Mathematical Reasoning

Short Answer Type Questions

- Q. 1 Which of the following sentences are statements? Justify
 - (i) A triangle has three sides.
 - (ii) 0 is a complex number.
 - (iii) Sky is red.
 - (iv) Every set is an infinite set.
 - (v) 15 + 8 > 23.
 - (vi) y + 9 = 7
 - (vii) Where is your bag?
 - (viii) Every square is a rectangle.
 - (ix) Sum of opposite angles of a cyclic quadrilateral is 180°.
 - $(x) \sin^2 x + \cos^2 x = 0$
- **Sol.** As we know, a statement is a sentence which is either true or false but not both simultaneously.
 - (i) It is true statement.
 - (ii) It is true statement.
 - (iii) It is false statement.
 - (iv) It is false statement.
 - (v) It is false statement.
 - (vi) y + 9 = 7

It is not considered as a statement, since the value of *y* is not given.

- (vii) It is a question, so it is not a statement.
- (viii) It is a true statement.
- (ix) It is true statement.
- (x) It is false statement.

- $\mathbf{Q.2}$ Find the component statements of the following compound statements.
 - (i) Number 7 is prime and odd.
 - (ii) Chennai is in India and is the capital of Tamil Nadu.
 - (iii) The number 100 is divisible by 3, 11 and 5.
 - (iv) Chandigarh is the capital of Haryana and UP.
 - (v) $\sqrt{7}$ is a rational number or an irrational number.
 - (vi) 0 is less than every positive integer and every negative integer.
 - (vii) Plants use sunlight, water and carbon dioxide for photosynthesis.
 - (viii) Two lines in a plane either intersect at one point or they are parallel.
 - (ix) A rectangle is a quadrilateral or a 5 sided polygon.
- **Sol.** (i) p: Number 7 is prime.
 - q: Number 7 is odd.
 - (ii) P: Chennai is in India.
 - g: Chennai is capital of Tamil Nadu.
 - (iii) p: 100 is divisible by 3.
 - q:100 is divisible by 11.
 - *r* : 100 is divisible by 5.
 - (iv) p: Chandigarh is capital of Haryana.
 - q: Chandigarh is capital of UP.
 - (v) $p:\sqrt{7}$ is a rational number.
 - $q:\sqrt{7}$ is an irrational number.
 - (vi) p:0 is less than every positive integer.
 - q: 0 is less than every negative integer.
 - (vii) p: Plants use sunlight for photosysthesis.
 - q: Plants use water for photosynthesis.
 - *r* : Plants use carbon dioxide for photosysthesis.
 - (viii) p: Two lines in a plane intersect at one point.
 - q: Two lines in a plane are parallel.
 - (ix) p : A rectangli, is a quadrilateral.
 - q: A rectangle is a 5-sided polygon.
- **Q. 3** Write the component statements of the following compound statements and check whether the compound statement is true or false.
 - (i) 57 is divisible by 2 or 3.
 - (ii) 24 is a multiple of 4 and 6.
 - (iii) All living things have two eyes and two legs.
 - (iv) 2 is an even number and a prime number.
- **Sol.** (i) Given compound statement is of the form 'pvq'. Since, the statement 'pvq' has the truth value T whenever either p or q or both have the truth value T.
 - So. it is true statement.

Its component statements are

p: 57 is divisible by 2.

[false]

q: 57 is divisible by 3.

[true]

(ii) Given compound statement is of the form ' $p \wedge q$ '. Since, the statement ' $p \wedge q$ ' have the truth value T whenever both p and q have the truth value T.

So, it is a true statement.

Its component statements are

p: 24 is multiple of 4

[true]

q: 24 is multiple of 6.

[true]

(iii) It is a false statement. Since ' $p \land q$ ' has truth value F whenever either p or q or both have the truth value F.

Its component statements are

p: All living things have two eyes.

[false]

q: All living things have two legs.

[false]

(iv) It is a true statement.

Its component statements are

p: 2 is an even number.

[true]

q: 2 is a prime number.

