\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)+\frac{2}{\sqrt{3}}\left\{\frac{1}{1+\left(\frac{\sqrt{3} x}{1-x^{2}}\right)}\right\} \frac{d}{d x}\left(\frac{\sqrt{3} x}{1-x^{2}}\right)$
$\frac{d y}{d x}$

$$
\begin{aligned}
& =\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)\left(\frac{\left(x^{2}-x+1\right) \frac{d}{d x}\left(x^{2}+x+1\right)-\left(x^{2}+x+1\right) \frac{d}{d x}\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)^{2}}\right) \\
& ++\frac{2}{\sqrt{3}}\left\{\frac{(1-x)^{2}}{1+x^{4}-2 x^{2}+3 x^{2}}\right\}\left\{\frac{\left(1-x^{2}\right)^{2} \frac{d}{d x}(\sqrt{3} x)-\sqrt{3} x \frac{d}{d x}(1-x)^{2}}{\left(1-x^{2}\right)^{2}}\right\} \\
& \begin{array}{c}
\frac{d y}{d x}=\left(\frac{1}{x^{2}+x+1}\right)\left(\frac{\left(x^{2}-x+1\right)(2 x+1)-\left(x^{2}+x+1\right)(2 x-1)}{x^{2}-x+1}\right) \\
+\frac{2}{\sqrt{3}}\left(\frac{\left(1-x^{2}\right)^{2}}{1+x^{2}+x^{4}}\right)\left(\frac{\left(1-x^{2}\right)(\sqrt{3})-\sqrt{3} x(-2 x)}{\left(1-x^{2}\right)^{2}}\right)
\end{array}
\end{aligned}
$$

$\frac{d y}{d x}=\left(\frac{2 x^{3}-2 x^{2}+2 x+x^{2}-x+1-2 x^{3}-2 x^{2}+2 x+x^{2}+x+1}{x^{2}-x+1}\right)$

$$
+\frac{2}{\sqrt{3}}\left(\frac{\sqrt{3}-\sqrt{3} x^{2}+2 \sqrt{3} x^{2}}{1+x^{2}+x^{4}}\right)
$$

$=\left(\frac{-2 x^{2}+2}{x^{4}+x^{2}+1}\right)+\frac{2 \sqrt{3}\left(x^{2}+1\right)}{\sqrt{3}\left(1+x^{2}+x^{4}\right)}$
$=\left(\frac{2\left(1-x^{2}\right)}{x^{4}+x^{2}+1}\right)+\frac{2\left(x^{2}+1\right)}{\left(1+x^{2}+x^{4}\right)}$
$=\frac{2\left(1-x^{2}+x^{2}+1\right)}{\left(1+x^{2}+x^{4}\right)}$
Hence,
$\frac{d y}{d x}=\frac{4}{\left(1+x^{2}+x^{4}\right)}$

53. Question

If $y=(\sin x-\cos x)^{\sin x-\cos x}, \frac{\pi}{4}<x<\frac{3 \pi}{4}$, find $\frac{d y}{d x}$.

Answer

Here, $\mathrm{y}=(\sin \mathrm{x}-\cos \mathrm{x})^{(\sin \mathrm{x}-\cos \mathrm{x})} \ldots \ldots$. (i)
Taking log on both sides,
$\log y=\log (\sin x-\cos x)^{(\sin x-\cos x)}$
$\log y=(\sin x-\cos x) \log (\sin x-\cos x)$
Differentiating it with respect to x using product rule, chain rule,
$\frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \frac{d}{d x}(\sin x-\cos x)+(\sin x-\cos x) \frac{d}{d x} \log (\sin x-\cos x)$
$\frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \times(\cos x+\sin x)+\frac{(\sin x-\cos x)}{(\sin x-\cos x)} \frac{d}{d x}(\sin x-\cos x)$
$\frac{1}{y} \frac{d y}{d x}=(\cos x+\sin x) \log (\sin x-\cos x)+(\cos x+\sin x)$
$\frac{1}{y} \frac{d y}{d x}=(\cos x+\sin x)(1+\log (\sin x-\cos x))$
$\frac{d y}{d x}=y[(\cos x+\sin x)(1+\log (\sin x-\cos x))]$
Using (i),
$\frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}[(\cos x+\sin x)(1+\log (\sin x-\cos x))]$

54. Question

If $x y=e^{x-y}$, find $\frac{d y}{d x}$.

Answer

The given function is $x y=e^{x-y}$

Taking log on both sides, we obtain
$\log (x y)=\log \left(e^{x-y}\right)$
$\log x+\log y=(x-y) \log e$
$\log x+\log y=(x-y) \times 1$
$\log x+\log y=x-y$
Differentiating both sides with respect to x , we obtain
$\frac{d}{d x}(\log x)+\frac{d}{d x}(\log y)=\frac{d}{d x}(x)-\frac{d y}{d x}$
$\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1-\frac{d y}{d x}$
$\left(1+\frac{1}{y}\right) \frac{d y}{d x}=1-\frac{1}{x}$
$\left(\frac{y+1}{y}\right) \frac{d y}{d x}=\frac{x-1}{x}$
$\therefore \frac{d y}{d x}=\frac{y(x-1)}{x(y+1)}$

55. Question

If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$.

Answer

Given that, $\mathrm{y}^{\mathrm{x}}+\mathrm{x}^{\mathrm{y}}+\mathrm{x}^{\mathrm{x}}=\mathrm{a}^{\mathrm{b}}$
Putting, $u=y^{x}, v=x^{y}, w=x^{x}$, we get
$u+v+w=a^{b}$
Therefore, $\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0$ \qquad
Now, $u=y^{x}$,
Taking log on both sides, we have
$\log u=x \log y$
Differentiating both sides with respect to x, we have
$\frac{1}{u} \frac{d u}{d x}=x \frac{d}{d x}(\log y)+\log y \frac{d x}{d x}$
$=x \frac{1}{y} \cdot \frac{d y}{d x}+\log y \cdot 1$
So, $\frac{d u}{d x}=u\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)$
$=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]$
Also, $\mathrm{v}=\mathrm{x}^{\mathrm{y}}$,
Taking log on both sides, we have
$\log v=y \log x$
Differentiating both sides with respect to x, we have
$\frac{1}{v} \frac{d v}{d x}=y \frac{d}{d x}(\log x)+\log x \frac{d y}{d x}$
$=y \frac{1}{x}+\log x \frac{d y}{d x}$
So, $\frac{d v}{d x}=v\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)$
$=x^{y}\left[\frac{\mathrm{y}}{\mathrm{x}}+\log \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}\right]$.
Again, $w=x^{x}$,
Taking log on both sides, we have
$\log w=x \log x$
Differentiating both sides with respect to x, we have
$\frac{1}{w} \frac{d w}{d x}=x \frac{d}{d x}(\log x)+\log x \frac{d x}{d x}$
$=x \cdot \frac{1}{\mathrm{x}}+\log \mathrm{x} \cdot 1$
So, $\frac{d w}{d x}=w(1+\log x)$
$=\mathrm{x}^{\mathrm{x}}[1+\log \mathrm{x}]$
From (i), (ii), (iii), (iv)
$\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0$
$y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]+x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+x^{x}[1+\log x]=0$
$\left(x y^{x-1}+x^{y} \cdot \log x\right) \frac{d y}{d x}=-x^{x}(1+\log x)-y \cdot x^{y-1}-y^{x} \log y$
Therefore,
$\frac{d y}{d x}=\frac{-\left[x^{x}(1+\log x)+y \cdot x^{y-1}+y^{x} \log y\right]}{\left(x^{x-1}+x^{y} \cdot \log x\right)}$

56. Question

If $(\cos x)^{y}=(\cos y)^{x}$ find $\frac{d y}{d x}$.

Answer

Here, $(\cos \mathrm{x})^{\mathrm{y}}=(\cos \mathrm{y})^{\mathrm{x}}$
Taking log on both sides,
$\log (\cos \mathrm{x})^{\mathrm{y}}=\log (\cos \mathrm{y})^{\mathrm{x}}$
$y \log (\cos x)=x \log (\cos y)$
Differentiating it with respect to x using the chain rule and product rule,
$\frac{d}{d x}(y \log \cos x)=\frac{d}{d x}(x \log \cos y)$
$y \frac{d}{d x} \log \cos x+\log \cos x \frac{d y}{d x}=x \frac{d}{d x} \log \cos y+\log \cos y \frac{d x}{d x}$
$y \frac{1}{\cos x}(-\sin x)+\log \cos x \frac{d y}{d x}=x \frac{1}{\cos y}(-\sin y) \frac{d y}{d x}+\log \cos y$
$\left(\log \cos x+\frac{x \sin y}{\cos y}\right) \frac{d y}{d x}=\log \cos y+y \frac{\sin y}{\cos y}$
$(\log \cos x+x \tan y) \frac{d y}{d x}=\log \cos y+y \tan y$
$\frac{d y}{d x}=\frac{\log \cos y+y \tan y}{\log \cos x+x \tan y}$

57. Question

If $\cos y=x \cos (a+y)$, where $\cos a \neq \pm 1$, prove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$.

Answer

Here,
$\cos y=x \cos (a+y)$, where $\cos a \neq \pm 1$
Differentiating both sides with respect to x , we get
$-\sin y \frac{d y}{d x}=x\left(-\sin (a+y) \frac{d y}{d x}\right)+\cos (a+y)$
$\frac{d y}{d x}[x \sin (a+y)-\sin y]=\cos (a+y)$
$\frac{d y}{d x}=\frac{\cos (a+y)}{x \sin (a+y)-\sin y}$
Multiplying the numerator and the denominator by $\cos (a+y)$ on th RHS we have,
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{x \cos (a+y) \sin (a+y)-\cos (a+y) \sin y}$
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\cos y \sin (a+y)-\cos (a+y) \sin y}$ [Given $\left.\cos y=x \cos (a+y)\right]$
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin [(a+y)-y]}[\because \sin (a-b)=\sin a \cos b-\cos a \sin b]$
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$
Hence Proved.
58. Question

If $(x-y) e^{\frac{x}{x-y}}=a,{ }^{\frac{x}{x}}$ prove that: $\frac{d y}{d x}=\frac{2 y-3 x}{2 x-1}$

Answer

Given:
$(x-y) e^{\frac{x}{x-y}}=a$
Taking log on both sides we get,
$\log (x-y)+\frac{x}{x-y} \log (e)=\log a$
(Using $\log a^{b}=b \log a$ and $\left.\log (e)=1\right)$

Differentiating both sides we get,
$\frac{1}{x-y}\left[1-\frac{d y}{d x}\right]+\frac{(x-y) \frac{d}{d x}(x)+x\left(1-\frac{d y}{d x}\right)}{(x-y)^{2}}=0$
Taking L.C.M and solving the equation we get,
$(x-y)\left[1-\frac{d y}{d x}\right]+(x-y)+x-x \frac{d y}{d x}=0$
$x-y-x \frac{d y}{d x}+y \frac{d y}{d x}+x-y+x-x \frac{d y}{d x}=0$
$3 x-2 y-(2 x-1) \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{2 y-3 x}{2 x-1}$
59. Question

If $x=e^{x / y}$, prove that $\frac{d y}{d x}=\frac{x-y}{x \log x}$

Answer

$x=e^{x / y}$
Taking logon both sides,
$\log x=\log _{e} x / y$
$\log x=\frac{x}{y} \ldots \ldots$ (i) $\left[\right.$ Since $\left.\log e^{a}=a\right]$
or, $y=\frac{x}{\log x} \ldots$...ii)
Differentiating the given equation with respect to x,
$\frac{d y}{d x}=\frac{\log x \frac{d}{d x}(x)-x \frac{d}{d x}(\log x)}{(\log x)^{2}}$
$\frac{d y}{d x}=\frac{\log x-x \times \frac{1}{x}}{(\log x)^{2}}$
$\frac{d y}{d x}=\frac{\log x-1}{(\log x)^{2}}$
$\frac{d y}{d x}=\frac{\frac{x}{y}-1}{(\log x)^{2}}$ [From (i)]
$\frac{d y}{d x}=\frac{x-y}{y(\log x)^{2}}$
$\frac{d y}{d x}=\frac{x-y}{\frac{x}{\log x}(\log x)^{2}}[$ From (ii)]
Therefore, $\frac{d y}{d x}=\frac{x-y}{x \log x}$
60. Question

If $y=x^{\tan x}+\sqrt{\frac{x^{2}+1}{2}}$, find $\frac{d y}{d x}$

Answer

Given $y=x^{\tan x}+\sqrt{\frac{x^{2}+1}{2}}$
$y=e^{\tan x \log x}+e^{\frac{1}{2} \log \frac{x^{2}+1}{2}}$
$\frac{d y}{d x}=e^{\tan x \log x} \frac{d}{d x}(\tan x \log x)+e^{\frac{1}{2} \log \frac{x^{2}+1}{2}} \frac{d}{d x}\left(\frac{1}{2} \log \frac{x^{2}+1}{2}\right)$
$\frac{d y}{d x}=x^{\tan x}\left[\frac{\tan x}{x}+\sec ^{2} \log x\right]+\sqrt{\frac{x^{2}+1}{2}}\left(\frac{1}{2} \times \frac{2}{x^{2}+1} \times x\right)$
$\frac{d y}{d x}=x^{\tan x}\left[\frac{\tan x}{x}+\sec ^{2} \log x\right]+\sqrt{\frac{x^{2}+1}{2}}\left(\frac{x}{x^{2}+1}\right)$
$\frac{d y}{d x}=x^{\tan x}\left[\frac{\tan x}{x}+\sec ^{2} \log x\right]+\frac{x}{\sqrt{2\left(x^{2}+1\right)}}$

61. Question

If $y=1+\frac{\alpha}{\left(\frac{1}{x}-\alpha\right)}+\frac{\beta / x}{\left(\frac{1}{x}-\alpha\right)\left(\frac{1}{x}-\beta\right)}+\frac{\gamma / x^{2}}{\left(\frac{1}{x}-\alpha\right)\left(\frac{1}{x}-\beta\right)\left(\frac{1}{x}-\gamma\right)}$, find $\frac{d y}{d x}$

Answer

Given,
$y=1+\frac{\alpha}{\left(\frac{1}{x}-\alpha\right)}+\frac{\beta / x}{\left(\frac{1}{x}-\alpha\right)\left(\frac{1}{x}-\beta\right)}+\frac{\gamma / x^{2}}{\left(\frac{1}{x}-\alpha\right)\left(\frac{1}{x}-\beta\right)\left(\frac{1}{x}-\gamma\right)}$
Using the theorem,
If $y=1+\frac{a x^{2}}{(x-a)(x-b)(x-c)}+\frac{b x}{(x-b)(x-c)}+\frac{c}{(x-c)}$, then, $\frac{d y}{d x}$

$$
=\frac{y}{x}\left\{\frac{a}{a-x}+\frac{b}{b-x}+\frac{c}{c-x}\right\}
$$

Here we have $\frac{1}{x}$ instead of x.
Hence, using the above theorem, we get,
$\frac{d y}{d x}=\frac{y}{x}\left[\frac{\alpha}{\frac{1}{x}-\alpha}+\frac{\beta}{\frac{1}{x}-\beta}+\frac{\gamma}{\frac{1}{x}-\gamma}\right]$

Exercise 11.6

1. Question

If $\mathrm{y}=\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\ldots \text { to } \infty}}}$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{y}-1}$.

Answer

Here,
$y=\sqrt{x+\sqrt{x+\sqrt{x+\cdots \text { to } \infty}}}$
$y=\sqrt{x+y}$
On squaring both sides,
$y^{2}=x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=1+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=1$
$\frac{d y}{d x}=\frac{1}{2 y-1}$
Hence proved.
2. Question

If $y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\ldots \text { to } \infty}}}$, prove that $\frac{d y}{d x}=\frac{\sin x}{1-2 y}$.

Answer

Here,
$y=\sqrt{\cos x+\sqrt{\cos x+\sqrt{\cos x+\cdots \text { to } \infty}}}$
$y=\sqrt{\cos x+y}$
On squaring both sides,
$y^{2}=\cos x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=-\sin x+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=-\sin x$
$\frac{d y}{d x}=-\frac{\sin x}{2 y-1}$
$\frac{d y}{d x}=\frac{\sin x}{1-2 y}$
Hence proved.
3. Question

If $y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\ldots \text { to } \infty}}}$, prove that $(2 y-1) \frac{d y}{d x}=\frac{1}{x}$.

Answer

$y=\sqrt{\log x+\sqrt{\log x+\sqrt{\log x+\cdots \text { to } \infty}}}$
$y=\sqrt{\log x+y}$
On squaring both sides,
$y^{2}=\log x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=\frac{1}{x}+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=\frac{1}{x}$
$\frac{d y}{d x}=\frac{1}{x(2 y-1)}$
Hence proved.

4. Question

If $y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\ldots \text { to } \infty}}}$, prove that $\frac{d y}{d x}=\frac{\sec ^{2} x}{2 y-1}$.

Answer

$y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\cdots} \text { to } \infty}}$
$y=\sqrt{\tan x+y}$
On squaring both sides,
$y^{2}=\tan x+y$
Differentiating both sides with respect to x ,
$2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}$
$\frac{d y}{d x}(2 y-1)=\sec ^{2} x$
$\frac{d y}{d x}=\frac{\sec ^{2} x}{(2 y-1)}$
Hence proved.

5. Question

If $y=(\sin x)^{\left.(\sin x)^{(\sin x)}\right)^{\infty}}$, prove that $\frac{d y}{d x}=\frac{y^{2} \cot x}{(1-y \log \sin x)}$

Answer

Here,
$\mathrm{y}=(\sin \mathrm{x})^{(\sin \mathrm{x})^{(\sin \mathrm{x}))^{\infty}}}$
$y=(\sin x)^{y}$
By taking log on both sides,
$\log y=\log (\sin x)^{y}$
$\log y=y(\log \sin x)$
Differentiating both sides with respect to x by using product rule,
$\frac{1}{y} \frac{d y}{d x}=y \frac{d(\log \sin x)}{d x}+\log \sin x \frac{d y}{d x}$
$\frac{1}{y} \frac{d y}{d x}=\frac{y}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x \frac{d y}{d x}$
$\left(\frac{1}{y}-\log \sin x\right) \frac{d y}{d x}=\frac{y}{\sin x}(\cos x)$
$\left(\frac{1-y \log \sin x}{y}\right) \frac{d y}{d x}=y \cot x$
$\frac{d y}{d x}=\frac{y^{2} \cot x}{1-y \log \sin x}$
Hence proved.

6. Question

Answer

Here,
$y=(\tan x)^{(\tan x)^{(\tan x))^{\infty}}}$
$y=(\tan x)^{y}$
By taking log on both sides,
$\log y=\log (\tan x)^{y}$
$\log y=y(\log \tan x)$
Differentiating both sides with respect to x using the product rule and chain rule,
$\frac{1}{y} \frac{d y}{d x}=y \frac{d(\log \tan x)}{d x}+\log \tan x \frac{d y}{d x}$
$\frac{1}{y} \frac{d y}{d x}=\frac{y}{\tan x} \frac{d(\tan x)}{d x}+\log \tan x \frac{d y}{d x}$
$\left(\frac{1}{y}-\log \tan x\right) \frac{d y}{d x}=\frac{y}{\tan x}\left(\sec ^{2} x\right)$
$\left(\frac{1-y \log \tan x}{y}\right) \frac{d y}{d x}=\frac{y \sec ^{2} x}{\tan x}$
$\frac{d y}{d x}=\frac{y^{2} \sec ^{2} x}{\tan x(1-y \log \tan x)}$
$\frac{d y}{d x}\left(x=\frac{\pi}{4}\right)=\frac{y^{2} \sec ^{2}\left(\frac{\pi}{4}\right)}{\tan \left(\frac{\pi}{4}\right)\left(1-y \log \tan \left(\frac{\pi}{4}\right)\right)}$
$\frac{d y}{d x}\left(x=\frac{\pi}{4}\right)=\frac{2 y^{2}}{1(1-y \log 1)}$

$\frac{d y}{d x}\left(x=\frac{\pi}{4}\right)=\frac{2}{1(1-0)}$
$\frac{d y}{d x}\left(x=\frac{\pi}{4}\right)=2$
Hence proved.