[true]

- **Q. 4** Write the negative on the following simple statements.
 - (i) The number 17 is prime.
 - (ii) 2 + 7 = 6.
 - (iii) Violets are blue.
 - (iv) $\sqrt{5}$ is a rational number.
 - (v) 2 is not a prime number.
 - (vi) Every real number is an irrational number.
 - (vii) Cow has four legs.
 - (viii) A leap year has 366 days.
 - (ix) All similar triangles are congruent.
 - (x) Area of a circle is same as the perimeter of the circle.
- **Sol.** (i) The number 17 is not prime.
 - (ii) $2 + 7 \neq 6$.
 - (iii) Violets are not blue.
 - (iv) $\sqrt{5}$ is not a rational number.
 - (v) 2 is a prime number.
 - (vi) Every real number is not an irrational number.
 - (vii) Cow has not four legs.
 - (viii) A leap year has not 366 days.
 - (ix) There exist similar triangles which are not congruent.
 - (x) Area of a circle is not same as the perimeter of the circle.

Q. 5 Translate the following statements into symbolic form

- (i) Rahul passed in Hindi and English.
- (ii) x and y are even integers.
- (iii) 2, 3 and 6 are factors of 12.
- (iv) Either x or x + 1 is an odd integer.
- (v) A number is either divisible by 2 or 3.
- (vi) Either x = 2 or x = 3 is a root of $3x^2 x 10 = 0$.
- (vii) Students can take Hindi or English as an optional paper.

Sol. (i) p: Rahul passed in Hindi.

- q: Rahul passed in English.
- $p \wedge q$: Rahul passed in Hindi and English.
- (ii) p: x is even integers.
 - q: y is even integers.
 - $p \cap q : x$ and y are even integers.
- (iii) p: 2 is factor of 12.
 - q:3 is factor of 12.
 - r: 6 is factor of 12.
 - $p \wedge q \wedge r$: 2, 3 and 6 are factor of 12.
- (iv) p: x is an odd integer.
 - q:(x+1) is an odd integer.
 - $p \lor q$: Either x or (x + 1) is an odd integer.
- (v) p: A number is divisible by 2.
 - q: A number is divisible by 3.
 - $p \vee q$: A number is either divisible by 2 or 3.
- (vi) p: x = 2 is a root of $3x^2 x 10 = 0$.
 - q: x = 3 is a root of $3x^2 x 10 = 0$.
 - $p \lor q$: Either x = 2 or x = 3 is a root of $3x^2 x 10 = 0$.
- (vii) p: Students can take Hindi as an optional paper.
 - q: Students can take English as an optional subject.
 - $p \lor q$: Students can take Hindi or English as an optional paper.

Q. 6 Write down the negation of following compound statements.

- (i) All rational numbers are real and complex.
- (ii) All real numbers are rationals or irrationals.
- (iii) x = 2 and x = 3 are roots of the quadratic equation $x^2 5x + 6 = 0$.
- (iv) A triangle has either 3-sides or 4-sides.
- (v) 35 is a prime number or a composite number.
- (vi) All prime integers are either even or odd.
- (vii) |x| is equal to either x or -x.
- (viii) 6 is divisible by 2 and 3.

Thinking Process

Use (i)
$$\sim (p \land q) = \sim p \lor \sim q$$

(ii) $\sim (p \lor q) = \sim p \land \sim q$

- **Sol.** (i) Let p: All rational numbers are real.
 - *q* : All rational numbers are complex.
 - ~ p : All rational number are not real.
 - $\sim q$: All rational numbers are not complex.
 - $\sim (p \land q)$: All rational numbers are not real or not complex. $[\because \sim (p \land q) = \sim p \lor \sim q]$

- (ii) Let p: All real numbers are rationals.
 - g: All real numbers are irrational.

Then, the negation of the above statement is given by

 $\sim (p \lor q)$: All real numbers are not rational and all real numbers are not irrational.

$$[\because \sim (p \lor q) = \sim p \land \sim q]$$

- (iii) Let p: x = 2 is root of quadratic equation $x^2 5x + 6 = 0$.
 - q: x = 3 is root of quadratic equation $x^2 5x + 6 = 0$.

Then, the negation of conjunction of above statement is given by

- $\sim (p \land q)$: x = 2 is not a root of quadratic equation $x^2 5x + 6 = 0$ or x = 3 is not a root of the quadratic equation $x^2 - 5x + 6 = 0$.
- (iv) Let p: A triangle has 3-sides.
 - q: A triangle has 4-sides.

Then, negation of disjunction of the above statement is given by

- $\sim (p \lor q)$: A triangle has neither 3-sides nor 4-sides.
- (v) Let p: 35 is a prime number.
 - q: 35 is a composite number.

Then, negation of disjunction of the above statement is given by

- $\sim (p \lor q)$: 35 is not a prime number and it is not a composite number.
- (vi) Let p: All prime integers are even.
 - q: All prime integers are odd.