7. Question

If $y=e^{\mathrm{e}^{\mathrm{x}^{x}}}+\mathrm{x}^{\mathrm{e}^{\mathrm{x}^{x}}}+\mathrm{e}^{\mathrm{x}^{\mathrm{x}^{e}}}$, prove that
$\frac{d y}{d x}=e^{x^{e^{x}}} \cdot x^{e^{x}}\left\{\frac{e^{x}}{x}+e^{x} \cdot \log x\right\}+x^{e^{e^{x}}} \cdot e^{e^{x}}$
$\left\{\frac{1}{x}+e^{x} \cdot \log x\right\}+e^{x^{x^{e}}} x^{x^{e}} \cdot x^{e-1}\{1+e \log x\}$

Answer

Here,
$y=e^{x^{x^{x}}}+x^{e^{e^{x}}}+e^{x^{x^{x^{e}}}}$
$y=u+V+W$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dU}}{\mathrm{dx}}+\frac{\mathrm{dV}}{\mathrm{dx}}+\frac{\mathrm{dz}}{\mathrm{dx}}$.
Where, $u=e^{x^{x^{x}}}, v=x^{e^{e^{x}}}, w=e^{x^{x^{e}}}$
$\mathrm{u}=\mathrm{e}^{\mathrm{x}^{\mathrm{e}^{\mathrm{x}}}}$
Taking log on both sides,
$\log u=\log _{e^{x^{e^{x}}}}$
$\log u=x^{e^{x}} \log e$
$\log u=x^{e^{x}}$
Again, Taking log on both sides,
$\log \log u=\log x^{e^{x}}$
$\log \log u=e^{x} \log x$
Differentiating both sides with respect to x by using the product rule,
$\frac{1}{\log u} \frac{d(\log u)}{d x}=e^{x} \frac{d(\log x)}{d x}+\log x \frac{d\left(e^{x}\right)}{d x}$
$\frac{1}{u} \frac{1}{\log u} \frac{d u}{d x}=e^{x} \frac{1}{x}+e^{x} \log x$
$\frac{d u}{d x}=u * \log u\left(\frac{e^{x}}{x}+e^{x} \log x\right)$
Put value of u and $\log u$,
$\frac{d u}{d x}=e^{\mathrm{x}^{\mathrm{e}^{\mathrm{x}}}} * \mathrm{x}^{\mathrm{e}^{\mathrm{x}}}\left(\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}}+\mathrm{e}^{\mathrm{x}} \log \mathrm{x}\right)$
Now,
$\mathrm{v}=\mathrm{X}^{\mathrm{e}^{\mathrm{e}^{\mathrm{x}}}}$
taking log on both sides,
$\log v=\log _{x^{e}} e^{e^{x}}$
$\log v=e^{e^{x}} \log x$
Differentiating both sides with respect to x by using the product rule,
$\frac{1}{v} \frac{d v}{d x}=e^{e^{x}} \frac{d(\log x)}{d x}+\log x \frac{d\left(e^{e^{x}}\right)}{d x}$
$\frac{1}{v} \frac{d v}{d x}=e^{e^{x}} \frac{1}{x}+\log x e^{e^{x}} \frac{d\left(e^{x}\right)}{d x}$
$\frac{d v}{d x}=v\left[e^{e^{x}} \frac{1}{x}+e^{x} \log x e^{e^{x}}\right]$
Put value of v,
$\frac{d v}{d x}=x^{e^{e^{x}}}\left[e^{e^{x} \frac{1}{x}}+e^{x} \log x e^{e^{x}}\right]$
Now,
$w=e^{x^{x^{e}}}$
taking log on both sides,
$\log w=\log _{e^{x^{x^{e}}}}$
$\log w=x^{x^{e}} \log e$
$\log w=x^{x^{e}}$
taking log both sides,
$\log \log w=x^{e} \log x$
Differentiating both sides with respect to x by using the product rule,
$\frac{1}{\log w} \frac{d(\log w)}{d x}=x^{e} \frac{d(\log x)}{d x}+\log x \frac{d\left(x^{e}\right)}{d x}$
$\frac{1}{w} \frac{1}{\log w} \frac{d w}{d x}=x^{e} \frac{1}{x}+x^{e-1} \log e$
$\frac{d w}{d x}=w * \log w\left(x^{e-1}+e \log x x^{e-1}\right)$
Put the value of w and $\log w$,
$\frac{d w}{d x}=\mathrm{e}^{\mathrm{x}^{\mathrm{e}}} * \mathrm{x}^{\mathrm{x}^{\mathrm{e}}}\left(\mathrm{x}^{\mathrm{e}-1}+\mathrm{e} \log \mathrm{x} \mathrm{x}^{\mathrm{e}-1}\right) \ldots \ldots$.
Using equation A, B and C in equation (1),

$$
\begin{aligned}
\frac{d y}{d x}=e^{x^{e^{x}}} * & x^{e^{x}}\left(\frac{e^{x}}{x}+e^{x} \log x\right)+x^{e^{e^{x}}}\left[e^{e^{x}} \frac{1}{x}+e^{x} \log x e^{e^{x}}\right]+e^{x^{x^{e}}} \\
& * x^{x^{e}}\left(x^{e-1}+e \log x x^{e-1}\right)
\end{aligned}
$$

Hence, proved.

8. Question

If $y(\cos x)^{(\cos x)^{(\cos x) \ldots \infty}}$, prove that $\frac{d y}{d x}=\frac{y^{2} \tan x}{(1-y \log \cos x)}$.

Answer

Here,
$y=(\cos x)^{(\cos x)^{(\cos x)^{-\infty}}}$
$y=(\cos x)^{y}$
By taking log on both sides,
$\log y=\log (\cos x)^{y}$
$\log y=y(\log \cos x)$
Differentiating both sides with respect to x by using the product rule,
$\frac{1}{y} \frac{d y}{d x}=y \frac{d(\log \cos x)}{d x}+\log \cos x \frac{d y}{d x}$
$\frac{1}{y} \frac{d y}{d x}=\frac{y}{\cos x} \frac{d(\cos x)}{d x}+\log \cos x \frac{d y}{d x}$
$\left(\frac{1}{y}-\log \cos x\right) \frac{d y}{d x}=\frac{y}{\cos x}(-\sin x)$
$\left(\frac{1-y \log \cos x}{y}\right) \frac{d y}{d x}=-y \tan x$
$\frac{d y}{d x}=-\frac{y^{2} \cot x}{1-y \log \cos x}$

Exercise 11.7

1. Question

Find $\frac{d y}{d x}$, when
$x=a t^{2}$ and $y=2 a t$

Answer

Given that $x=a t^{2}, y=2 a t$
So, $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}\left(\mathrm{at}^{2}\right)}{\mathrm{dt}}=2 \mathrm{at}$
$\frac{d y}{d t}=\frac{d(2 a t)}{d t}=2 a$
Therefore, $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 a}{2 a t}=\frac{1}{t}$

2. Question

Find $\frac{d y}{d x}$, when
$x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$
Answer
$x=a(\theta+\sin \theta)$

Differentiating it with respect to θ,
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos \theta) \ldots \ldots(1)$
And,
$y=a(1-\cos \theta)$
Differentiating it with respect to θ,
$\frac{d y}{d \theta}=a(0+\sin \theta)$
$\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a} \sin \theta \ldots \ldots(2)$
Using equation (1) and (2),
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$
$=\frac{a \sin \theta}{a(1-\cos \theta)}$
$=\frac{\frac{2 \sin \theta}{2} \frac{(\cos \theta)}{2}}{\frac{2 \sin ^{2} \theta}{2}}$,
$\left\{\right.$ since, $\left.1-\cos \theta=\frac{2 \sin ^{2} \theta}{2}\right\}$
$=\frac{d y}{d x}=\frac{\tan \theta}{2}$

3. Question

Find $\frac{d y}{d x}$, when
$x=a \cos \theta$ and $y=b \sin \theta$

Answer

as $x=a \cos \theta$ and $y=b \sin \theta$
Then,
$\frac{d x}{d \theta}=\frac{d(a \cos \theta)}{d \theta}=-a \sin \theta$
$\frac{d y}{d \theta}=\frac{d(b \sin \theta)}{d \theta}=b \cos \theta$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \cos \theta}{-a \sin \theta}=-\frac{b}{a} \cot \theta$

4. Question

Find $\frac{d y}{d x}$, when
$x=a e^{\theta}(\sin \theta-\cos \theta), y=a e^{\theta}(\sin \theta+\cos \theta)$
Answer
as $x=a e^{\theta}(\sin \theta-\cos \theta)$
Differentiating it with respect to θ
$\frac{d x}{d \theta}=a\left[e^{\theta} \frac{d(\sin \theta-\cos \theta)}{d \theta}+(\sin \theta-\cos \theta) \frac{d\left(e^{\theta}\right)}{d \theta}\right]$
$=a\left[e^{\theta}(\cos \theta+\sin \theta)+(\sin \theta-\cos \theta) e^{\theta}\right]$
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left[2 \mathrm{e}^{\theta} \sin \theta\right]$.
And, $y=a e^{\theta}(\sin \theta+\cos \theta)$
Differentiating it with respect to θ,
$\frac{d y}{d \theta}=a\left[e^{\theta} \frac{d(\sin \theta+\cos \theta)}{d \theta}+(\sin \theta+\cos \theta) \frac{d\left(e^{\theta}\right)}{d \theta}\right]$
$=a\left[e^{\theta}(\cos \theta-\sin \theta)+(\sin \theta+\cos \theta) e^{\theta}\right]$
$\frac{d y}{d \theta}=a\left[2 e^{\theta} \cos \theta\right]$
Dividing equation (2) by equation (1),
$\frac{d y}{d x}=\frac{a\left(2 e^{\theta} \cos \theta\right)}{a\left(2 e^{\theta} \sin \theta\right)}$
$\frac{d y}{d x}=\cot \theta$

5. Question

Find $\frac{d y}{d x}$, when
$x=b \sin ^{2} \theta$ and $y=a \cos ^{2} \theta$

Answer

as $x=b \sin ^{2} \theta$
Then
$\frac{d x}{d \theta}=\frac{d\left(b \sin ^{2} \theta\right)}{d \theta}=2 b \sin \theta \cos \theta$
And $y=a \cos ^{2} \theta$
$\frac{d y}{d \theta}=d\left(\operatorname{acos}^{2} \theta\right)=-2 a \cos \theta \sin \theta$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=-\frac{2 a \cos \theta \sin \theta}{2 b \sin \theta \cos \theta}=-\frac{a}{b}$

6. Question

Find $\frac{d y}{d x}$, when
$x=a(1-\cos \theta)$ and $y=a(\theta+\sin \theta)$ at $\theta=\frac{\pi}{2}$

Answer

as $x=a(1-\cos \theta)$
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\frac{\mathrm{d}[\mathrm{a}(1-\cos \theta)]}{\mathrm{d} \theta}=\mathrm{a}(\sin \theta)$
And $y=a(\theta+\sin \theta)$
$\frac{d y}{d \theta}=\frac{d(\theta+\sin \theta)}{d \theta}=a(1+\cos \theta)$
$\left.\therefore \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a(1+\cos \theta)}{a(\sin \theta)} \right\rvert\,\left(\theta=\frac{\pi}{2}\right)$
$=\frac{a(1+0)}{a}=1$

7. Question

Find $\frac{d y}{d x}$, when
$x=\frac{\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}}{2}$ and $\mathrm{y}=\frac{\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}}{2}$

Answer

as $_{\mathrm{X}}=\frac{\mathrm{e}^{\boldsymbol{\theta}}+\mathrm{e}^{\theta}}{2}$
Differentiating it with respect to t
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{2}\left[\frac{\mathrm{~d}\left(\mathrm{e}^{\mathrm{t}}\right)}{\mathrm{dt}}+\frac{\mathrm{d}\left(\mathrm{e}^{-\mathrm{t}}\right)}{\mathrm{dt}}\right]$
$=\frac{1}{2}\left[\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}} \frac{\mathrm{d}(-\mathrm{t})}{\mathrm{dt}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}\right)=\mathrm{y}$
And $y=\frac{e^{\theta}-e^{\theta}}{2}$
Differentiating it with respect to t,
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{1}{2}\left[\frac{\mathrm{~d}\left(\mathrm{e}^{\mathrm{t}}\right)}{\mathrm{dt}}-\frac{\mathrm{d}\left(\mathrm{e}^{-\mathrm{t}}\right)}{\mathrm{dt}}\right]$
$=\frac{1}{2}\left[\mathrm{e}^{\mathrm{t}-}-\mathrm{e}^{-\mathrm{t}} \frac{\mathrm{d}(-\mathrm{t})}{\mathrm{dt}}\right]$
$=\frac{1}{2}\left(\mathrm{e}^{\mathrm{t}}-\mathrm{e}^{-\mathrm{t}}(-1)\right)$
$\frac{d y}{d t}=\frac{e^{\theta}+e^{\theta}}{2}=x \ldots \ldots$ (2)
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{x}{y}$
$\frac{d y}{d x}=\frac{x}{y}$

8. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
$x=\frac{3 a t}{1+t^{2}}$ and $y=\frac{3 a^{2}}{1+t^{2}}$

Answer

as $\mathrm{x}=\frac{3 \mathrm{at}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotient rule,
$\frac{d x}{d t}=\left[\frac{\left(\left(1+t^{2}\right) \frac{d(3 a t)}{d t}-3 a t \frac{d\left(1+t^{2}\right)}{d t}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+t^{2}\right)(3 a)-3 a t(2 t)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{(3 a)+3 \mathrm{at}^{2}-6 \mathrm{at}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{3 a-3 a t^{2}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{3 \mathrm{a}\left(1-\mathrm{t}^{2}\right)}{\left(1+\mathrm{t}^{2}\right)^{2}}$
And $\mathrm{y}=\frac{3 \mathrm{at}^{2}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotion rule
$\frac{d y}{d x}=\left[\frac{\left(1+t^{2}\right) \frac{d\left(3 a t^{2}\right)}{d t}-3 a t^{2} \frac{d\left(1+t^{2}\right)}{d t}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right)(6 a t)-\left(3 a t^{2}\right)(2 t)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{6 a t+6 a t^{3}-6 a t^{3}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{d y}{d t}=\frac{6 \mathrm{at}}{\left(1+\mathrm{t}^{2}\right)^{2}}---(2)$
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 \mathrm{at}}{\left(1+\mathrm{t}^{2}\right)^{2}} \times \frac{3 \mathrm{a}\left(1-\mathrm{t}^{2}\right)}{\left(1+\mathrm{t}^{2}\right)^{2}}$
$\frac{d y}{d x}=\frac{2 t}{1-t^{2}}$

9. Question

Find $\frac{d y}{d x}$, when
$x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta-\cos \theta)$

Answer

the given equation are $x=a(\cos \theta+\theta \sin \theta)$
Then $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left[\frac{\mathrm{d}}{\mathrm{d} \theta} \cos \theta+\frac{\mathrm{d}}{\mathrm{d} \theta}(\theta \sin \theta)\right]$
$=\mathrm{a}\left[-\sin \theta+\frac{\theta \mathrm{d}}{\mathrm{d} \theta}(\sin \theta)+\sin \theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\theta)\right]$
$=a[-\sin \theta+\theta \cos \theta+\sin \theta]=a \theta \cos \theta$
And $y=a(\sin \theta-\cos \theta)$ so,
$\frac{d y}{d \theta}=a\left[\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\theta \cos \theta)\right]$
$=a\left[\cos \theta-\left\{\frac{\theta d}{d \theta}(\cos \theta)+\cos \theta \frac{d}{d \theta}(\theta)\right\}\right]$
$=\mathrm{a}[\cos \theta+\theta \sin \theta-\cos \theta]$
$=\mathrm{a} \theta \sin \theta$
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta$

10. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
$\mathrm{x}=\mathrm{e}^{\theta}\left(\theta+\frac{1}{\theta}\right)$ and $\mathrm{y}=\mathrm{e}^{-\theta}\left(\theta-\frac{1}{\theta}\right)$.

Answer

as $\mathrm{x}=\mathrm{e}^{\theta}\left(\theta+\frac{1}{\theta}\right)$
Differentiating it with respect to θ using the product rule,
$\frac{d x}{d \theta}=e^{\theta} \frac{d}{d \theta}\left(\theta+\frac{1}{\theta}\right)+\left(\theta+\frac{1}{\theta}\right) \frac{d}{d \theta}\left(e^{\theta}\right)$
$=e^{\theta}\left(1-\frac{1}{\theta^{2}}\right)+\frac{\theta^{2}+1}{\theta}\left(e^{\theta}\right)$
$=\mathrm{e}^{\theta}\left(1-\frac{1}{\theta^{2}}+\frac{\theta^{2}+1}{\theta}\right)$
$=\mathrm{e}^{\theta}\left(\frac{\theta^{2}-1+\theta^{3}+\theta}{\theta^{2}}\right)$
$\frac{d x}{d \theta}=e^{\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right)$.
And, $y=e^{-\theta}\left(\theta-\frac{1}{\theta}\right)$
Differentiating it with respect to θ using the product rule,

$$
\frac{d y}{d \theta}=\mathrm{e}^{-\theta} \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\theta-\frac{1}{\theta}\right)+\left(\theta-\frac{1}{\theta}\right) \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\mathrm{e}^{-\theta}\right)
$$

$=\mathrm{e}^{-\theta}\left(1+\frac{1}{\theta^{2}}\right)+\left(\theta-\frac{1}{\theta}\right) \mathrm{e}^{-\theta} \frac{\mathrm{d}}{\mathrm{d} \theta}(-\theta)$
$=e^{-\theta}\left(1+\frac{1}{\theta^{2}}\right)+\left(\theta-\frac{1}{\theta}\right) e^{-\theta}(-1)$
$\frac{d y}{d \theta}=e^{-\theta}\left(1+\frac{1}{\theta^{2}}-\theta+\frac{1}{\theta}\right)$
$=\mathrm{e}^{-\theta}\left(\frac{\theta^{2}+1-\theta^{3}+\theta}{\theta^{2}}\right)$
$\frac{d y}{d \theta}=e^{-\theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right) \ldots \ldots$ (2)
divide equation (2)by (1)
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=e^{-\theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{2}}\right) \times \frac{1}{e^{\theta}\left(\frac{\theta^{3}+\theta^{2}+\theta-1}{\theta^{2}}\right)}$
$=\mathrm{e}^{-2 \theta}\left(\frac{-\theta^{3}+\theta^{2}+\theta+1}{\theta^{3}+\theta^{2}+\theta-1}\right)$

11. Question

Find $\frac{d y}{d x}$, when
$x=\frac{2 t}{1+t^{2}}$ and $y=\frac{1-t^{2}}{1+t^{2}}$.

Answer

as, $\mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotient rule,
$\frac{d x}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}(2 t)-2 t \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+\mathrm{t}^{2}\right)(2)-2 \mathrm{t}(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{2+2 \mathrm{t}^{2}-4 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\frac{2-2 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$.
And, $\mathrm{y}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotient rule,
$\frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}\left(1-t^{2}\right)-\left(1-t^{2}\right) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+\mathrm{t}^{2}\right)(-2 \mathrm{t})-\left(1-\mathrm{t}^{2}\right)(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{-2 \mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}+2 \mathrm{t}^{3}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\left[\frac{-4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]---(2)$
dividing equation (2)by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\left[\frac{-4 t}{\left(1+t^{2}\right)^{2}}\right] \times \frac{1}{\left[\frac{2-2 t^{2}}{\left(1+t^{2}\right)^{2}}\right]}$
$=-\frac{2 \mathrm{t}}{1-\mathrm{t}^{2}}$
$\frac{d y}{d x}=-\frac{x}{y}\left[\right.$ since,$\left.\frac{x}{y}=\frac{2 t}{1+t^{2}} \times \frac{1+t^{2}}{1-t^{2}}=\frac{2 t}{1-t^{2}}\right]$

12. Question

Find $\frac{d y}{d x}$, when
$x=\cos ^{-1} \frac{1}{\sqrt{1+t^{2}}}$ and $y=\sin ^{-1} \frac{t}{\sqrt{1+t^{2}}}, t \in R$

Answer

as $\mathrm{x}=\cos ^{-1} \frac{1}{\sqrt{1+\mathrm{t}^{2}}}$
Differentiating it with respect to t using chain rule ,
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)^{2}}} \frac{d}{d t}\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)$
$=-\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right) \frac{d}{d t}\left(1+t^{2}\right)$
$=-\frac{\left(1+t^{2}\right)^{\frac{1}{2}}}{\sqrt{\left(1+t^{2}-1\right)}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\}(2 t)$
$=-\frac{\mathrm{t}}{\sqrt{\mathrm{t}^{2}} \times\left(1+\mathrm{t}^{2}\right)}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\frac{1}{1+\mathrm{t}^{2}} \ldots \ldots$ (1)
Now, $\mathrm{y}=\sin ^{-1} \frac{1}{\sqrt{1+\mathrm{t}^{2}}}$
Differentiating it with respect to t using chain rule ,
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)^{2}}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{1}{\sqrt{1+\mathrm{t}^{2}}}\right)$
$=\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\} \frac{d}{d t}\left(1+t^{2}\right)$
$=\frac{\left(1+t^{2}\right)^{\frac{1}{2}}}{\sqrt{\left(1+t^{2}-1\right)}}\left\{-\frac{1}{2\left(1+t^{2}\right)^{\frac{3}{2}}}\right\}(2 t)$
$=\frac{t}{\sqrt{t^{2}} \times\left(1+t^{2}\right)}$
$\frac{\mathrm{dy}}{\mathrm{dt}}=-\frac{1}{1+\mathrm{t}^{2}}$
dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-\frac{1}{1+t^{2}} \times-\frac{1+t^{2}}{1}$
$\frac{d y}{d x}=1$

13. Question

Find $\frac{d y}{d x}$, when
$x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$

Answer

as $\mathrm{x}=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotient rule,
$\frac{d x}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}\left(1-t^{2}\right)-\left(1-t^{2}\right) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+\mathrm{t}^{2}\right)(-2 \mathrm{t})-\left(1-\mathrm{t}^{2}\right)(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$=\left[\frac{-2 t-2 t^{3}-2 t+2 t^{3}}{\left(1+t^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\frac{-4 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
And, $\mathrm{y}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}$
Differentiating it with respect to t using quotient rule,
$\frac{d y}{d t}=\left[\frac{\left(1+t^{2}\right) \frac{d}{d t}(2 t)-(2 t) \frac{d}{d t}\left(1+t^{2}\right)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{\left(1+t^{2}\right)(2)-(2 t)(2 t)}{\left(1+t^{2}\right)^{2}}\right]$
$=\left[\frac{2+2 \mathrm{t}^{2}-4 \mathrm{t}^{2}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{d y}{d t}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}}$
divided equation (2)by (1) so,
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} \times \frac{1}{\frac{-4 t}{\left(1+t^{2}\right)^{2}}}$
$\frac{d y}{d x}=\frac{2\left(1-t^{2}\right)}{-4 t}$

14. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, prove that $\frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right)$.

Answer

as $x=2 \cos \theta-\cos 2 \theta$
Differentiating it with respect to θ using chain rule ,
$\frac{d x}{d \theta}=2(-\sin \theta)-(-\sin 2 \theta) \frac{d}{d \theta}(2 \theta)$
$=-2 \sin \theta+2 \sin 2 \theta$
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=2(\sin 2 \theta-\sin \theta)$
And, $y=2 \sin \theta-\sin 2 \theta$
Differentiating it with respect to θ using chain rule ,
$\frac{d y}{d \theta}=2 \cos \theta-\cos 2 \theta \frac{d}{d \theta}(2 \theta)$
$=2 \cos \theta-\cos 2 \theta(2)$
$=2 \cos \theta-2 \cos 2 \theta$
$\frac{d y}{d \theta}=2(\cos \theta-\cos 2 \theta)$
dividing equation (2)by equation (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{2(\cos \theta-\cos 2 \theta)}{2(\sin 2 \theta-\sin \theta)}$
$=\frac{(\cos \theta-\cos 2 \theta)}{(\sin 2 \theta-\sin \theta)}$
$\frac{d y}{d x}=\frac{-2 \sin \left(\frac{\theta+2 \theta}{2}\right) \sin \left(\frac{\theta-2 \theta}{2}\right)}{2 \cos \left(\frac{\theta+2 \theta}{2}\right) \sin \left(\frac{2 \theta-\theta}{2}\right)}[$ since $\sin a-\sin b$

$$
\left.=2 \cos \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)\right]
$$

$\left[\cos a-\cos b=-2 \sin \left(\frac{a+b}{2}\right) \sin \left(\frac{a-b}{2}\right)\right]$
$=-\frac{\sin \left(\frac{3 \theta}{2}\right)\left(\sin \left(-\frac{\theta}{2}\right)\right)}{\cos \left(\frac{3 \theta}{2}\right) \sin \left(\frac{\theta}{2}\right)}$
$=-\frac{\sin \left(\frac{3 \theta}{2}\right)\left(-\sin \frac{\theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right) \sin \left(\frac{\theta}{2}\right)}$
$=\frac{\sin \left(\frac{3 \theta}{2}\right)}{\cos \left(\frac{3 \theta}{2}\right)}$
$\frac{d y}{d x}=\tan \left(\frac{3 \theta}{2}\right)$

15. Question

Find $\frac{d y}{d x}$, when
If $x=e^{\cos 2 t}$ and $y=e^{\sin 2 t}$, prove that $\frac{d y}{d x}=-\frac{y \log x}{x \log y}$

Answer

Here, $x=e^{\cos 2 t}$
Differentiating it with respect to θ using chain rule ,
$\frac{d x}{d t}=\frac{d}{d t}\left(e^{\cos 2 t}\right)$
$=e^{\cos 2 t} \frac{d}{d t}(\cos 2 t)$
$=e^{\cos 2 t}(-\sin 2 \mathrm{t}) \frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})$
$=\mathrm{e}^{\cos 2 \mathrm{t}}(-\sin 2 \mathrm{t})(2)$
$\frac{\mathrm{dx}}{\mathrm{dt}}=-2 \sin 2 \mathrm{te}^{\cos 2 \mathrm{t}}$.
And, $y=e^{\sin 2 t}$
Differentiating it with respect to θ using chain rule,
$\frac{d y}{d t}=\frac{d}{d t}\left(e^{\sin 2 t}\right)$
$=e^{\sin 2 t} \frac{d}{d t}(\sin 2 \mathrm{t})$
$=\mathrm{e}^{\sin 2 \mathrm{t}} \cos 2 \mathrm{t} \frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})$
$=\mathrm{e}^{\sin 2 \mathrm{t}} \cos 2 \mathrm{t}(2)$
$\frac{d y}{d t}=2 \cos 2 t e^{\sin 2 t} \ldots \ldots$ (2)
dividing equation (2)by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 \cos 2 t e^{\sin 2 t}}{-2 \sin 2 t e^{\cos 2 t}}$
$\frac{d y}{d x}=-\frac{y \log x}{x \log y}\left[\right.$ since $\left.x=e^{\cos 2 t} \Rightarrow \log x=\cos 2 t\right]$
$\left[y=e^{\sin 2 t} \Rightarrow \log y=\sin 2 t\right]$

16. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=\cos t$ and $y=\sin t$, prove that $\frac{d y}{d x}=\frac{1}{\sqrt{3}}$ at $1=\frac{2 \pi}{3}$

Answer

as $x=$ cost
Differentiating it with respect to t,
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\cos \mathrm{t})$
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{m} \ldots$.
And, $y=\operatorname{sint}$
Differentiating it with respect to t,
$\frac{d y}{d t}=\frac{d}{d t}(\sin t)$
$\frac{d y}{d t}=\operatorname{cost} \ldots \ldots(2)$
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\cos t}{-\sin t}$
$\frac{d y}{d x}=-\cot t$
$\left(\frac{d y}{d x}\right)=-\cot \left(\frac{2 \pi}{3}\right)$
$\left(\frac{d y}{d x}\right)=-\cot \left(\pi-\frac{\pi}{3}\right)$
$=-\left[-\cot \left(\frac{\pi}{3}\right)\right]$
$=\cot \left(\frac{\pi}{3}\right)$
$\frac{d y}{d x}=\frac{1}{\sqrt{3}}$
17. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when

If $\mathrm{x}=\mathrm{a}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$ and $\mathrm{y}=\mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}}{\mathrm{y}}$

Answer

as $\mathrm{x}=\mathrm{a}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$
Differentiating it with respect to t,
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{ad}}{\mathrm{dt}}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$
$=\mathrm{a}\left(1-\frac{1}{\mathrm{t}^{2}}\right)$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{a}\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t}^{2}}\right)$
And $\mathrm{y}=\mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)$
Differentiating it with respect to t,
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{ad}}{\mathrm{dt}}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)$
$=\mathrm{a}\left(1+\frac{1}{\mathrm{t}^{2}}\right)$
$\frac{d y}{d t}=a\left(\frac{t^{2}+1}{t^{2}}\right)$.
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=a\left(\frac{t^{2}+1}{t^{2}}\right) \times \frac{t^{2}}{a\left(t^{2}-1\right)}$
$\frac{d y}{d x}=\frac{t^{2}+1}{t^{2}-1}$
$\frac{d y}{d x}=\frac{x}{y}\left[\right.$ since,$\left.\frac{x}{y}=a\left(\frac{t^{2}+1}{t^{2}}\right) \times \frac{t^{2}}{a\left(t^{2}-1\right)}=\left(\frac{t^{2}+1}{t^{2}-1}\right)\right]$
18. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)$ and $y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right),-1<t<1$, prove that $\frac{d y}{d x}=1$

Answer

as ${ }_{\mathrm{h}} \mathrm{x}=\sin ^{-1}\left(\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}\right)$
Put $\mathrm{t}=\tan \theta$
$\mathrm{x}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$=\sin ^{-1} \sin 2 \theta$
$=2 \theta\left[\operatorname{since}, \sin 2 \theta=\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]$
$x=2\left(\tan ^{-1} t\right)[$ since, $t=\sin \theta]$
differentiating it with respect to t,
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{1+\mathrm{t}^{2}}$.
Now,
$y=\tan ^{-1} \frac{2}{1+t^{2}}$
Put $\mathrm{t}=\tan \theta$
$y=\tan ^{-1} \frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$=\tan ^{-1} \tan 2 \theta\left[\right.$ since $\left.\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right]$
$=2 \theta$
$y=2 \tan ^{-1} t[$ since $t=\tan \theta]$
differentiating it with respect to t,
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2}{1+\mathrm{t}^{2}}$
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2}{1+t^{2}} \times \frac{1+t^{2}}{2}$
$\frac{d y}{d x}=1$
19. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}$, find $\frac{d y}{d x}$

Answer

as $\mathrm{x}=\frac{\sin ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}$
Then $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\sin ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}\right]$
$=\frac{\sqrt{\cos 2 \mathrm{t}} \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(\sin ^{3} \mathrm{t}\right)-\sin ^{3} \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \sqrt{\cos 2 \mathrm{t}}}{\cos 2 \mathrm{t}}$
$=\frac{\sqrt{\cos 2 t} \cdot 3 \sin ^{2} t \frac{d}{d t}(\sin \mathrm{t})-\sin ^{3} \mathrm{t} \times \frac{1}{2 \sqrt{\cos 2 t}} \frac{\mathrm{~d}}{\mathrm{dt}} \cos 2 \mathrm{t}}{2}$
$\cos 2 \mathrm{t}$
$=\frac{3 \sqrt{\cos 2 t} \sin ^{2} t \cos t-\sin ^{3} t \times \frac{1}{2 \sqrt{\cos 2 t}}(-2 \sin 2 t)}{\cos 2 t}$
$=\frac{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t \sin 2 t}{\cos 2 t \sqrt{\cos 2 t}}$

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{d}{d t}\left[\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}\right] \\
& =\frac{\sqrt{\cos 2 \mathrm{t}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}\left(\cos ^{3} \mathrm{t}\right)-\cos ^{3} \mathrm{t} \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \sqrt{\cos 2 \mathrm{t}}}{\cos 2 \mathrm{t}} \\
& =\frac{\sqrt{\cos 2 \mathrm{t}} \cdot 3 \cos ^{2} \mathrm{t} \frac{\mathrm{~d}}{\mathrm{dt}}(\cos \mathrm{t})-\cos ^{3} \mathrm{t} \cdot \frac{1}{2 \sqrt{\cos 2 \mathrm{t}}} \frac{\mathrm{~d}}{\mathrm{dt}} \sqrt{\cos 2 \mathrm{t}}}{\cos 2 \mathrm{t}} \\
& =\frac{\sqrt{\cos 2 t} .3 \cos ^{2} t(-\sin t)-\cos ^{3} t \cdot \frac{1}{2 \sqrt{\cos 2 t}}(-2 \sin 2 t)}{} \\
& \cos 2 t \\
& =\frac{-3 \cos 2 t \cdot \cos ^{2} t \sin t+\cos ^{3} t \cdot \sin 2 t}{\cos 2 t \cdot \sqrt{\cos 2 t}} \\
& \therefore \frac{d y}{d x}=\left(\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right)=\frac{-3 \cos 2 t \cdot \cos ^{2} t \sin t-\cos ^{3} t \cdot \sin 2 t}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t \sin 2 t} \\
& =\frac{-3 \cos 2 t \cdot \cos ^{2} t \sin t-\cos ^{3} t \cdot(2 \sin t \cos t)}{3 \cos 2 t \sin ^{2} t \cos t+\sin ^{3} t(2 \sin t \cos t)} \\
& =\frac{\sin \mathrm{t} \cos \mathrm{t}\left[-3 \cos 2 \mathrm{t} \cdot \cos \mathrm{t}-2 \cos ^{3} \mathrm{t}\right]}{\sin \mathrm{t} \cos \mathrm{t}\left[3 \cos 2 \mathrm{t} \sin \mathrm{t}+2 \sin ^{3} \mathrm{t}\right]} \\
& =\frac{-3 \cos 2 \mathrm{t} \cdot \cos \mathrm{t}-2 \cos ^{3} \mathrm{t}}{\left[3 \cos 2 \mathrm{t} \sin \mathrm{t}+2 \sin ^{3} \mathrm{t}\right]}\left[\begin{array}{l}
\cos 2 \mathrm{t}=\left(2 \cos ^{2} \mathrm{t}-1\right), \\
\cos 2 \mathrm{t}=\left(1-2 \sin ^{2} \mathrm{t}\right)
\end{array}\right] \\
& \frac{-4 \cos ^{3} t+3 \cos t}{3 \sin t-4 \sin ^{3} t} \\
& =-\frac{\cos 3 \mathrm{t}}{\sin 3 \mathrm{t}}\left[\cos 3 \mathrm{t}=4 \cos ^{3} \mathrm{t}-3 \cos \mathrm{t}\right. \\
& \sin 3 \mathrm{t}=3 \sin \mathrm{t}-4 \sin ^{3} \mathrm{t} \text {] } \\
& =\cot 3 \mathrm{t}
\end{aligned}
$$

20. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $\mathrm{x}=\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{\mathrm{a}}, \mathrm{y}=\mathrm{a}^{\mathrm{t}+\frac{1}{\mathrm{t}}}$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$

Answer

as $\mathrm{x}=\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{\mathrm{a}}$
Differentiating it with respect to t using chain rule,
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{\mathrm{a}}\right)$
$=\mathrm{a}\left(\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{\mathrm{a}-1}\right) \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$
$\frac{d x}{d t}=a\left(\left(t+\frac{1}{t}\right)^{a-1}\right)\left(1-\frac{1}{t^{2}}\right)$

And, $y=a^{\left(t+\frac{1}{t}\right)}$
Differentiating it with respect to t using chain rule,
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{a}^{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)}\right)$
$=\mathrm{a}^{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)} \times \log \mathrm{a} \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)$
$\frac{d y}{d t}=a^{\left(t+\frac{1}{t}\right)} \times \log a\left(1-\frac{1}{t^{2}}\right)$.
Dividing equation (2) by (1),
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{a^{\left(t+\frac{1}{t}\right)} \log a\left(1-\frac{1}{t^{2}}\right)}{a\left(\left(t+\frac{1}{t}\right)^{a-1}\right)\left(1-\frac{1}{t^{2}}\right)}$
$\frac{d y}{d x}=\frac{a^{\left(t+\frac{1}{t}\right)} \log a}{a\left(t+\frac{1}{t}\right)^{a-1}}$

21. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=a\left(\frac{1+t^{2}}{1-t^{2}}\right)$ and $y=\frac{2 t}{1-t^{2}}$, find $\frac{d y}{d x}$

Answer

Here,
$\mathrm{x}=\mathrm{a}\left(\frac{1+\mathrm{t}^{2}}{1-\mathrm{t}^{2}}\right)$
differentiating bove function with respect to t, we have,
$\frac{d x}{d t}=\mathrm{a}\left[\frac{\left(1-\mathrm{t}^{2}\right) \frac{\mathrm{d}\left(1+\mathrm{t}^{2}\right)}{\mathrm{dt}}-\left(1+\mathrm{t}^{2}\right) \frac{\mathrm{d}\left(1-\mathrm{t}^{2}\right)}{\mathrm{dt}}}{\left(1-\mathrm{t}^{2}\right)^{2}}\right]$
$\frac{d x}{d t}=a\left[\frac{\left(1-t^{2}\right)(2 t)-\left(1+t^{2}\right)(-2 t)}{\left(1-t^{2}\right)^{2}}\right]$
$\frac{d x}{d t}=a\left[\frac{2 t-2 t^{2}+2 t+2 t^{3}}{\left(1-t^{2}\right)^{2}}\right]$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\frac{4 \mathrm{at}}{\left(1-\mathrm{t}^{2}\right)^{2}}\right] \ldots$
And
$\mathrm{y}=\frac{2 \mathrm{t}}{1-\mathrm{t}^{2}}$
differentiating bove function with respect to t, we have,
$\frac{d y}{d t}=2\left[\frac{\left(1-t^{2}\right) \frac{d(t)}{d t}-(t) \frac{d\left(1-t^{2}\right)}{d t}}{\left(1-t^{2}\right)^{2}}\right]$
$\frac{d y}{d t}=2\left[\frac{\left(1-t^{2}\right)-(t)(-2 t)}{\left(1-t^{2}\right)^{2}}\right]$
$=2\left[\frac{1-t^{2}+2 t^{2}}{\left(1-t^{2}\right)^{2}}\right]$
$=2\left[\frac{1+\mathrm{t}^{2}}{1-\mathrm{t}^{2}}\right] \ldots \ldots$
$\left.\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2\left[\frac{1+t^{2}}{1-t^{2}}\right]}{\left.\frac{4 t}{4 t}-t^{2}\right)^{2}} \right\rvert\,$ from equation 1 and 2
$\frac{d y}{d x}=\frac{1-t^{4}}{2 a t}$

22. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=10(t-\sin t), y=12(1-\cos t)$, find $\frac{d y}{d x}$.

Answer

Here, $x=10(t-\sin t) y=12(1-\cos t)$
$\frac{\mathrm{dx}}{\mathrm{dt}}=10(1-\cos \mathrm{t})$
$\frac{d y}{d t}=12(\sin t)$
$\left.\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12(\sin t)}{10(1-\cos t)} \right\rvert\,$ from equation 1 and 2
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{12 \sin \frac{\mathrm{t}}{2} \cdot \cos \mathrm{t} / 2}{10 \sin ^{2} \mathrm{t} / 2}$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{6}{5} \cot \frac{\mathrm{t}}{2}$

23. Question

Find $\frac{d y}{d x}$, when
If $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$, find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{3}$.

Answer

Here,
$x=(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$
then,
$\frac{d x}{d \theta}=a(1-\cos \theta)$
$\frac{d y}{d \theta}=a(-\sin \theta)$
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a(-\sin \theta)}{a(1-\cos \theta)}=\frac{(-\sin \theta)}{(1-\cos \theta)}$
At $x=\frac{\pi}{3}$
$\frac{d y}{d x}=\frac{a\left(-\sin \frac{\pi}{3}\right)}{a\left(1-\cos \frac{\pi}{3}\right)}=\frac{\sqrt{3} / 2}{1-1 / 2}$
$=\sqrt{3}$

24. Question

Find $\frac{\mathrm{dy}}{\mathrm{dx}}$, when
If $x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$, show that $a t t=\frac{\pi}{4}, \frac{d y}{d x}=\frac{b}{a}$.

Answer

considering the given functions,
$x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$
rewriting the above equations,
$\mathrm{x}=\mathrm{a} \sin 2 \mathrm{t}+\frac{\mathrm{a}}{2} \sin 4 \mathrm{t}$
differentiating bove function with respect to t, we have,
$\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{a} \cos 2 \mathrm{t}+2 \mathrm{a} \cos 4 \mathrm{t} \ldots \ldots$. (1)
$y=b \cos 2 t-b \cos ^{2} 2 t$
differentiating above function with respect to t, we have,
$\frac{d y}{d t}=-2 b \sin 2 t+2 b \cos 2 t \sin 2 t==-2 b \sin 2 t+2 b \sin 4 t \ldots \ldots$. (2)
$\left.\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2 b \sin 2 t+2 b \sin 4 t}{2 a \cos 2 t+2 a \cos 4 t} \right\rvert\,$ from equation 1 and 2
At $t=\frac{\pi}{4}$
$\frac{d y}{d x}=\frac{b}{a}$

25. Question

Find $\frac{d y}{d x}$, when
If $x=\cos t\left(3-2 \cos ^{2} t\right)$ and $y=\sin t\left(3-2 \sin ^{2} t\right)$ find the value of $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$.

Answer

considering the given functions,
$x=\operatorname{cost}\left(3-2 \cos ^{2} t\right)$
$x=3 \cos t-2 \cos ^{3} t$
$\frac{d x}{d t}=-3 \sin t+6 \cos ^{2} t \sin t \ldots \ldots$ (1)
$\frac{d y}{d t}=3 \cos t+6 \sin ^{2} t \cos t \ldots \ldots$ (2)
$\left.\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 \cos t+6 \sin ^{2} t \cos t}{-3 \sin t+6 \cos ^{2} t \sin t} \right\rvert\,$ from equation 1 and 2
$=\frac{3 \cos t\left(1+2 \sin ^{2} t\right)}{3 \sin t\left(-1+2 \cos ^{2} t\right)}$
$=\frac{\operatorname{cott}\left(1-2\left(1-\cos ^{2} \mathrm{t}\right)\right)}{\left(2 \cos ^{2} \mathrm{t}-1\right)}=\cot \mathrm{t}$
When $t=\frac{\pi}{4}$
$\frac{d y}{d x}=\cot \frac{\pi}{4}=1$

26. Question

Find $\frac{d y}{d x}$, when
If $x=\frac{1+\log t}{t^{2}}, y=\frac{3+2 \log t}{t}$, find $\frac{d y}{d x}$.

Answer

$: \mathrm{x}=\frac{1+\log \mathrm{t}}{\mathrm{t}^{2}}, \mathrm{y}=\frac{3+2 \log \mathrm{t}}{\mathrm{t}}$
$\frac{d x}{d t}=\frac{t^{2}\left(\frac{1}{t}\right)-(1+\log t)(2 t)}{t^{4}}=\frac{t-2 t-2 t \log t}{t^{4}}=\frac{-2 \log t-1}{t^{3}}$
$\frac{d y}{d t}=\frac{t\left(\frac{2}{t}\right)-(3+2 \log t)(1)}{t^{2}}=\frac{2-3-2 \log t}{t^{2}}=\frac{-2 \log t-1}{t^{2}}$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{-2 \log t-1}{t^{2}}}{\frac{-2 \log t-1}{t^{3}}}=t$

27. Question

Find $\frac{d y}{d x}$, when
If $x=3 \sin t-\sin 3 t, y=3 \cos t-\cos 3 t$, find $\frac{d y}{d x}$ at $t=\frac{\pi}{3}$.

Answer

$$
\begin{aligned}
& x=3 \sin t-\sin 3 t, y=3 \cos t-\cos 3 t \\
& \frac{d x}{d t}=3 \cos t-3 \cos 3 t \\
& \frac{d y}{d t}=-3 \sin t+3 \sin 3 t \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-3 \sin t+3 \sin 3 t}{3 \cos t-3 \cos 3 t}
\end{aligned}
$$

When $t=\frac{\pi}{3}$
$\frac{d y}{d x}=\frac{-3 \sin \left(\frac{\pi}{3}\right)+3 \sin 3\left(\frac{\pi}{3}\right)}{3 \cos \left(\frac{\pi}{3}\right)-3 \cos 3\left(\frac{\pi}{3}\right)}$
$\frac{d y}{d x}=\frac{-3 \times \frac{\sqrt{3}}{2}+0}{\frac{3}{2}-3(-1)}=\frac{1}{\sqrt{3}}$

28. Question

Find $\frac{d y}{d x}$, when
If $\sin x=\frac{2 t}{1+t^{2}}, \tan y=\frac{2 t}{1-t^{2}}$, find $\frac{d y}{d x}$.

Answer

$\sin \mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}, \tan \mathrm{y}=\frac{2 \mathrm{t}}{1-\mathrm{t}^{2}}$
$x=\sin ^{-1} \frac{2 t}{1+t^{2}}$ and $y=\tan ^{-1} \frac{2 t}{1-t^{2}}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{\sqrt{1-\left(\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}\right)^{2}}} \times \frac{2\left(1+\mathrm{t}^{2}\right)-(2 \mathrm{t})(2 \mathrm{t})}{\left(1+\mathrm{t}^{2}\right)^{2}}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{1+\mathrm{t}^{2}}$
$\frac{d y}{d t}=\frac{1}{1+\left(\frac{2 t}{1+t^{2}}\right)^{2}} \times \frac{2\left(1-t^{2}\right)-(2 t)(-2 t)}{\left(1-t^{2}\right)^{2}}$
$\frac{d y}{d t}=\frac{2}{1+t^{2}}$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{2}{1+t^{2}}}{\frac{2}{1+t^{2}}}=1$

Exercise 11.8

1. Question

Differentiate x^{2} with respect to x^{3}.