Then negation of disjunction of the above statement is given by

- $\sim (p \lor q)$: All prime integers are not even and all prime integers are not odd.
- (vii) Let p:|x| is equal to x.
 - q:|x| is equal to -x.

Then negation of disjunction of the above statement is given by

- $\sim (p \lor q) : |x|$ is not equal to x and it is not equal to -x.
- (viii) Let p:6 is divisible by 2.
 - q: 6 is divisible by 3.

Then, negation of conjunction of above statement is given by

 $\sim (p \land q)$: 6 is not divisible by 2 or it is not divisible by 3

Q. 7 Rewrite each of the following statements in the form of conditional statements.

- (i) The square of an odd number is odd.
- (ii) You will get a sweet dish after the dinner.
- (iii) You will fail, if you will not study.
- (iv) The unit digit of an integer is 0 or 5, if it is divisible by 5.
- (v) The square of a prime number is not prime.
- (vi) 2b = a + c, if a, b and c are in AP.
- **Sol.** We know that, some of the common expressions of conditional statement $p \rightarrow q$ are
 - (i) if p, then q
 - (ii) q if p
 - (iii) p only if q
 - (iv) p is sufficient for q
 - (v) q is necesary for p
 - (vi) $\sim q$ implies $\sim p$

So, use above information to get the answer

- (i) If the number is odd number, then its square is odd number.
- (ii) If you take the dinner, then you will get sweet dish.
- (iii) If you will not study, then you will fail.
- (iv) If an integer is divisible by 5, then its unit digits are 0 or 5.
- (v) If the number is prime, then its square is not prime.
- (vi) If a, b and c are in AP, then 2b = a + c.

Q. 8 Form the biconditional statement $p \leftrightarrow q$, where

- (i) p: The unit digits of an integer is zero.
 - q: It is divisible by 5.
- (ii) *p* : A natural number *n* is odd.
 - q: Natural number n is not divisible by 2.
- (iii) *p* : A triangle is an equilateral triangle.
 - q: All three sides of a triangle are equal.
- **Sol.** (i) $p \leftrightarrow q$: The unit digit of on integer is zero, if and only if it is divisible by 5.
 - (ii) $p \leftrightarrow q$: A natural number no odd if and only if it is not divisible by 2.
 - (iii) $p \leftrightarrow q$: A triangle is an equilateral triangle if and only if all three sides of triangle are equal.

- **Q. 9** Write down the contrapositive of the following statements.
 - (i) If x = y and y = 3, then x = 3.
 - (ii) If n is a natural number, then n is an integer.
 - (iii) If all three sides of a triangle are equal, then the triangle is equilateral.
 - (iv) If x and y are negative integers, then xy is positive.
 - (v) If natural number n is divisible by 6, then n is divisible by 2 and 3.
 - (vi) If it snows, then the weather will be cold.
 - (vii) If x is a real number such that 0 < x < 1, then $x^2 < 1$.

Thinking Process

We know that, the statement $(\sim q) \rightarrow (\sim p)$ is called contrapositive of the statement $p \rightarrow q$.

- **Sol.** (i) If $x \neq 3$, then $x \neq y$ or $y \neq 3$.
 - (ii) If *n* is not an integer, then it is not a natural number.
 - (iii) If the triangle is not equilateral, then all three sides of the triangle are not equal.
 - (iv) If xy is not positive integer, then either x or y is not negative integer.
 - (v) If natural number n is not divisible by 2 or 3, then n is not divisible by 6.
 - (vi) The weather will not be cold, if it does not snow.
 - (vii) If $x^2 \not< 1$, then x is not a real number such that 0 < x < 1.

Q. 10 Write down the converse of following statements.

- (i) If a rectangle R' is a square, then R is a rhombus.
- (ii) If today is Monday, then tomorrow is Tuesday.
- (iii) If you go to Agra, then you must visit Taj Mahal.
- (iv) If sum of squares of two sides of a triangle is equal to the square of third side of a triangle, then the triangle is right angled.
- (v) If all three angles of a triangle are equal, then the triangle is equilateral.
- (vi) If x : y = 3 : 2, then 2x = 3y.
- (vii) If S is a cyclic quadrilateral, then the opposite angles of S are supplementary.
- (viii) If x is zero, then x is neither positive nor negative.
 - (ix) If two triangles are similar, then the ratio of their corresponding sides are equal.

Thinking Process

We know that , the converse of the statement " $p \rightarrow q$ " is " $(q) \rightarrow (p)$ ".