Answer

Let $u=x^{2}$ and $v=x^{3}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(x^{2}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \mathrm{x}^{2-1}$
$\therefore \frac{d u}{d x}=2 x$
Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\mathrm{x}^{3}\right)$
$\Rightarrow \frac{d v}{d x}=3 x^{3-1}$ (using the same formula)
$\therefore \frac{d v}{d x}=3 x^{2}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{2 \mathrm{x}}{3 \mathrm{x}^{2}}$
$\therefore \frac{d u}{d v}=\frac{2}{3 x}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{2}{3 \mathrm{x}}$

2. Question

Differentiate $\log \left(1+x^{2}\right)$ with respect to $\tan ^{-1} x$.

Answer

Let $u=\log \left(1+x^{2}\right)$ and $v=\tan ^{-1} x$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[\log \left(1+x^{2}\right)\right]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(1+\mathrm{x}^{2}\right)$ [using chain rule]
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+x^{2}}\left[\frac{d}{d x}(1)+\frac{d}{d x}\left(x^{2}\right)\right]$
However, $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+x^{2}}\left[0+2 x^{2-1}\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}[2 \mathrm{x}]$
$\therefore \frac{d u}{d x}=\frac{2 x}{1+x^{2}}$
Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)$

We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{d v}{d x}=\frac{1}{1+x^{2}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2 x}{1+x^{2}}}{\frac{1}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2 x}{1+x^{2}} \times\left(1+x^{2}\right)$
$\therefore \frac{d u}{d v}=2 x$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=2 \mathrm{x}$

3. Question

Differentiate $(\log x)^{x}$ with respect to $\log x$.

Answer

Let $u=(\log x)^{x}$ and $v=\log x$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=(\log x)^{x}$
Taking log on both sides, we get
$\log u=\log (\log x)^{x}$
$\Rightarrow \log u=x \times \log (\log x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x, we get
$\frac{d}{d u}(\log u) \times \frac{d u}{d x}=\frac{d}{d x}[x \times \log (\log x)]$
Recall that (uv) $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d u}{d x}=\log (\log x) \frac{d}{d x}(x)+x \frac{d}{d x}[\log (\log x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{1}{u} \times \frac{d u}{d x}=\log (\log x) \times 1+x\left[\frac{1}{\log x} \frac{d}{d x}(\log x)\right]$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\log (\log x)+\frac{x}{\log x} \frac{d}{d x}(\log x)$
But, $u=(\log x)^{x}$ and $\frac{d}{d x}(\log x)=\frac{1}{\mathrm{x}}$
$\Rightarrow \frac{1}{(\log x)^{x}} \frac{d u}{d x}=\log (\log x)+\frac{x}{\log x} \times \frac{1}{x}$
$\Rightarrow \frac{1}{(\log x)^{x}} \frac{d u}{d x}=\log (\log x)+\frac{1}{\log x}$
$\therefore \frac{d u}{d x}=(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]$
Now, on differentiating v with respect to x, we get
$\frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\log \mathrm{x})$
$\therefore \frac{d v}{d x}=\frac{1}{x}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]}{\frac{1}{x}}$
$\Rightarrow \frac{d u}{d v}=x(\log x)^{x}\left[\log (\log x)+\frac{1}{\log x}\right]$
$\Rightarrow \frac{d u}{d v}=x(\log x)^{x}\left[\frac{\log (\log x) \log x+1}{\log x}\right]$
$\Rightarrow \frac{d u}{d v}=\frac{x(\log x)^{x}}{\log x}[\log (\log x) \log x+1]$
$\therefore \frac{d u}{d v}=x(\log x)^{x-1}[1+\log x \log (\log x)]$
Thus, $\frac{d u}{d v}=x(\log x)^{x-1}[1+\log x \log (\log x)]$

4 A. Question

Differentiate $\sin ^{-1} \sqrt{1-x^{2}}$ with respect to $\cos ^{-1} x$, if
$x \in(0,1)$

Answer

Let $u=\sin ^{-1} \sqrt{1-x^{2}}$ and $v=\cos ^{-1} \mathrm{x}$.
We need to differentiate u with respect to v that is find $\frac{\mathrm{du}}{\mathrm{dv}}$.
We have $\mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$
By substituting $x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1} \sqrt{1-(\cos \theta)^{2}}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin \theta)$
(i) Given $\mathrm{x} \in(0,1)$

However, $x=\cos \theta$.
$\Rightarrow \cos \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin \theta)=\theta$.
$\Rightarrow u=\cos ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
$\therefore \frac{d v}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
We have, $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{1}{\sqrt{1-x^{2}}}}{-\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{1}{\sqrt{1-x^{2}}} \times\left(-\sqrt{1-x^{2}}\right)$
$\therefore \frac{d u}{d v}=1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$
4 B. Question
Differentiate $\sin ^{-1} \sqrt{1-x^{2}}$ with respect to $\cos ^{-1} x$, if
$x \in(-1,0)$

Answer

Given $x \in(-1,0)$
However, $x=\cos \theta$.
$\Rightarrow \cos \theta \in(-1,0)$
$\Rightarrow \theta \in\left(\frac{\pi}{2}, \pi\right)$
Hence, $u=\sin ^{-1}(\sin \theta)=\pi-\theta$.
$\Rightarrow \mathrm{u}=\pi-\cos ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\pi-\cos ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-\frac{d}{d x}\left(\cos ^{-1} x\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=0-\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Now, on differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
$\therefore \frac{d v}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}{-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \times\left(-\sqrt{1-\mathrm{x}^{2}}\right)$
$\therefore \frac{d u}{d v}=-1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=-1$

5 A. Question

Differentiate $\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ with respect to $\sqrt{1-4 \mathrm{x}^{2}}$, if
$x \in\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$

Answer

Let $\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ and $_{\mathrm{v}}=\sqrt{1-4 \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(4 x \sqrt{1-(2 x)^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $\mathrm{x} \in\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$
However, $2 x=\cos \theta \Rightarrow x=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \epsilon\left(-\frac{1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right)$
$\Rightarrow \cos \theta \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=\pi-2 \theta$.
$\Rightarrow u=\pi-2 \cos ^{-1}(2 x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[\pi-2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\pi)-\frac{\mathrm{d}}{\mathrm{dx}}\left[2 \cos ^{-1}(2 \mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-2 \frac{d}{d x}\left[\cos ^{-1}(2 x)\right]$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-2\left[-\frac{1}{\sqrt{1-(2 \mathrm{x})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-4 \mathrm{x}^{2}}}\left[2 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{d u}{d x}=\frac{4}{\sqrt{1-4 \mathrm{x}^{2}}}$
Now, we have $v=\sqrt{1-4 \mathrm{X}^{2}}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1-4 x^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1-4 x^{2}\right)^{\frac{1}{2}}$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{2}\left(1-4 \mathrm{x}^{2}\right)^{\frac{1}{2}-1} \frac{\mathrm{~d}}{\mathrm{dx}}\left(1-4 \mathrm{x}^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-4 x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(4 x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(1)-4 \frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}\left[0-4\left(2 \mathrm{x}^{2-1}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-4 x^{2}}}[-8 x]$
$\therefore \frac{d v}{d x}=-\frac{4 x}{\sqrt{1-4 x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 x}{\sqrt{1-4 x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 x}\right)$
$\therefore \frac{d u}{d v}=-\frac{1}{x}$
Thus, $\frac{d u}{d v}=-\frac{1}{x}$

5 B. Question

Differentiate $\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ with respect to $\sqrt{1-4 \mathrm{x}^{2}}$, if
$\mathrm{x} \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$

Answer

Let $\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ and $\mathrm{v}=\sqrt{1-4 \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-(2 \mathrm{x})^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $\mathrm{x} \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$
However, $2 x=\cos \theta \Rightarrow x=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \in\left(\frac{1}{2 \sqrt{2}}, \frac{1}{2}\right)$
$\Rightarrow \cos \theta \in\left(\frac{1}{\sqrt{2}}, 1\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow u=2 \cos ^{-1}(2 x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}\left[\cos ^{-1}(2 x)\right]$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=2\left[-\frac{1}{\sqrt{1-(2 x)^{2}}} \frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=-\frac{2}{\sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{2}{\sqrt{1-4 \mathrm{x}^{2}}}\left[2 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=-\frac{4}{\sqrt{1-4 x^{2}}} \frac{d}{d x}(x)$
However, $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{d u}{d x}=-\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{d u}{d x}=-\frac{4}{\sqrt{1-4 x^{2}}}$
In part (i), we found $\frac{d v}{d x}=-\frac{4 x}{\sqrt{1-4 x^{2}}}$

We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 x}{\sqrt{1-4 x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 x}\right)$
$\therefore \frac{d u}{d v}=\frac{1}{x}$
Thus, $\frac{d u}{d v}=\frac{1}{x}$

5 C. Question

Differentiate $\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ with respect to $\sqrt{1-4 \mathrm{x}^{2}}$, if
$\mathrm{x} \in\left(-\frac{1}{2}, \frac{1}{2 \sqrt{2}}\right)$

Answer

Let $\mathrm{u}=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-4 \mathrm{x}^{2}}\right)$ and $_{\mathrm{v}}=\sqrt{1-4 \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(4 x \sqrt{1-4 x^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(4 \mathrm{x} \sqrt{1-(2 \mathrm{x})^{2}}\right)$
By substituting $2 x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{1-(\cos \theta)^{2}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \cos \theta \sin \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $\mathrm{x} \in\left(-\frac{1}{2},-\frac{1}{2 \sqrt{2}}\right)$
However, $2 x=\cos \theta \Rightarrow x=\frac{\cos \theta}{2}$
$\Rightarrow \frac{\cos \theta}{2} \in\left(-\frac{1}{2},-\frac{1}{2 \sqrt{2}}\right)$
$\Rightarrow \cos \theta \in\left(-1,-\frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(\frac{3 \pi}{4}, \pi\right)$
$\Rightarrow 2 \theta \in\left(\frac{3 \pi}{2}, 2 \pi\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \pi-2 \theta$.
$\Rightarrow u=2 \pi-2 \cos ^{-1}(2 x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left[2 \pi-2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(2 \pi)-\frac{d}{d x}\left[2 \cos ^{-1}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}(\pi)-2 \frac{d}{d x}\left[\cos ^{-1}(2 x)\right]$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-2\left[-\frac{1}{\sqrt{1-(2 \mathrm{x})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(2 \mathrm{x})\right]$
$\Rightarrow \frac{d u}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}\left[\frac{d}{d x}(2 x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}\left[2 \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \frac{d}{d x}(x)$
However, $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{4}{\sqrt{1-4 x^{2}}} \times 1$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{4}{\sqrt{1-4 \mathrm{x}^{2}}}$
In part (i), we found $\frac{d v}{d x}=-\frac{4 x}{\sqrt{1-4 x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{4}{\sqrt{1-4 x^{2}}}}{-\frac{4 \mathrm{x}}{\sqrt{1-4 \mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{4}{\sqrt{1-4 x^{2}}} \times\left(-\frac{\sqrt{1-x^{2}}}{4 \mathrm{x}}\right)$
$\therefore \frac{d u}{d v}=-\frac{1}{x}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=-\frac{1}{\mathrm{x}}$

6. Question

Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ with respect to $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, if $-1<x<1, x \neq 0$.

Answer

Let $\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right)$ and $\mathrm{v}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+(\tan \theta)^{2}}-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{1-\cos \left(2 \times \frac{\theta}{2}\right)}{\sin \left(2 \times \frac{\theta}{2}\right)}\right)$
But, $\cos 2 \theta=1-2 \sin ^{2} \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$.
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)$
Given $-1<x<1 \Rightarrow x \in(-1,1)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in(-1,1)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow \frac{\theta}{2} \in\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$

Hence, $\mathrm{u}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}$
$\Rightarrow \mathrm{u}=\frac{1}{2} \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2} \tan ^{-1} \mathrm{x}\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{2} \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{d u}{d x}=\frac{1}{2\left(1+x^{2}\right)}$
Now, we have $v=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow v=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow v=\sin ^{-1}(\sin 2 \theta)$
However, $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $v=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\tan ^{-1} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{d v}{d x}=\frac{2}{1+\mathrm{x}^{2}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{1}{2\left(1+x^{2}\right)}}{\frac{2}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{2\left(1+x^{2}\right)} \times \frac{1+x^{2}}{2}$
$\therefore \frac{d u}{d v}=\frac{1}{4}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{4}$

7 A. Question

Differentiate $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$, if
$\mathrm{x} \in(0,1 / \sqrt{2})$

Answer

Let $\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Now, we have $\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}(\sec \theta)$
Given $\mathrm{x} \in\left(0, \frac{1}{\sqrt{2}}\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(0, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow u=2 \sin ^{-1}(x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\sin ^{-1} \mathrm{x}\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{d u}{d x}=\frac{2}{\sqrt{1-x^{2}}}$
We have $\theta \in\left(0, \frac{\pi}{4}\right)$
Hence, $v=\sec ^{-1}(\sec \theta)=\theta$
$\Rightarrow \mathrm{v}=\sin ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{\sqrt{1-\mathrm{x}^{2}}}}{\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}}$
$\therefore \frac{d u}{d v}=2$
Thus, $\frac{d u}{d v}=2$

7 B. Question

Differentiate $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)$, if $x \in(1 / \sqrt{2}, 1)$

Answer

Let $\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)$ and $_{\mathrm{v}}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Now, we have $v=\sec ^{-1}\left(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\sec ^{-1}\left(\frac{1}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\sec ^{-1}(\sec \theta)$
Given $\mathrm{x} \in\left(\frac{1}{\sqrt{2}}, 1\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(\frac{1}{\sqrt{2}}, 1\right)$
$\Rightarrow \theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
$\Rightarrow 2 \theta \in\left(\frac{\pi}{2}, \pi\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=\pi-2 \theta$.
$\Rightarrow u=\pi-2 \sin ^{-1}(x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\pi-2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}(\pi)-2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=0-2 \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
We have $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
Hence, $v=\sec ^{-1}(\sec \theta)=\theta$
$\Rightarrow \mathrm{v}=\sin ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{2}{\sqrt{1-x^{2}}}}{\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{2}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}}$
$\therefore \frac{d u}{d v}=-2$
Thus, $\frac{d u}{d v}=-2$

8. Question

Differentiate $(\cos x)^{\sin x}$ with respect to $(\sin x)^{\cos x}$.
Answer

Let $u=(\cos x)^{\sin x}$ and $v=(\sin x)^{\cos x}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=(\cos x)^{\sin x}$
Taking log on both sides, we get
$\log u=\log (\cos x)^{\sin x}$
$\Rightarrow \log u=(\sin x) \times \log (\cos x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x, we get
$\frac{d}{d u}(\log u) \times \frac{d u}{d x}=\frac{d}{d x}[\sin x \times \log (\cos x)]$
Recall that (uv)' $=v u^{\prime}+u v^{\prime}($ product rule $)$
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d u}{d x}=\log (\cos x) \frac{d}{d x}(\sin x)+\sin x \frac{d}{d x}[\log (\cos x)]$
We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{1}{u} \times \frac{d u}{d x}=\log (\cos x) \times \cos x+\sin x\left[\frac{1}{\cos x} \frac{d}{d x}(\cos x)\right]$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\frac{\sin x}{\cos x} \frac{d}{d x}(\cos x)$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\tan x \frac{d}{d x}(\cos x)$
We know $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{1}{u} \frac{d u}{d x}=\cos x \log (\cos x)+\tan x(-\sin x)$
$\Rightarrow \frac{1}{u d x} \frac{d u}{d x} \cos x \log (\cos x)-\tan x \sin x$
But, $u=(\cos x)^{\sin x}$
$\Rightarrow \frac{1}{(\cos x)^{\sin x}} \frac{d u}{d x}=\cos x \log (\cos x)-\tan x \sin x$
$\therefore \frac{d u}{d x}=(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]$
Now, we have $v=(\sin x)^{\cos x}$
Taking log on both sides, we get
$\log v=\log (\sin x)^{\cos x}$
$\Rightarrow \log v=(\cos x) \times \log (\sin x)\left[\because \log a^{m}=m \times \log a\right]$
On differentiating both the sides with respect to x, we get
$\frac{d}{d v}(\log v) \times \frac{d v}{d x}=\frac{d}{d x}[\cos x \times \log (\sin x)]$
Recall that (uv) $=v u^{\prime}+u v^{\prime}$ (product rule)
$\Rightarrow \frac{d}{d u}(\log u) \times \frac{d v}{d x}=\log (\sin x) \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}[\log (\sin x)]$

We know $\frac{d}{d x}(\log x)=\frac{1}{x}$ and $\frac{d}{d x}(\cos x)=-\sin x$
$\Rightarrow \frac{1}{v} \times \frac{d v}{d x}=\log (\sin x) \times(-\sin x)+\cos x\left[\frac{1}{\sin x} \frac{d}{d x}(\sin x)\right]$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\frac{\cos x}{\sin x} \frac{d}{d x}(\sin x)$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \frac{d}{d x}(\sin x)$
We know $\frac{d}{d x}(\sin x)=\cos x$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \times(\cos x)$
$\Rightarrow \frac{1}{v} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \cos x$
But, $v=(\sin x)^{\cos x}$
$\Rightarrow \frac{1}{(\sin x)^{\cos x}} \frac{d v}{d x}=-\sin x \log (\sin x)+\cot x \cos x$
$\therefore \frac{d v}{d x}=(\sin x)^{\cos x}[-\sin x \log (\sin x)+\cot x \cos x]$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin x)^{\cos x}[-\sin x \log (\sin x)+\cot x \cos x]}$
$\therefore \frac{d u}{d v}=\frac{(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin x)^{\cos x}[\cot x \cos x-\sin x \log (\sin x)]}$
Thus, $\frac{d u}{d v}=\frac{(\cos x)^{\sin x}[\cos x \log (\cos x)-\tan x \sin x]}{(\sin x)^{\cos x}[\cot x \cos x-\sin x \log (\sin x)]}$

9. Question

Differentiate $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, if $0<x<1$.

Answer

Let $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $0<x<1 \Rightarrow x \in(0,1)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow \mathrm{u}=2 \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$
Now, we have $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{v}=\cos ^{-1}\left(\frac{1-(\tan \theta)^{2}}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1}{\sec ^{2} \theta}-\frac{\tan ^{2} \theta}{\sec ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1}{\frac{1}{\cos ^{2} \theta}}-\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
But, $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow \mathrm{v}=\cos ^{-1}(\cos 2 \theta)$
However, $\theta \in\left(0, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $v=\cos ^{-1}(\cos 2 \theta)=2 \theta$
$\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\tan ^{-1} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{d v}{d x}=\frac{2}{1+x^{2}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{1+\mathrm{x}^{2}} \times \frac{1+\mathrm{x}^{2}}{2}$
$\therefore \frac{d u}{d v}=1$
Thus, $\frac{d u}{d v}=1$

10. Question

Differentiate $\tan ^{-1}\left(\frac{1+a x}{1-a x}\right)$ with respect to $\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}$.

Answer

Let $\mathrm{u}=\tan ^{-1}\left(\frac{1+\mathrm{ax}}{1-\mathrm{ax}}\right)$ and $\mathrm{v}=\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{1+\mathrm{ax}}{1-\mathrm{ax}}\right)$
By substituting $a x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\theta\right)\right)\left[\because \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\right]$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}+\theta$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}+\tan ^{-1}(\mathrm{ax})$
On differentiating u with respect to x, we get
$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{\pi}{4}+\tan ^{-1}(\mathrm{ax})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan ^{-1}(\mathrm{ax})\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0+\frac{1}{1+(\mathrm{ax})^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{ax})$
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+a^{2} x^{2}}\left[a \frac{d}{d x}(x)\right]$
$\Rightarrow \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}} \frac{d}{d x}(x)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$
$\Rightarrow \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}} \times 1$
$\therefore \frac{d u}{d x}=\frac{a}{1+a^{2} x^{2}}$
Now, we have $\mathrm{V}=\sqrt{1+\mathrm{a}^{2} \mathrm{X}^{2}}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1+a^{2} x^{2}\right)^{\frac{1}{2}}$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1+a^{2} x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1+a^{2} x^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1+a^{2} x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)+\frac{d}{d x}\left(a^{2} x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[\frac{d}{d x}(1)+a^{2} \frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{d}{d x}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[0+a^{2}\left(2 x^{2-1}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1+a^{2} x^{2}}}\left[2 a^{2} x\right]$
$\therefore \frac{d v}{d x}=\frac{a^{2} x}{\sqrt{1+a^{2} x^{2}}}$
We have $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{a}{1+\mathrm{a}^{2} \mathrm{x}^{2}}}{\frac{\mathrm{a}^{2} \mathrm{X}}{\sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{a}{1+a^{2} x^{2}} \times \frac{\sqrt{1+a^{2} x^{2}}}{a^{2} x}$
$\therefore \frac{d u}{d v}=\frac{1}{a x \sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{\mathrm{ax} \sqrt{1+\mathrm{a}^{2} \mathrm{x}^{2}}}$
11. Question

Differentiate $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ with respect to $\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$, if $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$.

Answer

Let $\mathrm{u}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\tan ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)$.
We need to differentiate u with respect to v that is find $\frac{\mathrm{du}}{\mathrm{dv}}$.
We have $u=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
By substituting $x=\sin \theta$, we have
$u=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}} \Rightarrow x \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow u=2 \sin ^{-1}(x)$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d u}{d x}=2 \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d u}{d x}=\frac{2}{\sqrt{1-x^{2}}}$
Now, we have $v=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow v=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\tan ^{-1}(\tan \theta)$
We have $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
Hence, $v=\tan ^{-1}(\tan \theta)=\theta$
$\Rightarrow \mathrm{v}=\sin ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{2}{\sqrt{1-\mathrm{x}^{2}}}}{\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}}$
$\therefore \frac{d u}{d v}=2$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=2$

12. Question

Differentiate $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ with respect to $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, if $0<x<1$.

Answer

Let $\mathrm{u}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{2 \tan \theta}{1-(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)$
But, $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\Rightarrow \mathrm{u}=\tan ^{-1}(\tan 2 \theta)$
Given $0<x<1 \Rightarrow x \in(0,1)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\tan ^{-1}(\tan 2 \theta)=2 \theta$
$\Rightarrow \mathrm{u}=2 \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d u}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{d u}{d x}=\frac{2}{1+x^{2}}$
Now, we have $\mathrm{v}=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{v}=\cos ^{-1}\left(\frac{1-(\tan \theta)^{2}}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\frac{1}{\sec ^{2} \theta}-\frac{\tan ^{2} \theta}{\sec ^{2} \theta}\right)$
$\Rightarrow v=\cos ^{-1}\left(\frac{1}{\frac{1}{\cos ^{2} \theta}}-\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{v}=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
But, $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$\Rightarrow \mathrm{v}=\cos ^{-1}(\cos 2 \theta)$
However, $\theta \in\left(0, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $v=\cos ^{-1}(\cos 2 \theta)=2 \theta$
$\Rightarrow v=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\tan ^{-1} x\right)$
We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{d v}{d x}=\frac{2}{1+x^{2}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{1+x^{2}} \times \frac{1+x^{2}}{2}$
$\therefore \frac{\mathrm{du}}{\mathrm{dv}}=1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$

13. Question

Differentiate $\tan ^{-1}\left(\frac{x-1}{x+1}\right)$ with respect to $\sin ^{-1}\left(3 x-4 x^{3}\right)$, if $-\frac{1}{2}<x<\frac{1}{2}$.

Answer

Let $u=\tan ^{-1}\left(\frac{x-1}{x+1}\right)$ and $v=\sin ^{-1}\left(3 x-4 x^{3}\right)$
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{\mathrm{x}-1}{\mathrm{x}+1}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{\tan \theta-1}{\tan \theta+1}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\tan \theta-\tan \frac{\pi}{4}}{1+\tan \frac{\pi}{4} \tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \left(\theta-\frac{\pi}{4}\right)\right)\left[\because \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\right]$
Given, $-\frac{1}{2}<\mathrm{x}<\frac{1}{2} \Rightarrow \mathrm{x} \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
$\Rightarrow \theta \in\left(\tan ^{-1}\left(-\frac{1}{2}\right), \tan ^{-1}\left(\frac{1}{2}\right)\right)$
$\Rightarrow \theta \in\left(-\tan ^{-1}\left(\frac{1}{2}\right), \tan ^{-1}\left(\frac{1}{2}\right)\right)$
As $\tan 0=0$ and $\tan \frac{\pi}{4}=1$, we have $\tan ^{-1}\left(\frac{1}{2}\right) \in\left(0, \frac{\pi}{4}\right)$.
Thus, $\theta-\frac{\pi}{4}$ lies in the range of $\tan ^{-1} x$.
Hence, $\mathrm{u}=\tan ^{-1}\left(\tan \left(\theta-\frac{\pi}{4}\right)\right)=\theta-\frac{\pi}{4}$
$\Rightarrow \mathrm{u}=\tan ^{-1} \mathrm{x}-\frac{\pi}{4}$
On differentiating u with respect to x, we get
$\frac{d \mathrm{u}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}-\frac{\pi}{4}\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}\left(\tan ^{-1} x\right)-\frac{d}{d x}\left(\frac{\pi}{4}\right)$

We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=\frac{1}{1+x^{2}}+0$
$\therefore \frac{d u}{d x}=\frac{1}{1+x^{2}}$
Now, we have $v=\sin ^{-1}\left(3 x-4 x^{3}\right)$
By substituting $x=\sin \theta$, we have
$v=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)$
But, $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
$\Rightarrow \mathrm{v}=\sin ^{-1}(\sin 3 \theta)$
Given, $-\frac{1}{2}<\mathrm{x}<\frac{1}{2} \Rightarrow \mathrm{x} \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
$\Rightarrow \theta \in\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$
$\Rightarrow 3 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $v=\sin ^{-1}(\sin 3 \theta)=3 \theta$
$\Rightarrow v=3 \sin ^{-1} x$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(3 \sin ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=3 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d v}{d x}=3 \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=\frac{3}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d v}{d x}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{1}{1+\mathrm{x}^{2}}}{\frac{3}{\sqrt{1-\mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{1+x^{2}} \times \frac{\sqrt{1-x^{2}}}{3}$
$\therefore \frac{d u}{d v}=\frac{\sqrt{1-x^{2}}}{3\left(1+x^{2}\right)}$

Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{\sqrt{1-\mathrm{x}^{2}}}{3\left(1+\mathrm{x}^{2}\right)}$

14. Question

Differentiate $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ with respect to $\sec ^{-1} x$.

Answer

Let $u=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$ and $v=\sec ^{-1} x$
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\cos \left(2 \times \frac{x}{2}\right)}{1+\sin \left(2 \times \frac{x}{2}\right)}\right)$
But, $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ and $\sin 2 \theta=2 \sin \theta \cos \theta$.
$\Rightarrow u=\tan ^{-1}\left(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{1+2 \sin \frac{x}{2} \cos \frac{x}{2}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \sin ^{\frac{x}{2}} \cos ^{\frac{x}{2}}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\tan ^{-1}\left(\frac{\left(\cos \frac{x}{2}\right)^{2}-\left(\sin \frac{x}{2}\right)^{2}}{\left(\cos \frac{x}{2}\right)^{2}+\left(\sin \frac{x}{2}\right)^{2}+2\left(\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}\right)}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}\right)$
Dividing the numerator and denominator with $\cos \frac{x}{2}$, we get
$\Rightarrow u=\tan ^{-1}\left(\frac{\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}}}{\frac{\cos \frac{x}{2}+\sin \frac{x}{2}}{\cos \frac{x}{2}}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\frac{\cos \frac{x}{2}}{\cos \frac{x}{2}}-\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}}{\frac{\cos \frac{x}{2}}{\cos \frac{x}{2}}+\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{1-\tan \frac{x}{2}}{1+\tan \frac{X}{2}}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan \frac{x}{2}}{1+\tan \frac{\pi}{4} \tan \frac{x}{2}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{\mathrm{x}}{2}\right)\right)\left[\because \tan (\mathrm{A}-\mathrm{B})=\frac{\tan \mathrm{A}-\tan \mathrm{B}}{1+\tan \mathrm{A} \tan \mathrm{B}}\right]$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}-\frac{\mathrm{x}}{2}$
On differentiating u with respect to x , we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}-\frac{x}{2}\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}\right)-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x}}{2}\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}\right)-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})$
We know $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})=1$ and derivative of a constant is 0 .
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=0-\frac{1}{2} \times 1$
$\therefore \frac{d u}{d x}=-\frac{1}{2}$
Now, we have $v=\sec ^{-1} x$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sec ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$
$\therefore \frac{d v}{d x}=\frac{1}{x \sqrt{x^{2}-1}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{d \mathrm{dx}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{1}{2}}{\frac{1}{x \sqrt{x^{2}-1}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{1}{2} \times x \sqrt{x^{2}-1}$
$\therefore \frac{d u}{d v}=-\frac{x \sqrt{x^{2}-1}}{2}$
Thus, $\frac{d u}{d v}=-\frac{x \sqrt{x^{2}-1}}{2}$

15. Question

Differentiate $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, if $-1<x<1$.

Answer

Let $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $-1<x<1 \Rightarrow x \in(-1,1)$
However, $x=\tan \theta$
$\Rightarrow \tan \theta \in(-1,1)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow \mathrm{u}=2 \tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{d u}{d x}=\frac{2}{1+x^{2}}$
Now, we have $v=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{v}=\tan ^{-1}\left(\frac{2 \tan \theta}{1-(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)$
But, $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\Rightarrow \mathrm{v}=\tan ^{-1}(\tan 2 \theta)$
However, $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $v=\tan ^{-1}(\tan 2 \theta)=2 \theta$
$\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\tan ^{-1} x\right)$
We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+\mathrm{x}^{2}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{1+x^{2}}$
$\therefore \frac{d v}{d x}=\frac{2}{1+x^{2}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2}{1+\mathrm{x}^{2}} \times \frac{1+\mathrm{x}^{2}}{2}$
$\therefore \frac{d u}{d v}=1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$

16. Question

Differentiate $\cos ^{-1}\left(4 x^{3}-3 x\right)$ with respect to $\tan ^{-1}\left(\frac{1-x^{2}}{x}\right)$, if $\frac{1}{2}<x<1$.

Answer

Let $u=\cos ^{-1}\left(4 x^{3}-3 x\right)$ and $v=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\cos ^{-1}\left(4 x^{3}-3 x\right)$
By substituting $x=\cos \theta$, we have
$u=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)$
But, $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
$\Rightarrow \mathrm{u}=\cos ^{-1}(\cos 3 \theta)$
Given, $\frac{1}{2}<\mathrm{x}<1 \Rightarrow \mathrm{x} \in\left(\frac{1}{2}, 1\right)$
However, $x=\cos \theta$
$\Rightarrow \cos \theta \in\left(\frac{1}{2}, 1\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{3}\right)$
$\Rightarrow 3 \theta \in(0, \pi)$
Hence, $u=\cos ^{-1}(\cos 3 \theta)=3 \theta$
$\Rightarrow u=3 \cos ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(3 \cos ^{-1} x\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=3 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d u}{d x}=3\left(-\frac{1}{\sqrt{1-x^{2}}}\right)$
$\therefore \frac{d u}{d x}=-\frac{3}{\sqrt{1-x^{2}}}$
Now, we have $v=\tan ^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)$
By substituting $x=\cos \theta$, we have
$\mathrm{v}=\tan ^{-1}\left(\frac{\sqrt{1-(\cos \theta)^{2}}}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\tan ^{-1}\left(\frac{\sqrt{1-\cos ^{2} \theta}}{\cos \theta}\right)$
$\Rightarrow \mathrm{V}=\tan ^{-1}\left(\frac{\sqrt{\sin ^{2} \theta}}{\cos \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)$
$\Rightarrow \mathrm{v}=\tan ^{-1}(\tan \theta)$
However, $\theta \in\left(0, \frac{\pi}{3}\right)$
Hence, $v=\tan ^{-1}(\tan \theta)=\theta$
$\Rightarrow \mathrm{v}=\cos ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
$\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
We have $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{d \mathrm{v}}{\mathrm{dx}}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=\frac{-\frac{3}{\sqrt{1-\mathrm{x}^{2}}}}{-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{3}{\sqrt{1-\mathrm{x}^{2}}} \times \frac{\sqrt{1-\mathrm{x}^{2}}}{-1}$
$\therefore \frac{d u}{d v}=3$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=3$

17. Question

Differentiate $\tan ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)$ with respect to $\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)$, if $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$.

Answer

Let $\mathrm{u}=\tan ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)$ and $\mathrm{v}=\sin ^{-1}\left(2 \mathrm{x} \sqrt{1-\mathrm{x}^{2}}\right)$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-(\sin \theta)^{2}}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}(\tan \theta)$
Given $-\frac{1}{\sqrt{2}}<\mathrm{x}<\frac{1}{\sqrt{2}} \Rightarrow \mathrm{x} \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
However, $x=\sin \theta$
$\Rightarrow \sin \theta \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
Hence, $u=\tan ^{-1}(\tan \theta)=\theta$
$\Rightarrow \mathrm{u}=\sin ^{-1} \mathrm{x}$
On differentiating u with respect to x , we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d u}{d x}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Now, we have $v=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$
By substituting $x=\sin \theta$, we have
$\mathrm{v}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow \mathrm{v}=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow \mathrm{v}=\sin ^{-1}(\sin 2 \theta)$
However, $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $v=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow v=2 \sin ^{-1}(x)$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(2 \sin ^{-1} x\right)$
$\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\sin ^{-1} x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d v}{d x}=2 \times \frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=\frac{2}{\sqrt{1-\mathrm{x}^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{1}{\sqrt{1-x^{2}}}}{\frac{2}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{1}{\sqrt{1-x^{2}}} \times \frac{\sqrt{1-x^{2}}}{2}$
$\therefore \frac{d u}{d v}=\frac{1}{2}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=\frac{1}{2}$

18. Question

Differentiate $\sin ^{-1} \sqrt{1-x^{2}}$ with respect to $\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$, if $0<x<1$.

Answer

Let $u=\sin ^{-1} \sqrt{1-x^{2}}$ and $v=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\sin ^{-1} \sqrt{1-\mathrm{x}^{2}}$
By substituting $x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1} \sqrt{1-(\cos \theta)^{2}}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}$
$\Rightarrow \mathrm{u}=\sin ^{-1} \sqrt{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(\sin \theta)$
Given, $0<x<1 \Rightarrow x \in(0,1)$
However, $x=\cos \theta$
$\Rightarrow \cos \theta \in(0,1)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin \theta)=\theta$
$\Rightarrow \mathrm{u}=\cos ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Now, we have $v=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
By substituting $x=\cos \theta$, we have
$\mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{1-(\cos \theta)^{2}}}\right)$
$\Rightarrow \mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{1-\cos ^{2} \theta}}\right)$
$\Rightarrow \mathrm{V}=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{\sin ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right)$
$\Rightarrow \mathrm{v}=\cot ^{-1}(\cot \theta)$
However, $\theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $v=\cot ^{-1}(\cot \theta)=\theta$
$\Rightarrow \mathrm{v}=\cos ^{-1} \mathrm{x}$
On differentiating v with respect to x, we get
$\frac{\mathrm{d} v}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)$
We know $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\therefore \frac{d v}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{1}{\sqrt{1-x^{2}}}}{-\frac{1}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{1}{\sqrt{1-x^{2}}} \times \frac{\sqrt{1-x^{2}}}{-1}$
$\therefore \frac{d u}{d v}=1$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$
19. Question

Differentiate $\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right)$ with respect to $\sqrt{1-a^{2} x^{2}}$, if $-\frac{1}{\sqrt{2}}<a x<\frac{1}{\sqrt{2}}$.

Answer

Let $u=\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right)$ and $v=\sqrt{1-a^{2} x^{2}}$.
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1}\left(2 a x \sqrt{1-a^{2} x^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \mathrm{ax} \sqrt{1-(\mathrm{ax})^{2}}\right)$
By substituting $a x=\sin \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-(\sin \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(2 \sin \theta \sqrt{1-\sin ^{2} \theta}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \sin \theta \sqrt{\cos ^{2} \theta}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \mathrm{u}=\sin ^{-1}(2 \sin \theta \cos \theta)$
$\Rightarrow \mathrm{u}=\sin ^{-1}(\sin 2 \theta)$
Given $-\frac{1}{\sqrt{2}}<a x<\frac{1}{\sqrt{2}} \Rightarrow a x \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
However, $\mathrm{ax}=\sin \theta$
$\Rightarrow \sin \theta \in\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$.
$\Rightarrow \mathrm{u}=2 \sin ^{-1}(\mathrm{ax})$
On differentiating u with respect to x , we get
$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \sin ^{-1} \mathrm{ax}\right)$
$\Rightarrow \frac{d u}{d x}=2 \frac{d}{d x}\left(\sin ^{-1} a x\right)$
We know $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \times \frac{1}{\sqrt{1-(\mathrm{ax})^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}$ (ax)
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{\sqrt{1-\mathrm{a}^{2} \mathrm{x}^{2}}}\left[\mathrm{a} \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x})\right]$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\sqrt{1-\mathrm{a}^{2} \mathrm{x}^{2}}} \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})$
We know $\frac{d}{d x}(x)=1$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\sqrt{1-\mathrm{a}^{2} \mathrm{x}^{2}}} \times 1$
$\therefore \frac{d u}{d x}=\frac{2 a}{\sqrt{1-a^{2} \mathrm{x}^{2}}}$
Now, we have $\mathrm{v}=\sqrt{1-\mathrm{a}^{2} \mathrm{x}^{2}}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1-a^{2} x^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1-a^{2} x^{2}\right)^{\frac{1}{2}}$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-a^{2} x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1-a^{2} x^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-a^{2} x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(a^{2} x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-a^{2} x^{2}}}\left[\frac{d}{d x}(1)-a^{2} \frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-a^{2} x^{2}}}\left[0-a^{2}\left(2 x^{2-1}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-a^{2} x^{2}}}\left[-2 a^{2} x\right]$
$\therefore \frac{d v}{d x}=-\frac{a^{2} x}{\sqrt{1-a^{2} x^{2}}}$
We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{2 a}{\sqrt{1-a^{2} \mathrm{x}^{2}}}}{-\frac{\mathrm{a}^{2} \mathrm{X}}{\sqrt{1-\mathrm{a}^{2} \mathrm{x}^{2}}}}$
$\Rightarrow \frac{d u}{d v}=\frac{2 a}{\sqrt{1-a^{2} X^{2}}} \times \frac{\sqrt{1-a^{2} x^{2}}}{-a^{2} x}$
$\therefore \frac{d u}{d v}=-\frac{2}{a x}$
Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=-\frac{2}{\mathrm{ax}}$

20. Question

Differentiate $\tan ^{-1}\left(\frac{1-x}{1+x}\right)$ with respect to $\sqrt{1-x^{2}}$, if $-1<x<1$.

Answer

Let $\mathrm{u}=\tan ^{-1}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right)$ and $\mathrm{v}=\sqrt{1-\mathrm{x}^{2}}$
We need to differentiate u with respect to v that is find $\frac{d u}{d v}$.
We have $\mathrm{u}=\tan ^{-1}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)$
$\Rightarrow u=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \tan \theta}\right)$
$\Rightarrow \mathrm{u}=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\theta\right)\right)\left[\because \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\right]$

Given, $-1<x<1 \Rightarrow x \in(-1,1)$
However, $\mathrm{x}=\tan \theta$
$\Rightarrow \tan \theta \in(-1,1)$
$\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow \frac{\pi}{4}-\theta \in\left(0, \frac{\pi}{2}\right)$
Hence, $\mathrm{u}=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\theta\right)\right)=\frac{\pi}{4}-\theta$
$\Rightarrow \mathrm{u}=\frac{\pi}{4}-\tan ^{-1} \mathrm{x}$
On differentiating u with respect to x, we get
$\frac{d u}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}-\tan ^{-1} x\right)$
$\Rightarrow \frac{d u}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}\right)-\frac{d}{d x}\left(\tan ^{-1} x\right)$
We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+\mathrm{x}^{2}}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d u}{d x}=0-\frac{1}{1+x^{2}}$
$\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{1+\mathrm{x}^{2}}$
Now, we have $\mathrm{v}=\sqrt{1-\mathrm{x}^{2}}$
On differentiating v with respect to x, we get
$\frac{d v}{d x}=\frac{d}{d x}\left(\sqrt{1-\mathrm{x}^{2}}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{d}{d x}\left(1-x^{2}\right)^{\frac{1}{2}}$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n}^{\mathrm{n}-1}$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}-1} \frac{d}{d x}\left(1-x^{2}\right)$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}\left[\frac{d}{d x}(1)-\frac{d}{d x}\left(x^{2}\right)\right]$
We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx}^{\mathrm{n}-1}$ and derivative of a constant is 0 .
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}\left[0-2 x^{2-1}\right]$
$\Rightarrow \frac{d v}{d x}=\frac{1}{2 \sqrt{1-x^{2}}}[-2 x]$
$\therefore \frac{d v}{d x}=-\frac{x}{\sqrt{1-x^{2}}}$

We have $\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}$
$\Rightarrow \frac{d u}{d v}=\frac{-\frac{1}{1+x^{2}}}{-\frac{x}{\sqrt{1-x^{2}}}}$
$\Rightarrow \frac{d u}{d v}=-\frac{1}{1+x^{2}} \times \frac{\sqrt{1-x^{2}}}{-x}$
$\therefore \frac{d u}{d v}=\frac{\sqrt{1-x^{2}}}{x\left(1+x^{2}\right)}$
Thus, $\frac{d u}{d v}=\frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}\left(1+\mathrm{x}^{2}\right)}$

MCQ

1. Question

Choose the correct alternative in the following:
If $f(x)=\log _{x} 2(\log x)$, then $f^{\prime}(x)$ at $x=e$ is
A. 0
B. 1
C. $1 / \mathrm{e}$

D 1/2e

Answer

$f(x)=\log _{x} 2(\log x)$
Changing the base, we get
$\Rightarrow f(x)=\frac{\log (\log x)}{\log x^{2}}$
$\because \log _{b} a=\frac{\log a}{\log b}$
$\Rightarrow f(x)=\frac{\log (\log x)}{2 \cdot \log x}$
So, $f^{\prime}(x)=\frac{1}{2}\left\{\frac{1}{\log x}\left[\frac{d}{d x}\{\log (\log x)\}\right]+\log (\log x)\left[\frac{d}{d x}\left\{\frac{1}{\log x}\right\}\right]\right\}$
$\Rightarrow f^{\prime}(\mathrm{x})=\frac{1}{2}\left\{\frac{1}{\log \mathrm{x}}\left[\frac{1}{\log \mathrm{x}} \cdot \frac{1}{\mathrm{x}}\right]+\log (\log \mathrm{x})\left[-\left(\frac{1}{\log \mathrm{x}}\right)^{2} \cdot \frac{1}{\mathrm{x}}\right]\right\}$
Putting $x=e$, we get
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\frac{1}{\log \mathrm{e}}\left[\frac{1}{\log \mathrm{e}} \cdot \frac{1}{\mathrm{e}}\right]+\log (\log \mathrm{e})\left[-\left(\frac{1}{\log \mathrm{e}}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{(\log \mathrm{e})^{2}} \cdot \frac{1}{\mathrm{e}}\right]+\log (\log \mathrm{e})\left[-\left(\frac{1}{\log \mathrm{e}}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}$
$\Longrightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{1^{2}} \cdot \frac{1}{\mathrm{e}}\right]+\log (1)\left[-\left(\frac{1}{1}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}(\because \log \mathrm{e}=1)$
$\Longrightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{1^{2}}, \frac{1}{\mathrm{e}}\right]+0 .\left[-\left(\frac{1}{1}\right)^{2}, \frac{1}{\mathrm{e}}\right]\right\}(\because \log 1=0$
$\therefore \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2 \mathrm{e}}$