- **Sol.** (i) If thes rectangle 'R' is rhombus, then it is square.
 - (ii) If tomorrow is Tuesday, then today is Monday.
 - (iii) If you must visit Taj Mahal, you go to Agra.
 - (iv) If the triangle is right angle, then sum of squares of two sides of a triangle is equal to the square of third side.
 - (v) If the triangle is equilateral, then all three angles of triangle are equal.

- (vi) If 2x = 3y, then x: y = 3:2
- (vii) If the opposite angles of a quadrilateral are supplementary, then S is cyclic.
- (viii) If x is neither positive nor negative, then x is 0.
 - (ix) If the ratio of corresponding sides of two triangles are equal, then triangles are similar.

Q. 11 Identify the quantifiers in the following statements.

- (i) There exists a triangle which is not equilateral.
- (ii) For all real numbers x and y, xy = yx.
- (iii) There exists a real number which is not a rational number.
- (iv) For every natural number x, x + 1 is also a natural number.
- (v) For all real numbers x with x > 3, x^2 is greater than 9.
- (vi) There exists a triangle which is not an isosceles triangle.
- (vii) For all negative integers x, x^3 is also a negative integers.
- (viii) There exists a statement in above statements which is not true.
- (ix) There exists an even prime number other than 2.
- (x) There exists a real number x such that $x^2 + 1 = 0$.
- **Sol.** Quantifier are the phrases like 'There exist' and 'For every', 'For all' etc.
 - (i) There exists
- (ii) For all
- (iii) There exists
- (iv) For every

(v) For all

(vi) There exists

(vii) For all

- (viii) There exists
- (ix) There exists
- (x) There exists

Q. 12 Prove by direct method that for any integer 'n', $n^3 - n$ is always even.

Thinking Process

We know that, in direct method to show a statement, if p then q is true, we assume p is true and show q is true i.e., $p \rightarrow q$.

Sol. Here, two cases arise

Case I When n is even,

Let
$$n = 2K, K \in N$$

$$\Rightarrow n^3 - n = (2K)^3 - (2K) = 2K (4K^2 - 1)$$

$$= 2 \lambda, \text{ where } \lambda = K (4K^2 - 1)$$

Thus, $(n^3 - n)$ is even when *n* is even.

Case II When *n* is odd.

Let
$$n = 2K + 1, K \in \mathbb{N}$$

 $\Rightarrow n^3 - n = (2K + 1)^3 - (2K + 1)$
 $= (2K + 1) [(2K + 1)^2 - 1]$
 $= (2K + 1) [4K^2 + 1 + 4K - 1]$
 $= (2k + 1) (4K^2 + 4K)$
 $= 4K (2K + 1) (K + 1)$
 $= 2\mu, \text{ when } \mu = 2K (K + 1) (2K + 1)$

Then, $n^3 - n$ is even when n is odd.

So, $n^3 - n$ is always even.

- Q. 13 Check validity of the following statement.
 - (i) *p*: 125 is divisible by 5 and 7.
 - (ii) q: 131 is a multiple of 3 or 11.
- **Sol.** (i) *p*: 125 is divisible by 5 and 7.

Let q: 125 is divisible by 5.

r : 125 is divisible by 7.

q is true, r is false.

 $\Rightarrow q \wedge r$ is false.

[since, $p \land q$ has the truth value F (false) whenever either p or q or both have the truth value F.1

Hence, p is not valid.

(ii) p: 131 is a multiple of 3 or 11.

Let q: 131 is multiple of 3.

r : 131 is a multiple of 11.

p is true, r is false.

 $\Rightarrow p \lor r$ is true.

[since, $p \lor q$ has the truth value T (true) whenever either p or q or both have the truth value T]

Hence, q is valid.

Q.14 Prove the following statement by contradiction method

p: The sum of an irrational number and a rational number is irrational.

Sol. Let *p* is false *i.e.*, sum of an irrational and a rational number is rational.

Let \sqrt{m} is irrational and *n* is rational number.

 $\Rightarrow \qquad \sqrt{m} + n = r$ $\Rightarrow \qquad \sqrt{m} = r - n$

[rational]

 \sqrt{m} is irrational, where as (r-n) is rational. This is contradiction.

Then, our supposition is wrong.

Hence, p is true.

- **Q. 15** Prove by direct method that for any real number x, y if x = y, then $x^2 = y^2$.
 - Thinking Process

In direct method assume p is true and show q is true i.e., $p \Rightarrow q$.