2. Question

Choose the correct alternative in the following:
The differential coefficient of $f(\log x)$ with respect to x, where $f(x)=\log x$ is
A. $\frac{x}{\log x}$
B. $\frac{\log x}{x}$
C. $(x \log x)^{-1}$
D. none of these

Answer

Given: $f(x)=\log x$
$\therefore \mathrm{f}(\log \mathrm{x})=\log (\log \mathrm{x})$
$f^{\prime}(\log x)=\frac{d}{d x} \log (\log x)$
$f^{\prime}(\log x)=\frac{1}{\log x} \cdot \frac{1}{x}=\frac{1}{x \log x}$
$\therefore f^{\prime}(\log x)=(x \log x)^{-1}$

3. Question

Choose the correct alternative in the following:
The derivative of the function $\cos ^{-1}\left\{(\cos 2 x)^{1 / 2}\right\}$ at $x=\pi / 6$ is
A. $(2 / 3)^{1 / 2}$
B. $(1 / 3)^{1 / 2}$
C. $3^{1 / 2}$
D. $6^{1 / 2}$

Answer

$\mathrm{f}^{\prime}(\mathrm{x})=-\frac{1}{\sqrt{1-\left[(\cos 2 \mathrm{x})^{\frac{1}{2}}\right]^{2}}} \cdot \frac{1}{2 \sqrt{\cos 2 \mathrm{x}}} \cdot(-\sin 2 \mathrm{x}) \cdot 2$
$=\frac{1}{\sqrt{1-\cos 2 x}} \cdot \frac{1}{\sqrt{\cos 2 x}} \cdot(\sin 2 x)$
Putting $x=\pi / 6$, we get
$=\frac{1}{\sqrt{1-\left(\cos \frac{2 \pi}{6}\right)}} \cdot \frac{1}{\sqrt{\cos \frac{2 \pi}{6}}} \cdot\left(\sin \frac{2 \pi}{6}\right)$
$=\frac{1}{\sqrt{1-\cos \frac{\pi}{3}}} \cdot \frac{1}{\sqrt{\cos \frac{\pi}{3}}} \cdot\left(\sin \frac{\pi}{3}\right)$
$=\frac{1}{\sqrt{1-\frac{1}{2}}} \cdot \frac{1}{\sqrt{\frac{1}{2}}} \cdot\left(\frac{\sqrt{3}}{2}\right)$
Simplifying above we get
$=\sqrt{2} \cdot \sqrt{2} \cdot\left(\frac{\sqrt{3}}{2}\right)$
$=\sqrt{2} \cdot \sqrt{2} \cdot\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=\sqrt{ } 3=(3)^{1 / 2}$

4. Question

Choose the correct alternative in the following:
Differential coefficient of sec $\left(\tan ^{-1} x\right)$ is
A. $\frac{x}{1+x^{2}}$
B. $\mathrm{x} \sqrt{1+\mathrm{x}^{2}}$
C. $\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
D. $\frac{x}{\sqrt{1+x^{2}}}$

Answer

Let $f(x)=\sec \left(\tan ^{-1} x\right)$
Let $\theta=\tan ^{-1} x$
$\frac{\mathrm{d} \theta}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}--(1)$
$f^{\prime}(x)=\frac{d}{d x}(\sec \theta) \cdot \frac{d \theta}{d x}$
$=\sec \theta \cdot \tan \theta \cdot \frac{1}{1+\mathrm{x}^{2}}--$ From (1)
Now $\theta=\tan ^{-1} \mathrm{X}$
$=\mathrm{x}=\tan \theta$
$=\sqrt{1+\mathrm{x}^{2}}=\sec \theta \because \sec ^{2} \theta-\tan ^{2} \theta=1$
Putting values, we get
$=\sec \theta \cdot \tan \theta \cdot \frac{1}{1+x^{2}}$
$=\sqrt{1+\mathrm{x}^{2}} \cdot \mathrm{X} \cdot \frac{1}{\left(1+\mathrm{x}^{2}\right)}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$

5. Question

Choose the correct alternative in the following:
If $f(x)=\tan ^{-1} \sqrt{\frac{1+\sin x}{1-\sin x}}, 0 \leq x \leq \pi / 2$, then $f^{\prime}(\pi / 6)$ is
A. $-1 / 4$
B. $-1 / 2$
C. $1 / 4$
D. $1 / 2$

Answer

$\mathrm{f}(\mathrm{x})=\tan ^{-1} \sqrt{\frac{1+\sin \mathrm{x}}{1-\sin \mathrm{x}}}$
$=\tan ^{-1} \sqrt{\frac{1+2 \cdot \sin \frac{x}{2} \cos \frac{x}{2}}{1-2 \cdot \sin \frac{x}{2} \cos \frac{x}{2}}}$
$\because \sin 2 \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$
$\Rightarrow \sin x=2 \sin x / 2 \cos x / 2$
$=\tan ^{-1} \sqrt{\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \cdot \sin \frac{x}{2} \cos \frac{x}{2}}{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \cdot \sin \frac{x}{2} \cos \frac{x}{2}}}$
$\because \sin ^{2} x / 2+\cos ^{2} x / 2=1$
$=\tan ^{-1} \sqrt{\frac{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)^{2}}}$
$=\tan ^{-1}\left(\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\sin \frac{x}{2}-\cos \frac{x}{2}}\right)$
Dividing by $\cos x / 2$ we get
$=\tan ^{-1}\left(\frac{\tan \frac{x}{2}+1}{\tan _{\frac{2}{2}}^{\frac{x}{2}}-1}\right)=-\tan ^{-1}\left(\frac{\tan \frac{x}{2}+1}{1-\tan \frac{x}{2}}\right)$ Taking - common
$=-\tan ^{-1}\left(\frac{\tan \frac{x}{2}+\tan \frac{\pi}{4}}{1-\tan \frac{x}{2} \cdot \tan \frac{\pi}{4}}\right)$
$=-\tan ^{-1}\left[\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right]$
$\because \tan (A-B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}$
$=\tan ^{-1}\left[\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right] \because 0 \leq x \leq \pi / 2$
$\therefore \mathrm{f}(\mathrm{x})=\left(\frac{\mathrm{x}}{2}+\frac{\pi}{4}\right)$
$f^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{2}=(D)$

6. Question

Choose the correct alternative in the following:
If $y=\left(1+\frac{1}{x}\right)^{x}$, then $\frac{d y}{d x}=$
A. $\left(1+\frac{1}{x}\right)^{x}\left\{\log \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right\}$
B. $\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}} \log \left(1+\frac{1}{\mathrm{x}}\right)$
C. $\left(1+\frac{1}{x}\right)^{x}\left\{\log (x+1)-\frac{x}{x+1}\right\}$
D. $\left(1+\frac{1}{x}\right)^{x}\left\{\log \left(x+\frac{1}{x}\right)+\frac{1}{x+1}\right\}$

Answer

Given $\mathrm{y}=\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{x}}$
Taking log both sides we get
$\Rightarrow \log y=\log \left(1+\frac{1}{x}\right)^{x}$
$\Rightarrow \log y=x \cdot \log \left(1+\frac{1}{x}\right)$
Differentiating w.r.t \times we get,
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=1 \cdot \log \left(1+\frac{1}{x}\right)+\frac{1}{1+\frac{1}{x}} \cdot\left(-\frac{1}{x^{2}}\right) \cdot x$
$\Rightarrow \frac{d y}{d x}=y\left(\log \left(1+\frac{1}{x}\right)+\frac{x}{x+1} \cdot\left(-\frac{1}{x}\right)\right)$
Putting value of y, we get
$\Rightarrow \frac{d y}{d x}=\left(1+\frac{1}{x}\right)^{x}\left(\log \left(1+\frac{1}{x}\right)-\frac{1}{x+1}\right)$

7. Question

Choose the correct alternative in the following:
If $x^{y}=e^{x-y}$, then $\frac{d y}{d x}$ is
A. $\frac{1+x}{1+\log x}$
B. $\frac{1-\log x}{1+\log x}$
C. not defined
D. $\frac{\log x}{(1+\log x)^{2}}$

Answer

$x^{y}=e^{x-y}$
Taking log both sides we get
$\log x^{y}=\log e^{x-y}$
$y \log x=(x-y) \log e$
$y \log x=(x-y) \because \log e=1$
$y=\frac{x}{\log x+1}$
Differentiating w.r.t \times we get,
$\frac{d y}{d x}=\frac{1 \cdot(\log x+1)-\frac{1}{x} \cdot x}{(\log x+1)^{2}}$
$\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$

8. Question

Choose the correct alternative in the following:
Given $f(x)=4 x^{8}$, then
A. $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$
B. $\mathrm{f}\left(\frac{1}{2}\right)=\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$
C. $\mathrm{f}\left(-\frac{1}{2}\right)=\mathrm{f}\left(-\frac{1}{2}\right)$
D. $\mathrm{f}\left(\frac{1}{2}\right)=\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$

Answer

$f(x)=4 x^{8}$
$f^{\prime}(x)=32 x^{7}$
Consider option (A)
$\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=32\left(\frac{1}{2}\right)^{7}=32\left(\frac{1}{128}\right)=4$
$\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)=32\left(-\frac{1}{2}\right)^{7}=32\left(-\frac{1}{128}\right)=-4$
$\mathrm{f}^{\prime}\left(\frac{1}{2}\right) \neq \mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$

Consider option (B)
$f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{8}=4\left(\frac{1}{256}\right)=64$
$\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)=32\left(-\frac{1}{2}\right)^{7}=32\left(-\frac{1}{128}\right)=-4$
$\mathrm{f}\left(\frac{1}{2}\right) \neq \mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$
Consider option (C)
$f\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^{8}=4\left(\frac{1}{256}\right)=64$
$f\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^{8}=4\left(\frac{1}{256}\right)=64$
$\therefore f\left(-\frac{1}{2}\right)=f\left(-\frac{1}{2}\right)=(C)$
Consider option (D)
$f\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{8}=4\left(\frac{1}{256}\right)=64$
$\mathrm{f}^{\prime}\left(-\frac{1}{2}\right)=32\left(-\frac{1}{2}\right)^{7}=32\left(-\frac{1}{128}\right)=-4$
$\mathrm{f}\left(\frac{1}{2}\right) \neq \mathrm{f}^{\prime}\left(-\frac{1}{2}\right)$

9. Question

Choose the correct alternative in the following:
If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$, then $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=$
A. $\tan ^{2} \theta$
B. $\sec ^{2} \theta$
C. $\sec \theta$
D. $|\sec \theta|$

Answer

We are given that
$x=a \cdot \cos ^{3} \theta, y=a \cdot \sin ^{3} \theta$
$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=?$

Now, we know
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}$

Now,
$\frac{d x}{d \theta}=\frac{d}{d \theta} a \cdot \cos ^{3} \theta$
$=-3 a \cos ^{2} \theta \sin \theta$ (Using Chain Rule)

Again

$\frac{d y}{d \theta}=\frac{d}{d \theta} a \cdot \sin ^{3} \theta$
$=3 a \sin ^{2} \theta \cos \theta$ (Using Chain Rule)
Now, $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}$
By Simplifying we get,
$\frac{d y}{d x}=-\tan \theta$
$\therefore \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+(-\tan \theta)^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}$
$\therefore \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=|\sec \theta|=(D)$

10. Question

Choose the correct alternative in the following:
If
A. $-\frac{2}{1+x^{2}}$
B. $\frac{2}{1+x^{2}}$
C. $\frac{1}{2-x^{2}}$
D. $\frac{2}{2-x^{2}}$

Answer

$y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
Put $x=\tan \theta \Rightarrow \theta=\tan ^{-1} x$
$y=\sin ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$y=\sin ^{-1}(\cos 2 \theta) \because \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
$y=\sin ^{-1}\left(\sin \left(\frac{\pi}{2}-2 \theta\right)\right)$
$y=\frac{\pi}{2}-2 \theta$
Putting value of θ we get,
$y=\frac{\pi}{2}-2 \tan ^{-1} x$
Differentiating w.r.t \times we get,
$\frac{d y}{d x}=0-2\left(\frac{1}{1+x^{2}}\right)$
$\because \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+\mathrm{x}^{2}}$
$\therefore \frac{d y}{d x}=-\frac{2}{1+\mathrm{x}^{2}}=(\mathrm{A})$

11. Question

Choose the correct alternative in the following:
The derivative of $\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}+1}\right)$ with respect to $\sqrt{1+3 \mathrm{x}}$ at $\mathrm{x}=-1 / 3$
A. does not exist
B. 0
C. $1 / 2$
D. $1 / 3$

Answer

Let $u=\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}+1}\right)$ and $\mathrm{v}=\sqrt{1+3 \mathrm{x}}$
$\left(\frac{d u}{d v}\right)_{x=-\frac{1}{3}}=$?
Considering u ,
$u=\sec ^{-1}\left(\frac{1}{2 x^{2}+1}\right)$
Put $x=\cos \theta$
$\theta=\cos ^{-1} x---$-(1)
$u=\sec ^{-1}\left(\frac{1}{2 \cos ^{2} \theta+1}\right)=\sec ^{-1}\left(\frac{1}{\cos 2 \theta}\right) \because 2 \cos ^{2} \theta+1=\cos 2 \theta$
$=\sec ^{-1}(\sec 2 \theta)=2 \theta$
$\Rightarrow \mathrm{u}=2 \cos ^{-1} \mathrm{x}$ From (1)
Differentiating w.r.t x
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{2}{\sqrt{1-\mathrm{x}^{2}}}$
Considering v ,
$\mathrm{v}=\sqrt{1+3 \mathrm{x}}$
Differentiating w.r.t x
$\Rightarrow \frac{d v}{d x}=\frac{3}{2 \sqrt{1+3 x}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{d u}{d x} \cdot \frac{d x}{d v}$
$\Rightarrow \frac{d u}{d v}=-\frac{2}{\sqrt{1-x^{2}}} \cdot\left(\frac{2 \sqrt{1+3 \mathrm{x}}}{3}\right)$
$\Rightarrow \frac{d u}{d v}=-\frac{4}{3} \cdot\left(\sqrt{\frac{1+3 x}{1-x^{2}}}\right)$
$\Rightarrow\left(\frac{d u}{d v}\right)_{x=-\frac{1}{3}}=-\frac{4}{3} \cdot\left(\sqrt{\frac{1+3\left(-\frac{1}{3}\right)}{1-\left(-\frac{1}{3}\right)^{2}}}\right)$
$\Rightarrow\left(\frac{d u}{d v}\right)_{x=-\frac{1}{3}}=0=(B)$

12. Question

Choose the correct alternative in the following:
For the curve $\cdot \sqrt{x}+\sqrt{y}=1, \frac{d y}{d x}$. at $(1 / 4,1 / 4)$ is
A. $1 / 2$
B. 1
C. -1
D. 2

Answer

$\sqrt{x}+\sqrt{y}=1$
Differentiating w.r.t x we get,
$\Rightarrow \frac{d}{d x}(\sqrt{x})+\frac{d}{d x}(\sqrt{y})=\frac{d}{d x}(1)$
$\Rightarrow \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \cdot \frac{d y}{d x}=0 \because \frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
$\Rightarrow \frac{d y}{d x}=-\sqrt{\frac{y}{x}}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{(x, y)=\left(\frac{1}{4^{\prime}} \frac{1}{4}\right)}=-\sqrt{\frac{\frac{1}{4}}{\frac{1}{4}}}=-1$
$\Rightarrow\left(\frac{d y}{d x}\right)_{(x, y)=\left(\frac{1}{4^{\prime}} \frac{1}{4}\right)}=-1=(C)$
13. Question

Choose the correct alternative in the following:

If $\sin (x+y)=\log (x+y)$, then $\frac{d y}{d x}=$
A. 2
B. -2
C. 1
D. -1

Answer

$\sin (x+y)=\log (x+y)$
Differentiating w.r.t x we get,
$\Rightarrow \cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)=\frac{1}{x+y} \cdot\left(1+\frac{d y}{d x}\right)$
$\Rightarrow \cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)-\frac{1}{x+y} \cdot\left(1+\frac{d y}{d x}\right)=0$
$\Rightarrow\left(1+\frac{d y}{d x}\right)\left(\cos (x+y)-\frac{1}{x+y}\right)=0$
$\Rightarrow\left(\frac{d y}{d x}\right)\left(\cos (x+y)-\frac{1}{x+y}\right)+\left(\cos (x+y)-\frac{1}{x+y}\right)=0$
$\Rightarrow \frac{d y}{d x}=-\frac{\left(\cos (x+y)-\frac{1}{x+y}\right)}{\left(\cos (x+y)-\frac{1}{x+y}\right)}=-1$
$\Rightarrow \frac{d y}{d x}=-1$
14. Question

Choose the correct alternative in the following:
Let $U=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $V=\tan ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $\frac{d U}{d V}=$
A. $1 / 2$
B. x
C. $\frac{1-x^{2}}{1+x^{2}}$
D. 1

Answer

We are given that
$U=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), V=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
$\frac{d U}{d V}=?$
$\frac{d U}{d V}=\frac{\frac{d U}{d x}}{\frac{d V}{d x}}$
Now,
$\frac{d U}{d x}=\frac{d}{d x} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
Put $x=\tan \theta$
$\theta=\tan ^{-1} \mathrm{X}---$ (1)
$\Rightarrow \frac{\mathrm{dU}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$=\frac{\mathrm{d}}{\mathrm{dx}} \sin ^{-1}(\sin 2 \theta) \because \frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$
$=\frac{d}{d x} 2 \theta$
$=\frac{d}{d x} 2 \tan ^{-1} x=\frac{2}{1+x^{2}}$
Again
$\frac{d V}{d x}=\frac{d}{d x} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$
Put $x=\tan \theta$
$\theta=\tan ^{-1} \mathrm{x}---(1)$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)$
$=\frac{\mathrm{d}}{\mathrm{dx}} \tan ^{-1}(\tan 2 \theta) \because \frac{2 \tan \theta}{1-\tan ^{2} \theta}=\tan 2 \theta$
$=\frac{d}{d x} 2 \theta$
$=\frac{\mathrm{d}}{\mathrm{dx}} 2 \tan ^{-1} \mathrm{x}=\frac{2}{1+\mathrm{x}^{2}}-$ From (1)
Now, $\frac{d U}{d V}=\frac{\frac{d U}{d x}}{\frac{d v}{d x}}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}=1$
$\therefore \frac{d U}{d V}=1=$ (D)

15. Question

Choose the correct alternative in the following:
$\frac{d}{d x}\left\{\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\right\}$ equals
A. $1 / 2$
B. $-1 / 2$
C. 1
D. -1

Answer

$\frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan ^{-1}\left(\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}\right)\right\}$
$\Rightarrow \frac{d}{d x}\left\{\tan ^{-1}\left(\frac{\sin \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}\right)\right\} \because \sin \left(\frac{\pi}{2}-x\right)=\cos x$ and $\cos \left(\frac{\pi}{2}-x\right)$

$$
=\sin x
$$

Put $\frac{\pi}{2}-x=2 t \Rightarrow t=\frac{\pi}{4}-\frac{x}{2}--(1)$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan ^{-1}\left(\frac{\sin 2 \mathrm{t}}{1+\cos 2 \mathrm{t}}\right)\right\}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan ^{-1}\left(\frac{2 \sin \mathrm{t} \cdot \cos \mathrm{t}}{2 \cos ^{2} \mathrm{t}}\right)\right\} \because \sin 2 \mathrm{t}=2 \sin \mathrm{t} . \cos \mathrm{t}$ and $1+\cos 2 \mathrm{t}=2 \cos ^{2} \mathrm{t}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left\{\tan ^{-1}(\tan \mathrm{t})\right\}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{t}\} \Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\pi}{4}-\frac{\mathrm{x}}{2}\right)=-\frac{1}{2}$--From (1)
$\therefore \frac{d}{d x}\left\{\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)\right\}=-\frac{1}{2}$

16. Question

Choose the correct alternative in the following:
$\frac{d}{d x}\left[\log \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{3 / 4}\right\}\right]$ equals
A. $\frac{x^{2}-1}{x^{2}-4}$
B. 1
C. $\frac{x^{2}+1}{x^{2}-4}$
D. $e^{x} \frac{x^{2}-1}{x^{2}-4}$

Answer

$\frac{d}{d x}\left[\log \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}\right]$
Let $u=\frac{x-2}{x+2} \Rightarrow \frac{d u}{d x}=\frac{1 \cdot(x+2)-(x-2) \cdot 1}{(x+2)^{2}}=\frac{4}{(x+2)^{2}} \cdots---(1)$
$\Rightarrow \frac{d}{d x}\left[\log \left\{e^{x}(u)^{\frac{3}{4}}\right\}\right]$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left[\log \mathrm{e}^{\mathrm{x}}+\log (\mathrm{u})^{\frac{3}{4}}\right]$
$\Rightarrow \frac{d}{d x}\left[x \cdot \log e+\frac{3}{4} \log (u)\right]$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x}+\frac{3}{4} \log (\mathrm{u})\right] \because \log \mathrm{e}=1$
$\Rightarrow 1+\frac{3}{4} \cdot \frac{1}{\mathrm{u}} \cdot \frac{\mathrm{du}}{\mathrm{dx}}$
$\Rightarrow 1+\frac{3}{4} \cdot \frac{(x+2)}{x-2} \cdot \frac{4}{(x+2)^{2}}--$ From (1)
$\Rightarrow 1+\frac{3}{\left(\mathrm{x}^{2}-2^{2}\right)}$
$\Rightarrow \frac{\left(x^{2}-4\right)+3}{\left(x^{2}-4\right)}$
$\therefore \frac{d}{d x}\left[\log \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}\right]=\frac{x^{2}-1}{x^{2}-4}=(A)$

17. Question

Choose the correct alternative in the following:
If $y=\sqrt{\sin x+y}$, then $\frac{d y}{d x}=$
A. $\frac{\sin x}{2 y-1}$
B. $\frac{\sin x}{1-2 y}$
C. $\frac{\cos x}{1-2 y}$
D. $\frac{\cos x}{2 y-1}$

Answer

$y=\sqrt{\sin x+y}$
Squaring both sides
$\Rightarrow y^{2}=\sin x+y$
Differentiating w.r.t x we get,
$\Rightarrow 2 y \cdot \frac{d y}{d x}=\cos x+\frac{d y}{d x}$
$\Rightarrow \frac{d y}{d x}(2 y-1)=\cos x$
$\Rightarrow \frac{d y}{d x}=\frac{\cos x}{2 y-1}=D$
18. Question

Choose the correct alternative in the following:
If $3 \sin (x y)+4 \cos (x y)=5$, then $\frac{d y}{d x}=$
A. $-\frac{y}{x}$
B. $\frac{3 \sin (x y)+4 \cos (x y)}{3 \cos (x y)-4 \sin (x y)}$
C. $\frac{3 \cos (x y)+4 \sin (x y)}{4 \cos (x y)-3 \sin (x y)}$
D. none of these

Answer

$3 \sin (x y)+4 \cos (x y)=5$
Differentiating w.r.t x we get,
$\Rightarrow 3\left[\cos (x y) \cdot\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)\right]+4\left[-\sin (x y) \cdot\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)\right]=0$
(Using Chain Rule)
$\Rightarrow\left[3 y \cos (x y)+3 x \cos (x y) \cdot \frac{d y}{d x}\right]+\left[-4 y \sin (x y)-4 x \sin (x y) \cdot \frac{d y}{d x}\right]=0$
$\Rightarrow \frac{d y}{d x}[3 x \cos (x y)-4 x \sin (x y)]=4 y \sin (x y)-3 y \cos (x y)$
$\Rightarrow \frac{d y}{d x}=-\frac{y[-4 \sin (x y)+3 \cos (x y)]}{x[3 \cos (x y)-4 \sin (x y)]}=-\frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=-\frac{y}{x}=(A)$

19. Question

Choose the correct alternative in the following:
If $\sin y=x \sin (a+y)$, then $\frac{d y}{d x}$ is
A. $\frac{\sin a}{\sin a \sin ^{2}(a+y)}$
B. $\frac{\sin ^{2}(a+y)}{\sin a}$
C. $\sin a \sin ^{2}(a+y)$
D. $\frac{\sin ^{2}(a-y)}{\sin a}$

Answer

$\sin y=x \sin (a+y)$
$\Rightarrow \frac{\sin y}{\sin (a+y)}=x$
Differentiating w.r.t y we get,
$\Rightarrow \frac{d x}{d y}=\frac{d}{d y}\left(\frac{\sin y}{\sin (a+y)}\right)$
$=\frac{\cos y(\sin (a+y))-\cos (a+y) \cdot \sin y}{[\sin (a+y)]^{2}}$
$=\frac{\cos y(\sin a \cos y+\cos a \sin y)-(\cos a \cos y-\sin a \sin y) \sin y}{[\sin (a+y)]^{2}}$
$=\frac{\sin a \cos ^{2} y+\cos a \cos y \sin y-\sin y \cos a \cos y+\sin a \sin ^{2} y}{[\sin (a+y)]^{2}}$
$=\frac{\sin a\left(\cos ^{2} y+\sin ^{2} y\right)+\cos a \cos y \sin y-\sin y \cos a \cos y}{[\sin (a+y)]^{2}}$
$\frac{d x}{d y}=\frac{\sin a}{[\sin (a+y)]^{2}} \because \cos ^{2} y+\sin ^{2} y=1$
$\therefore \frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}=(B)$

20. Question

Choose the correct alternative in the following:
The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ with respect to $\cos ^{-1} x$ is
A. 2
B. $\frac{1}{2 \sqrt{1-x^{2}}}$
C. $2 / \mathrm{x}$
D. $1-x^{2}$

Answer

Let $u=\cos ^{-1}\left(2 x^{2}-1\right)$ and $v=\cos ^{-1} x$
$\frac{d u}{d v}=?$
Considering $u=\cos ^{-1}\left(2 x^{2}-1\right)$
Put $x=\cos \theta \Rightarrow \theta=\cos ^{-1} x--(1)$
$u=\cos ^{-1}\left(2 \cos ^{2} \theta-1\right)$
$u=\cos ^{-1}(\cos 2 \theta) \because 2 \cos ^{2} \theta-1=\cos 2 \theta$
$u=2 \theta$
$u=2 \cos ^{-1} x-$ From(1)
Differentiating w.r.t \times we get,
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{2}{\sqrt{1-\mathrm{x}^{2}}}$
Considering $v=\cos ^{-1} x$
Differentiating w.r.t \times we get,
$\Rightarrow \frac{d v}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
$\Rightarrow \frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{d u}{d x} \cdot \frac{d x}{d v}$
$\Rightarrow \frac{d u}{d v}=-\frac{2}{\sqrt{1-x^{2}}}\left(-\sqrt{1-x^{2}}\right)$
$\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=2$

21. Question

Choose the correct alternative in the following:
If $f(x)=\sqrt{x^{2}+6 x+9}$, then $f^{\prime}(x)$ is equal to
A. 1 for $x<-3$
B. -1 for $x<-3$
C. 1 for all $x \in R$
D. none of these

Answer

$f(x)=\sqrt{x^{2}+6 x+9}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sqrt{(\mathrm{x}+3)^{2}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=|\mathrm{x}+3|$
$\Rightarrow f(x)=\left\{\begin{array}{c}(x+3), x+3 \geq 0 \Leftrightarrow x \geq-3 \\ -(x+3), x+3<0 \Leftrightarrow x<-3\end{array}\right.$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{c}1, \mathrm{x} \geq-3 \\ -1, \mathrm{x}<-3\end{array}\right.$

22. Question

Choose the correct alternative in the following:
If $f(x)=\left|x^{2}-9 x+20\right|$, then $f^{\prime}(x)$ is equal to
A. $-2 x+9$ for all $x \in R$
B. $2 x-9$ if $4<x<5$
C. $-2 x+9$ if $4<x<5$
D. none of these

Answer

$f(x)=\left|x^{2}-9 x+20\right|$
$=\left|x^{2}-4 x-5 x+20\right|$
$=|x(x-4)-5(x-4)|$
$f(x)=|(x-5)(x-4)|$
$\Rightarrow f(x)=\left\{\begin{array}{c}(x-5)(x-4), x \geq 5 \text { and } x \geq 4 \\ -(x-5)(x-4), 4<x<5\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}(2 x-9), x \geq 5 \text { and } x \geq 4 \\ -2 x+9,4<x<5\end{array}\right.$

23. Question

Choose the correct alternative in the following:
If $f(x)=\sqrt{x^{2}-10 x+25}$, then the derivative of $f(x)$ in the interval $[0,7]$ is
A. 1
B. -1
C. 0
D. none of these

Answer

$f(x)=\sqrt{x^{2}-10 x+25}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}^{2}-(2)(5) \mathrm{x}+5^{2}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\sqrt{(\mathrm{x}-5)^{2}}$
$\Rightarrow f(x)=|x-5|$
$\Rightarrow f(x)=\left\{\begin{array}{c}(x-5), x-5 \geq 0 \Leftrightarrow x \geq 5 \\ -(x-5), x-5<0 \Leftrightarrow x<5\end{array}\right.$
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}1, x \geq 5 \\ -1, x<5\end{array}\right.$
Since there is no fixed value of $f^{\prime}(x)$ in the interval [0,7], so the answer is (D) none of these

24. Question

Choose the correct alternative in the following:
If $f(x)=|x-3|$ and $g(x)=f o f(x)$, then for $x>10, g^{\prime}(x)$ is equal to
A. 1
B. -1
C. 0
D. none of these

Answer

$g(x)=f o f(x)=f(f(x))=|f(x)-3| \because f(x)=|x-3|$

$\because|x-3|=\left\{\begin{array}{c}(x-3), x>3 \\ -(x-3), x<3\end{array}\right.$
Since we have given $x>10$ then $|x-3|=(x-3)$
$\therefore g(x)=|(x-3)-3|=|x-6|$
$\because|x-6|=\left\{\begin{array}{l}(x-6), x>6 \\ -(x-6), x<6\end{array}\right.$
Since we have given $x>10$ then $|x-6|=(x-6)$
$\therefore \mathrm{g}(\mathrm{x})=(\mathrm{x}-6)$
$\mathrm{g}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}-6)=1=(\mathrm{A})$

25. Question

Choose the correct alternative in the following:
If $f(x)=\left(\frac{x^{1}}{x^{m}}\right)^{1+m}\left(\frac{x^{m}}{x^{n}}\right)^{m+n}\left(\frac{x^{n}}{x^{1}}\right)^{n+1}$, then $f^{\prime}(x)$ is equal to
A. 1
B. 0
C. $x^{\ell+m+n}$
D. none of these

Answer

$f(x)=\left(\frac{x^{1}}{x^{m}}\right)^{1+m}\left(\frac{x^{m}}{x^{n}}\right)^{m+n}\left(\frac{x^{n}}{x^{1}}\right)^{n+1}$
$f(x)=\frac{\left(x^{1}\right)^{1+m} \cdot\left(x^{m}\right)^{m+n} \cdot\left(x^{n}\right)^{n+1}}{\left(x^{m}\right)^{1+m} \cdot\left(x^{n}\right)^{m+n} \cdot\left(x^{1}\right)^{n+1}}$
$=\frac{(x)^{1^{2}+m} \cdot(x)^{m^{2}+n} \cdot(x)^{n^{2}+1}}{(x)^{1+m^{2}} \cdot(x)^{m+n^{2}} \cdot(x)^{n+1^{2}}}$
$\Rightarrow f(x)=\frac{(x)^{1^{2}+m^{2}+n^{2}+m+n+1}}{(x)^{1^{2}+m^{2}+n^{2}+m+n+1}}=1$
Differentiating w.r.t x
Q $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=0$

26. Question

Choose the correct alternative in the following:
If, $y=\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}+\frac{1}{1+x^{b-a}+x^{c-a}}$, then $\frac{d y}{d x}$ is equal to
A. 1
B. $(a+b-c)^{x^{a+b+c-1}}$
C. 0
D. none of these

Answer

$y=\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}+\frac{1}{1+x^{b-a}+x^{c-a}}$
$\Rightarrow y=\frac{1}{1+\frac{x^{a}}{x^{b}}+\frac{x^{c}}{x^{b}}}+\frac{1}{1+\frac{x^{b}}{x^{c}}+\frac{x^{a}}{x^{c}}}+\frac{1}{1+\frac{x^{b}}{x^{a}}+\frac{x^{c}}{x^{a}}}$
$\Rightarrow y=\frac{x^{b}}{x^{b}+x^{a}+x^{c}}+\frac{x^{c}}{x^{c}+x^{b}+x^{a}}+\frac{x^{a}}{x^{a}+x^{b}+x^{c}}$
$\Rightarrow y=\frac{x^{a}+x^{b}+x^{c}}{x^{a}+x^{b}+x^{c}}=1$
Differentiating w.r.t x
$\Rightarrow \frac{d y}{d x}=0$

27. Question

Choose the correct alternative in the following:

If $\sqrt{1-x^{6}}+\sqrt{1-y^{6}}=a^{3}\left(x^{3}-y^{3}\right)$, then $\frac{d y}{d x}$ is equal to
A. $\frac{x^{2}}{y^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$
B. $\frac{y^{2}}{x^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$
C. $\frac{x^{2}}{y^{2}} \sqrt{\frac{1-x^{6}}{1-y^{6}}}$
D. none of these

Answer

$\sqrt{1-x^{6}}+\sqrt{1-y^{6}}=a^{3}\left(x^{3}-y^{3}\right)$
Let $x^{3}=\cos p$ and $y^{3}=\cos q$
$\cos ^{-1} x^{3}=p$ and $\cos ^{-1} y^{3}=q--(1)$
$\Rightarrow \sqrt{1-\cos ^{2} p}+\sqrt{1-\cos ^{2} q}=a^{3}(\cos p-\cos q)$
$\Rightarrow \sin p+\sin q=a(\cos p-\cos q)$
$\Rightarrow 2 \sin \left(\frac{\mathrm{p}+\mathrm{q}}{2}\right) \cdot \cos \left(\frac{\mathrm{p}-\mathrm{q}}{2}\right)=-2 \mathrm{a}^{3} \sin \left(\frac{\mathrm{p}-\mathrm{q}}{2}\right) \cdot \sin \left(\frac{\mathrm{p}+\mathrm{q}}{2}\right)$
Comparing L.H.S and R.H.S we get,
$\Rightarrow \cos \left(\frac{p-q}{2}\right)=-a^{3} \sin \left(\frac{p-q}{2}\right)$
$\Rightarrow \frac{\sin \left(\frac{p-q}{2}\right)}{\cos \left(\frac{p-q}{2}\right)}=-\frac{1}{a^{3}}$
$\Rightarrow \tan \left(\frac{p-q}{2}\right)=-\frac{1}{a^{3}}$
$\Rightarrow \frac{\mathrm{p}-\mathrm{q}}{2}=\tan ^{-1}\left(-\frac{1}{\mathrm{a}^{3}}\right)$
$\Rightarrow \mathrm{p}-\mathrm{q}=2 \cdot \tan ^{-1}\left(-\frac{1}{\mathrm{a}^{3}}\right)$
Substituting value of p and q from (1)
$\Rightarrow \cos ^{-1}\left(\mathrm{x}^{3}\right)-\cos ^{-1}\left(\mathrm{y}^{3}\right)=2 \cdot \tan ^{-1}\left(-\frac{1}{\mathrm{a}^{3}}\right)$
Differentiating w.r.t \times we get,
$\Rightarrow-\frac{3 x^{2}}{\sqrt{1-x^{6}}}-\left(-\frac{3 y^{2}}{\sqrt{1-y^{6}}}\right) \cdot \frac{d y}{d x}=0$
$\Rightarrow\left(\frac{3 y^{2}}{\sqrt{1-y^{6}}}\right) \cdot \frac{d y}{d x}=\frac{3 x^{2}}{\sqrt{1-x^{6}}}$
Comparing L.H.S and R.H.S we get
$\Rightarrow \frac{d y}{d x}=\frac{x^{2}}{y^{2}} \sqrt{\frac{1-y^{6}}{1-x^{6}}}$
28. Question

Choose the correct alternative in the following:
If $y=\log \sqrt{\tan x}$, then the value of $\frac{d y}{d x}$ at $x=\frac{\pi}{4}$ is given by
A. ∞
B. 1
C. 0
D. $1 / 2$

Answer

$y=\log \sqrt{\tan x}$
$\Rightarrow \mathrm{y}=\log (\tan \mathrm{x})^{\frac{1}{2}}$
$\Rightarrow \mathrm{y}=\frac{1}{2} \log (\tan \mathrm{x})$
Differentiating w.r.t \times we get,
$\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{\tan x} .\left(\sec ^{2} x\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{\pi}{4}}=\frac{1}{2} \cdot \frac{1}{\tan \frac{\pi}{4}} \cdot\left(\sec ^{2} \frac{\pi}{4}\right)$
$\Rightarrow\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=\frac{\pi}{4}}=\frac{1}{2} \cdot \frac{1}{1} \cdot(\sqrt{2})^{2}$
$\therefore\left(\frac{d y}{d x}\right)_{x=\frac{\pi}{4}}=1$

29. Question

Choose the correct alternative in the following:
If $\sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\log a$ then $\frac{d y}{d x}$ is equal to
A. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
B. $\frac{\mathrm{y}}{\mathrm{x}}$
C. $\frac{x}{y}$
D. none of these

Answer

$\sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\log a$
$\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\sin (\log a)$
Put $y=x \tan \theta$
$\theta=\tan ^{-1}\left(\frac{y}{x}\right)---(1)$
$\Rightarrow \frac{x^{2}-x^{2} \tan ^{2} \theta}{x^{2}+x^{2} \tan ^{2} \theta}=\sin (\log a)$
$\Rightarrow \frac{x^{2}-x^{2} \tan ^{2} \theta}{x^{2}+x^{2} \tan ^{2} \theta}=\sin (\log a)$
$\Rightarrow \frac{x^{2}\left(1-\tan ^{2} \theta\right)}{x^{2}\left(1+\tan ^{2} \theta\right)}=\sin (\log a)$
$\Rightarrow \cos 2 \theta=\sin (\log a) \because \frac{\left(1-\tan ^{2} \theta\right)}{\left(1+\tan ^{2} \theta\right)}=\cos 2 \theta$
$\Rightarrow 2 \theta=\cos ^{-1}[\sin (\log a)]$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=\frac{1}{2} \cos ^{-1}[\sin (\log a)]$
Taking tan on both sides
$\Rightarrow \tan \left[\tan ^{-1}\left(\frac{y}{x}\right)\right]=\tan \left[\frac{1}{2} \cos ^{-1}[\sin (\log a)]\right]$
$\Rightarrow \frac{\mathrm{y}}{\mathrm{x}}=\tan \left[\frac{1}{2} \cos ^{-1}[\sin (\log a)]\right]$
Differentiating w.r.t x we get,
$\Rightarrow \frac{\frac{d y}{d x} \cdot x-y \cdot \frac{d x}{d x}}{x^{2}}=0 \because \tan \left[\frac{1}{2} \cos ^{-1}[\sin (\log a)]\right]$ is a constant
$\Rightarrow x \cdot \frac{d y}{d x}-y=0$
$\therefore \frac{d y}{d x}=\frac{y}{x}$

30. Question

Choose the correct alternative in the following:
If $\sin y=x \cos (a+y)$, then $\frac{d y}{d x}$ is equal to
A. $\frac{\cos ^{2}(a+y)}{\cos a}$
B. $\frac{\cos a}{\cos ^{2}(a+y)}$
C. $\frac{\sin ^{2} y}{\cos a}$
D. none of these

Answer

$\sin y=x \cos (a+y)$
$x=\frac{\sin y}{\cos (a+y)}$
Differentiating w.r.t y we get,
$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\frac{\mathrm{d} \sin y}{\mathrm{dx}} \cdot \cos (\mathrm{a}+\mathrm{y})-\frac{\mathrm{d} \cos (\mathrm{a}+\mathrm{y})}{\mathrm{dx}} \cdot(\sin \mathrm{y})}{\cos ^{2}(\mathrm{a}+\mathrm{y})}$ (Using quotient rule)
$\frac{d x}{d y}=\frac{\cos y \cdot \cos (a+y)-[-\sin (a+y)] \cdot(\sin y)}{\cos ^{2}(a+y)}$
$\frac{d x}{d y}=\frac{\cos (a+y) \cdot \cos y+\sin (a+y) \cdot(\sin y)}{\cos ^{2}(a+y)}$
$\frac{d x}{d y}=\frac{\cos [(a+y)-y]}{\cos ^{2}(a+y)} U \operatorname{sing} \cos (a-b)=\cos a \cdot \cos b+\sin a \cdot \sin b$
$\frac{d x}{d y}=\frac{\cos a}{\cos ^{2}(a+y)}$
$\therefore \frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\cos a}=(A)$

31. Question

Choose the correct alternative in the following:
If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$, then $\frac{d y}{d x}=$
A. $\frac{4 x^{3}}{1-x^{4}}$
B. $-\frac{4 x}{1-x^{4}}$
C. $\frac{1}{4-x^{4}}$
D. $\frac{4 x^{3}}{1-x^{4}}$

Answer

$y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}}\left[\frac{\frac{\mathrm{~d}\left(1-\mathrm{x}^{2}\right)}{\mathrm{dx}} \cdot\left(1+\mathrm{x}^{2}\right)-\frac{\mathrm{d}\left(1+\mathrm{x}^{2}\right)}{\mathrm{dx}} \cdot\left(1-\mathrm{x}^{2}\right)}{\left(1+\mathrm{x}^{2}\right)^{2}}\right]$ (Using quotient rule)
$\frac{d y}{d x}=\frac{1+x^{2}}{1-x^{2}}\left[\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\right]$
$\frac{d y}{d x}=\frac{1}{1-x^{2}}\left[\frac{-2 x\left(1+x^{2}+1-x^{2}\right)}{\left(1+x^{2}\right)}\right]$
$\frac{d y}{d x}=\left[\frac{-4 x}{1^{2}-\left(x^{2}\right)^{2}}\right]$
$\therefore \frac{d y}{d x}=\left[\frac{-4 x}{1-x^{4}}\right]$

32. Question

Choose the correct alternative in the following:
If $y=\sqrt{\sin x+y}$, then $\frac{d y}{d x}$ equals.
A. $\frac{\cos x}{2 y-1}$
B. $\frac{\cos x}{1-2 y}$
C. $\frac{\sin x}{1-2 y}$
D. $\frac{\sin x}{2 y-1}$

Answer

$y=\sqrt{\sin x+y}$
Squaring both sides, we get
$y^{2}=\sin x+y$
Differentiating w.r.t y we get
$2 y=\cos x \frac{d x}{d y}+1$
$\frac{d x}{d y}=\frac{2 y-1}{\cos x}$
$\therefore \frac{d y}{d x}=\frac{\cos x}{2 y-1}$

33. Question

Choose the correct alternative in the following:
If $y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)$, then $\frac{d y}{d x}$ is equal to
A. $\frac{1}{2}$
B. 0
C. 1
D. none of these

Answer

$y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)$
Dividing Numerator and denominator by $\cos x$ we get,
$y=\tan ^{-1}\left(\frac{\frac{\sin x}{\cos x}+\frac{\cos x}{\cos x}}{\frac{\cos x}{\cos x}-\frac{\sin x}{\cos x}}\right)$
$y=\tan ^{-1}\left(\frac{\tan x+1}{1-1 \cdot \tan x}\right)=\tan ^{-1}\left(\frac{1+\tan x}{1-1 \cdot \tan x}\right)$
$y=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \cdot \tan x}\right)$
$y=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}+x\right)\right] \because \frac{\tan a+\tan b}{1-\tan a \cdot \tan b}=\tan (a+b)$
$y=\frac{\pi}{4}+x$
Differentiating w.r.t x we get,
$\frac{d y}{d x}=1$

Very short answer

1. Question

If $f(x)=\log _{e}\left(\log _{e} x\right)$, then write the value of $f^{\prime}(e)$.