Sol. Let p: x = y, $x, y \in R$ On squaring both sides,

$$x^2 = y^2 : q$$
 [say]
$$p \Rightarrow q$$

Hence, we have the result.

Q. 16	Using contrapositive method prove t	that, if n^2 is an	even integer, then n
	is also an even integer.		

Thinking Process

In contrapositive method assume $\sim q$ is true and show $\sim p$ is true i.e., $\sim q \Rightarrow \sim p$.

Sol. Let $p: n^2$ is an even integer.

q: n is also an even integer.

Let $\sim p$ is true *i.e.*, n is not an even integer.

 $\Rightarrow n^2$ is not an even integer.

[since, square of an odd integer is odd]

 $\Rightarrow \sim p$ is true.

Therefore, $\sim q$ is true $\Rightarrow \sim p$ is true.

Hence proved.

Objective Type Questions

- **Q. 17** Which of the following is a statement?
 - (a) x is a real number
 - (b) Switch off the fan
 - (c) 6 is a natural number
 - (d) Let me go
- **Sol.** (c) As we know a statement is a sentence which is either true or false.

So, 6 is a natural number, which is true.

Hence, it is a statement.

- **Q. 18** Which of the following is not a statement.
 - (a) Smoking is injurious to health
 - (b) 2 + 2 = 4
 - (c) 2 is the only even prime number
 - (d) Come here
- **Sol.** (d) 'Come here' is not a statement. Since, no sentence can be called a statement, if it is an order.
- **Q. 19** The connective in the statement (2+7>9) or 2+7<9 is

(a) and

(b)or

(c) >

(d) <

- **Sol.** (b) In 2 + 7 > 9 or 2 + 7 < 9, or is the connective.
- Q. 20 The connective in the statement "Earth revolves round the Sun and Moon is a satellite of earth" is

(a) or

(b) Earth

(c) Sun

(d) and

Sol. (d) Connective word is 'and'.

- Q. 21 The negation of the statement "A circle is an ellipse" is
 - (a) An ellipse is a circle
- (b) An ellipse is not a circle
- (c) A circle is not an ellipse
- (d) A circle is an ellipse
- **Sol.** (c) Let p: A circle is an ellipse.
 - $\sim p$: A circle is not an ellipse.
- Q. 22 The negation of the statement "7 is greater than 8" is
 - (a) 7 is equal to 8

(b) 7 is not greater than 8

(c) 8 is less than 7

- (d) None of these
- **Sol.** (b) Let p: 7 is greater than 8.
 - $\sim p$: 7 is not greater than 8.
- Q. 23 The negation of the statement "72 is divisible by 2 and 3" is
 - (a) 72 is not divisible by 2 or 72 is not divisible by 3
 - (b) 72 is not divisible by 2 and 72 is not divisible by 3
 - (c) 72 is divisible by 2 and 72 is not divisible by 3
 - (d) 72 is not divisible by 2 and 72 is divisible by 3
- **Sol.** (b) Let p: 72 is divisible by 2 and 3.
 - Let q: 72 is divisible by 2.
 - r: 72 is divisible by 3.
 - $\sim q$: 72 is not divisible by 2.
 - $\sim r$: 72 is not divisible by 3.
 - $\sim (q \wedge r) : \sim q \vee \sim r$
 - \Rightarrow 72 is not divisible by 2 or 72 is not divisible by 3.
- \mathbf{Q} . **24** The negation of the statement "Plants take in \mathbf{CO}_2 and give out \mathbf{O}_2 " is
 - (a) Plants do not take in CO₂ and do not given out O₂
 - (b) Plants do not take in CO₂ or do not give out O₂
 - (c) Plants take is CO₂ and do not give out O₂
 - (d) Plants take in CO₂ or do not give out O₂
- **Sol.** (b) Let p: Plants take in CO_2 and give out O_2 .
 - Let q: Plants take in CO_2 .
 - r: Plants give out O_2 .
 - $\sim q$: Plants do not take in CO_2 .
 - $\sim r$: Plants do not give out O_2 .
 - \sim ($q \wedge r$): Plants do not take in CO_2 or do not give out O_2 .
- Q. 25 The negative of the statement "Rajesh or Rajni lived in Bangaluru" is
 - (a) Rajesh did not live in Bengaluru or Rajni lives in Bengaluru
 - (b) Rajesh lives in Bengaluru and Rajni did not live in Bengaluru
 - (c) Rajesh did not live in Bengaluru and Rajni did not live in Bengaluru
 - (d) Rajesh did not live in Bengaluru or Rajni did not live in Bengaluru