Answer

$f(x)=\log _{e}\left(\log _{e} x\right)$
Using the Chain Rule of Differentiation,
$f(x)=\frac{1}{\log _{e} x} \cdot \frac{1}{x}$
So, $f^{\prime}(e)=\frac{1}{\log _{\mathrm{e}} \mathrm{e}} \cdot \frac{1}{\mathrm{e}}$
$=\frac{1}{e}($ Ans $)$

2. Question

If $f(x)=x+1$, then write the value of

Answer

$\mathrm{f}(\mathrm{x})=\mathrm{x}+1$
$\Rightarrow(f \circ f)(x)=f(x)+1$
$=(x+1)+1$
$=x+2$
So, $\frac{d}{d x}(f o f)(x)=\frac{d}{d x}(x+2)$
$=1$ (Ans)

3. Question

If $f^{\prime}(1)=2$ and $y=f\left(\log _{e} x\right)$, find $\cdot \frac{d y}{d x}$. at $x=e$.

Answer

$y=f\left(\log _{e} x\right)$

Using the Chain Rule of Differentiation,
$\frac{d y}{d x}=f^{\prime}\left(\log _{e} x\right) \cdot \frac{1}{x}$
So, at $x=e$
$\frac{d y}{d x}=f^{\prime}\left(\log _{e} e\right) \cdot \frac{1}{e}$
$=f^{\prime}(1) \cdot \frac{1}{e}$
$=\frac{2}{e}($ Ans $)$

4. Question

If $f(1)=4, f^{\prime}(1)=2$, find the value of the derivative of $\log \left(f\left(e^{x}\right)\right)$ with respect to x at the point $x=0$.

Answer

Using the Chain Rule of Differentiation, derivative of $\log \left(f\left(e^{x}\right)\right)$ w.r.t. x is $\frac{1}{f\left(e^{x}\right)} \cdot f^{\prime}\left(e^{x}\right)$
So, the value of the derivative at $x=0$ is
$\frac{1}{f\left(e^{0}\right)} \cdot f^{\prime}\left(e^{0}\right)=\frac{1}{f(1)} \cdot f^{\prime}(1)$
$=\frac{1}{4} \cdot 2$
$=\frac{1}{2}$
So, the value of the derivative at $x=0$ is 0.5 (Ans)

5. Question

If $f^{\prime}(x)=\sqrt{2 x^{2}-1}$ and $y=f\left(x^{2}\right)$, then find at $x=1$.

Answer

$y=f\left(x^{2}\right)$
$\therefore \frac{d y}{d x}=f^{\prime}\left(x^{2}\right) \cdot 2 x$
$=2 x \sqrt{2\left(x^{2}\right)^{2}-1}$
$=2 \mathrm{x} \sqrt{2 \mathrm{x}^{4}-1}$
Putting $x=1$,
$\frac{d y}{d x}=2 \cdot 1 \cdot \sqrt{2 \cdot 1^{4}-1}$
$=2 \sqrt{2-1}$
$=2 \sqrt{ } 1$
$=2$
i.e., $\frac{d y}{d x}=2$ at $x=1$. (Ans)

6. Question

Let $g(x)$ be the inverse of an invertible function $f(x)$ which is derivable at $x=3$. If $f(3)=9$ and $f^{\prime}(3)=9$, write
the value of $g^{\prime}(9)$.

Answer

From the definition of invertible function,
$g(f(x))=x \ldots$ (i)
So, $g(f(3))=3$, i.e., $g(9)=3$
Now, differentiating both sides of equation (i) w.r.t. x using the Chain Rule of Differentiation, we get $g^{\prime}(f(x)) . f^{\prime}(x)=1 \ldots(i i)$
Plugging in $x=3$ in equation (ii) gives us -
$g^{\prime}(f(3)) \cdot f^{\prime}(3)=1$
or, $g^{\prime}(9) .9=1$
i.e., $g^{\prime}(9)=1 / 9$ (Ans)

7. Question

If $y=\sin ^{-1}(\sin x),-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. Then write the value of $\frac{d y}{d x}$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Answer

For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,
$y=\sin ^{-1}(\sin x)$
$=x$
So, $\frac{d y}{d x}=1$ (Ans)
8. Question

If $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$ and $y=\sin ^{-1}(\sin x)$, find $\frac{d y}{d x}$.

Answer

For $\mathrm{x} \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$,
$y=\sin ^{-1}(\sin x)$
$=\sin ^{-1}(\sin (\pi-(\pi-x))$
(to get y in principal range of $\sin ^{-1} x$)
i.e.,
$y=\pi-x$
$\therefore \frac{d y}{d x}=-1$
From the last problem we see that $\frac{d y}{d x_{X \rightarrow \frac{\pi}{2}}}=1$ and $\frac{d y}{d_{x \rightarrow \frac{\pi^{2}}{2}}}=-1$
So, y is not differentiable at $\mathrm{x}=\frac{\pi}{2}$.
Extending this, we can say that y is not differentiable at $x=(2 n+1) \frac{\pi}{2}$
So, for $\mathrm{X} \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$
$\frac{d y}{d x}=\left\{\begin{array}{c}-1, x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \\ \text { does not exist at } x=\frac{\pi}{2}, \frac{3 \pi}{2}\end{array}\right.$ (Ans)
9. Question

If $\pi \leq x \leq 2 \pi$ and $y=\cos ^{-1}(\cos x)$, find $\frac{d y}{d x}$.

Answer

$y=\cos ^{-1}(\cos x)$
for $x \in(\pi, 2 \pi)$
$y=\cos ^{-1}(\cos x)$
$=\cos ^{-1}(\cos (\pi+(x-\pi)))$
$=\cos ^{-1}(-\cos (x-\pi))$
$=\pi-(x-\pi)$
$=2 \pi-x$
[Since, $\cos (\pi+x)=-\cos x$ and $\left.\cos ^{-1}(-x)=\pi-x\right]$
So, $\frac{d y}{d x}=-1$
For $\cos ^{-1}(\cos x), x=n_{\pi}$ are the 'sharp corners' where slope changes from 1 to -1 or vice versa, i.e., the points where the curves are not differentiable.

So, for $x \in[\pi, 2 \pi]$
$\frac{d y}{d x}=\left\{\begin{array}{c}-1, x \in(\pi, 2 \pi) \\ \text { does not exist for } x=\pi, 2 \pi\end{array}\right.$ (Ans)

10. Question

If $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, write the value of $\frac{d y}{d x}$ for $x>1$.

Answer

$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=2 \tan ^{-1} x$
So,
$\frac{d y}{d x}=2 \cdot \frac{1}{1+x^{2}}$
$=\frac{2}{1+x^{2}}$
So, answer is $\frac{d y}{d x}=\frac{2}{1+x^{2}}$ (Ans)
11. Question

If $f(0)=f(1)=0, f^{\prime}(1)=2$ and $y=f\left(e^{x}\right) e^{f(x)}$, write the value of $\frac{d y}{d x}$ at $x=0$.

Answer

$$
y=\frac{f\left(e^{x}\right)}{u} \frac{e^{f(x)}}{v}
$$

Using the Chain Rule of Differentiation,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{u} \cdot \mathrm{v}^{r}+\mathrm{u}^{r} \cdot \mathrm{v}$
$=f\left(e^{x}\right) \cdot e^{f(x)} f^{\prime}(x)+f^{\prime}\left(e^{x}\right) e^{x} \cdot e^{f(x)}$
At $x=0$,
$\frac{d y}{d x}=f\left(e^{0}\right) \cdot e^{f(0)} f^{I}(0)+f^{\prime}\left(e^{0}\right) e^{0} \cdot e^{f(0)}$
$=f(1) \cdot e^{f(0)} f^{\prime}(0)+f^{\prime}(1) \cdot e^{f(0)}$
$=0 . e^{0} f^{\prime}(0)+2 \cdot e^{0}$
$=0+2.1$
$=2$

12. Question

If $y=x|x|$, find $\frac{d y}{d x}$ for $x<0$.

Answer

$y=x|x|$
or, $y=\left\{\begin{array}{l}x^{2}, \text { when } x \geq 0 \\ -x^{2}, \text { when } x<0\end{array}\right.$
So, for $\mathrm{x}<0$
$\frac{d y}{d x}=\frac{d}{d x}\left(-x^{2}\right)$
$=-2 x$ (Ans)
13. Question

If $y=\sin ^{-1} x+\cos ^{-1} x$, find $\frac{d y}{d x}$.

Answer

We know that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
So, here $y=\sin ^{-1} x+\cos ^{-1} x$
$=\frac{\pi}{2}$ which is a constant.
Also, $\sin ^{-1} x$ and $\cos ^{-1} x$ exist only when $-1 \leq x \leq 1$
So, $\frac{d y}{d x}=0$ when $x \in[-1,1]$ and does not exist for all other values of x.

14. Question

If $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$, find $\frac{d y}{d x}$.

Answer

$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos \theta)$ and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(-\sin \theta)$
Using Chain Rule of Differentiation,
$\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}$
$=a(-\sin \theta) \cdot \frac{1}{a(1+\cos \theta)}$
$=-\frac{\sin \theta}{1+\cos \theta}$
$=-\frac{\sin \theta}{1+\cos \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta}$
$=-\frac{\sin \theta(1-\cos \theta)}{1-\cos ^{2} \theta}$
$=-\frac{\sin \theta(1-\cos \theta)}{\sin ^{2} \theta}$
$=-\frac{1-\cos \theta}{\sin \theta}$
$=\cot \theta-\operatorname{cosec} \theta$ (Ans)

15. Question

If $-\frac{\pi}{2}<x<0$ and $y=\tan ^{-1} \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$, find $\frac{d y}{d x}$.

Answer

$y=\tan ^{-1} \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$
$=\tan ^{-1} \sqrt{\frac{1-\left(1-2 \sin ^{2} x\right)}{1+\left(2 \cos ^{2} x-1\right)}}$
$=\tan ^{-1} \sqrt{\frac{2 \sin ^{2} x}{2 \cos ^{2} x}}$
$=\tan ^{-1} \sqrt{\tan ^{2} \mathrm{x}}$
When $-\frac{\pi}{2}<x<0$, $\tan x$ is negative. So, square root of $\tan ^{2} x$ in this condition is $-\tan x$.
So, $y=\tan ^{-1} \sqrt{\tan ^{2} x}$
$=\tan ^{-1}(-\tan x)$
$=-\tan ^{-1}(\tan x)$
$=-x$
And so $\frac{d y}{d x}=\frac{d}{d x}(-x)$
$=-1$, for $x \in\left(-\frac{\pi}{2}, 0\right)$ (Ans)

16. Question

If $y=x^{x}$, find $\frac{d y}{d x}$ at $x=e$.

Answer

$y=x^{x}$
Taking logarithm on both sides,
$\log y=x \log x$
Differentiating w.r.t. x on both sides,
$\frac{1}{y} \cdot \frac{d y}{d x}=x \cdot \frac{1}{x}+1 \cdot \log x$
$=1+\log x$
$\Rightarrow \frac{d y}{d x}=y(1+\log x)$
$=x^{x}(1+\log x)$
So, at $x=e$,
$\frac{d y}{d x}=e^{e}(1+\log e)$
$=\mathrm{e}^{\mathrm{e}}(1+1)$
$=2 \mathrm{e}^{\mathrm{e}}$ (Ans)

17. Question

If $y=\tan ^{-1}\left(\frac{1-x}{1+x}\right)$, find $\frac{d y}{d x}$.

Answer

$y=\tan ^{-1}\left(\frac{1-x}{1+x}\right)$
Using the Chain Rule of Differentiation,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{1+\left(\frac{1-\mathrm{x}}{1+\mathrm{x}}\right)^{2}} \cdot \frac{(1+\mathrm{x}) \cdot(1-\mathrm{x})^{r}-(1+\mathrm{x})^{r} \cdot(1-\mathrm{x})}{(1+\mathrm{x})^{2}}$
$=\frac{(1+x)^{2}}{(1+x)^{2}+(1-x)^{2}} \cdot \frac{(1+x)(-1)-(1)(1-x)}{(1+x)^{2}}$
$=-\frac{2}{(1+x)^{2}+(1-x)^{2}}$
$=-\frac{1}{1+\mathrm{x}^{2}}$ (Ans)
18. Question
if $y=\log _{a} x$, find $\frac{d y}{d x}$.

Answer

$y=\log _{a} x=\frac{\log _{e} x}{\log _{e} a}$
$\therefore \frac{d y}{d x}=\frac{1}{\log _{\mathrm{e}} \mathrm{a}} \cdot \frac{1}{\mathrm{x}}$
$=\frac{1}{x^{l^{2} \mathrm{e}_{\mathrm{e}} \mathrm{a}}}$ (Ans)
19. Question

If $y=\log \sqrt{\tan x}$, write $\frac{d y}{d x}$.

Answer

This particular problem is a perfect way to demonstrate how simple but powerful the Chain Rule of Differentiation is.

It is important to identify and break the problem into the individual functions with respect to which successive differentiation shall be done.

In this case, this is the way to break down the problem -
$\frac{d y}{d x}=\frac{d y}{d(\sqrt{\tan x})} \cdot \frac{d(\sqrt{\tan x})}{d(\tan x)} \cdot \frac{d(\tan x)}{d x}$
i.e., $\frac{d y}{d x}=\frac{d(\log \sqrt{\tan x})}{d(\sqrt{\tan x})} \cdot \frac{d(\sqrt{\tan x})}{d(\tan x)} \cdot \frac{d(\tan x)}{d x}$
$=\frac{1}{\sqrt{\tan x}} \cdot \frac{1}{2 \sqrt{\tan x}} \cdot \sec ^{2} x$
$=\frac{\sec ^{2} x}{2 \tan \mathrm{x}}$
$=\frac{1+\tan ^{2} x}{2 \tan \mathrm{x}}$
$=\frac{1}{2}(\tan x+\cot x)($ Ans $)$

20. Question

If $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, find $\frac{d y}{d x}$.

Answer

$-1<\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}} \leq 1$ holds for all $\mathrm{x} \in \mathbb{R}$.
So, $\mathrm{y}=\sin ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)+\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)=\frac{\pi}{2}$, for all $\mathrm{x} \in \mathbb{R}$
$\left(\because \sin ^{-1} \mathrm{~m}+\cos ^{-1} \mathrm{~m}=\frac{\pi}{2}, \mathrm{~m} \in[-1,1]\right)$
Hence, $\frac{d y}{d x}=0$, for all $x \in \mathbb{R}$.

21. Question

If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$, then write the value of $\frac{d y}{d x}$.

Answer

$y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$
$=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$
Which exists for $-1 \leq \frac{x-1}{x+1} \leq 1$ and is equal to $\frac{\pi}{2}$
Now, $\frac{x-1}{x+1} \leq 1$
$\Rightarrow \frac{x-1}{x+1}-1 \leq 0$
$\Rightarrow \frac{x-1}{x+1}-\frac{x+1}{x+1} \leq 0$
$\Rightarrow-\frac{2}{x+1} \leq 0$
$\Rightarrow \frac{2}{x+1} \geq 0$
$\Longrightarrow x+1>0$
$\Longrightarrow x>-1 \ldots$ (i)
Also, $\frac{x-1}{x+1} \geq-1$
$\Rightarrow \frac{x-1}{x+1}+1 \geq 0$
$\Rightarrow \frac{x-1}{x+1}+\frac{x+1}{x+1} \geq 0$
$\Rightarrow \frac{2 x}{x+1} \geq 0$
$\Longrightarrow x \geq 0$ or $x<-1 \ldots$ (ii)
Comparing equations (i) and (ii), we understand that the condition satisfying both inequalities is $\mathrm{X}_{\mathrm{x}} \geq 0$.
So, for $x \geq 0$,
$y=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)=\frac{\pi}{2}$, which is a constant
So, $\frac{d y}{d x}=\left\{\begin{array}{c}0, x \geq 0 \\ \text { does not exist for } x<0\end{array}\right.$ (Ans)
22. Question

If $|x|<1$ and $y=1+x+x^{2}+\ldots$ to ∞, then find the value of $\frac{d y}{d x}$.

Answer

Since $|x|<1$,
$y=1+x+x^{2}+\ldots$ to ∞
$=\frac{1}{1-x}$
$\therefore \frac{d y}{d x}=-\frac{1}{(1-x)^{2}} \cdot-1$
$=\frac{1}{(1-\mathrm{x})^{2}}$ (Ans)

23. Question

If $\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$, where $-1<\mathrm{x}<1$, then write the value of $\frac{\mathrm{du}}{\mathrm{dv}}$.

Answer

$\mathrm{u}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$ and $\mathrm{v}=\tan ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$
We know, $\frac{\mathrm{du}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$
Using the chain rule of differentiation,
$\frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1}{1+\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2}} \cdot \frac{\left(1+\mathrm{x}^{2}\right) \cdot(2 \mathrm{x})^{r}-\left(1+\mathrm{x}^{2}\right)^{r} \cdot(2 \mathrm{x})}{\left(1+\mathrm{x}^{2}\right)^{2}}$
$=\frac{\left(1+x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}+(2 x)^{2}} \cdot \frac{2\left(1+x^{2}\right)-(2 x)(2 x)}{\left(1+x^{2}\right)^{2}}$
$=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}+(2 x)^{2}}$
Using Chain Rule of Differentiation,
$\frac{d u}{d v}=\frac{d u}{d x} \cdot \frac{d x}{d v}$
$=\frac{2}{1+x^{2}} \cdot \frac{\left(1+x^{2}\right)^{2}+(2 x)^{2}}{2\left(1-x^{2}\right)}$
$=\frac{\left(1+x^{2}\right)^{2}+(2 x)^{2}}{\left(1+x^{2}\right)\left(1-x^{2}\right)}$
Dividing numerator and denominator by $\left(1+x^{2}\right)^{2}$,
$\frac{d u}{d v}=\frac{1+\left(\frac{2 x}{1+x^{2}}\right)^{2}}{\frac{1-x^{2}}{1+x^{2}}}$
$=\frac{1+\sin ^{2} u}{\cos u}$
$=\sec u(1+\tan u)$ (Ans)

24. Question

If $f(x)=\log \left\{\frac{u(x)}{v(x)}\right\}, u(1)=v(1)$ and $u^{\prime}(1)=v^{\prime}(1)=2$, then find the value of $f^{\prime}(1)$.

Answer

Using the Chain Rule of Differentiation,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{\frac{\mathrm{u}(\mathrm{x})}{\mathrm{v}(\mathrm{x})}} \cdot \frac{\mathrm{v}(\mathrm{x}) \cdot \mathrm{u}^{\prime}(\mathrm{x})-\mathrm{v}^{\prime}(\mathrm{x}) \cdot \mathrm{u}(\mathrm{x})}{(\mathrm{v}(\mathrm{x}))^{2}}$
$=\frac{\mathrm{v}(\mathrm{x}) \cdot \mathrm{u}^{\prime}(\mathrm{x})-\mathrm{v}^{\prime}(\mathrm{x}) \cdot \mathrm{u}(\mathrm{x})}{\mathrm{u}(\mathrm{x}) \cdot \mathrm{v}(\mathrm{x})}$
Putting $x=1$,
$f^{\prime}(1)=\frac{v(1) \cdot u^{\prime}(1)-v^{\prime}(1) \cdot u(1)}{u(1) \cdot v(1)}$
$=\frac{2 v(1)-2 u(1)}{u(1) \cdot v(1)}$
Since, $u(1)=v(1)$,
$2 \mathrm{v}(1)-2 \mathrm{u}(1)=0$
i.e., $f^{\prime}(1)=0$ (Ans)

25. Question

If $y=\log |3 x|, x \neq 0$, find $\frac{d y}{d x}$.

Answer

$y=\log |3 x|$
So, $\frac{d y}{d x}=\frac{1}{3 x} \cdot 3$
$=\frac{1}{\mathrm{x}}, \mathrm{x} \neq 0$
i.e.; $\frac{d y}{d x}=\frac{1}{x}, x \neq 0$ (Ans)

26. Question

If $f(x)$ is an even function, then write whether $f^{\prime}(x)$ is even or odd.

Answer

$f(x)$ is an even function.
This means that $f(-x)=f(x)$.
If we differentiate this equation on both sides w.r.t. x , we get -
$f^{\prime}(-x) .(-1)=f^{\prime}(x)$
or, $-f^{\prime}(-x)=f^{\prime}(x)$
i.e., $f^{\prime}(x)$ is an odd function. (Ans)
27. Question

If $f(x)$ is an odd function, then write whether $f^{\prime}(x)$ is even or odd.

Answer

$f(x)$ is an odd function.
This means that $f(-x)=-f(x)$.
If we differentiate this equation on both sides w.r.t. x , we get -
$f^{\prime}(-x) .(-1)=-f^{\prime}(x)$
or, $f^{\prime}(-x)=f^{\prime}(x)$
i.e., $f^{\prime}(x)$ is an even function. (Ans)

28. Question

Write the derivative of $\sin \mathrm{x}$ with respect to $\cos \mathrm{x}$.

Answer

We have to find $\frac{d}{d(\cos x)}(\sin x)$
So, we use the Chain Rule of Differentiation to evaluate this.
$\frac{d}{d(\cos x)}(\sin x)=\frac{d(\sin x)}{d x} \cdot \frac{d x}{d(\cos x)}$
$=\cos x \cdot \frac{1}{-\sin x}$
$=-\cot x$ (Ans)

