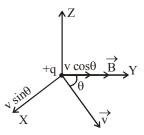
MOVING CHARGES AND MAGNETISM

GENERAL KEY CONCEPT

1. Force on a moving charge:- A moving charge is a source of magnetic field.



Let a positive charge q is moving in a uniform magnetic field \overrightarrow{B} with velocity \overrightarrow{v} .

 $F \propto q \implies F \propto v \sin \theta \implies F \propto B$

- $\therefore \quad F \propto qBv \sin\theta \implies F = kq Bv \sin\theta \ [k = constant]$
- k = 1 in S.I. system.
- $\therefore \quad \mathbf{F} = \mathbf{q} \mathbf{B} \mathbf{v} \, \sin \theta \text{ and } \qquad \overrightarrow{\mathbf{F}} = \mathbf{q} (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})$

2. Magnetic field strength (\overrightarrow{B}) :

In the equation $F = qBv \sin \theta$, if q = 1, v = 1,

 $\sin\theta = 1$ i.e. $\theta = 90^{\circ}$ then F = B.

 \therefore Magnetic field strength is defined as the force experienced by a unit charge moving with unit velocity perpendicular to the direction of magnetic field.

Special Cases:

- (1) It $\theta = 0^\circ$ or 180° , $\sin\theta = 0$
 - \therefore F = 0

A charged particle moving parallel to the magnetic field, will not experience any force.

(2) If v = 0, F = 0

A charged particle at rest in a magnetic field will not experience any force.

(3) If $\theta = 90^\circ$, $\sin\theta = 1$ then the force is maximum

 $F_{max.} = qvB$

A charged particle moving perpendicular to magnetic field will experience maximum force.

3. S.I. unit of magnetic field intensity. It is called tesla (T).

 $B = \frac{F}{qv \sin \theta}$ If q = 1C, v = 1m/s, θ = 90° i.e. $\sin \theta$ = 1 and F = 1N Then B = 1T. The strength of magnetic field at a point is said to be 1T if a charge of 1C while moving at right angle to a magnetic field, with a velocity of 1 m/s experiences a force of 1N at that point.

4. Biot-Savart's law:– The strength of magnetic field or magnetic flux density at a point P (dB) due to current element dl depends on,

(i)
$$dB \propto I$$

- (ii) dB \propto dl
- (iii) dB $\propto \sin \theta$
- (iv) dB $\propto \frac{1}{r^2}$,

 $\vec{dl} \xrightarrow{\theta} \vec{r} p$

Combining, dB $\propto \frac{Idl\sin\theta}{r^2} \Rightarrow dB = k \frac{Idl\sin\theta}{r^2}$ [k = Proportionality constant]

In S.I. units, $k = \frac{\mu_0}{4\pi}$ where μ_0 is called permeability of free space. $\mu_0 = 4\pi \times 10^{-7} \text{ TA}^{-1}\text{m}$

 $\therefore \ dB = \frac{\mu_0}{4\pi} \frac{IdI\sin\theta}{r^2} \ and \ d\vec{B} = \frac{\mu_0}{4\pi} I \frac{(\vec{dl} \times \vec{r})}{r^3}$

 $d\overline{B}$ is perpendicular to the plane containing $d\overline{\ell}$ and \overline{r} and is directed inwards.

5. Applications of Biot-Savart's law:-

(a) Magnetic field (B) at the Centre of a Circular Coil Carrying Current.

$$\mathbf{B} = \frac{\mu_0 n\mathbf{I}}{2r}$$

where n is the number of turns of the coil. I is the current in the coil and r is the radius of the coil.

(b) Magnetic field due to a straight conductor carrying current.

$$B = \frac{\mu_0 I}{4\pi a} (\sin \phi_2 + \sin \phi_1)$$

where a is the perpendicular distance of the conductor from the point where field is to the measured.

 ϕ_1 and ϕ_2 are the angles made by the two ends of the conductor with the point.

(c) For an infinitely long conductor, $\phi_1 = \phi_2 = \pi/2$

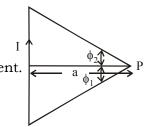
$$\therefore \mathbf{B} = \frac{\mu_0}{4\pi} \cdot \frac{2\mathbf{I}}{\mathbf{a}}$$

(d) Magnetic field at a point on the axis of a Circular Coil Carrying Current. when point P lies far away from the centre of the coil.

$$B \quad \frac{0}{4}.\frac{2M}{x^3}$$

where M = nIA = magnetic dipole moment of the coil.

x is the distance of the point where the field is to the measured, n is the number of turns, I is the current and A is the area of the coil.



6. Ampere's circuital law:-

The line integral of magnetic field \overrightarrow{B} around any closed path in vacuum is μ_0

times the total current through the closed path. i.e. $\oint \vec{B}.d\vec{l} = \mu_0 I$

7. Application of Ampere's circuital law:-

(a) Magnetic field due to a current carrying solenoid, $B = \mu_0 nI$ *n* is the number of turns per unit length of the solenoid.

At the edge of a short solenoid, B = $\frac{\mu_0 nI}{2}$

(b) Magnetic field due to a toroid or endless solenoid $B = \mu_0 n I$

8. Motion of a charged particle in uniform electric field:-

The path of a charged particle in an electric field is a parabola.

Equation of the parabola is $x^2 = \frac{2mv^2}{aE}y$

where x is the width of the electric field.

y is the displacement of the particle from its straight path.

v is the speed of the charged particle.

q is the charge of the particle

E is the electric field intensity.

m is the mass of the particle.

9. Motion of the charged particle in a magnetic field. The path of a charged particle moving in a uniform magnetic field (\vec{B}) with a velocity \vec{v} making an angle θ with \vec{B} is a helix.

$$\stackrel{O}{\longrightarrow} \underbrace{cos}_{\theta} \xrightarrow{\sigma} B$$

The component of velocity $v \cos_{\theta}$ will not provide a force to the charged particle, so under this velocity the particle with move forward with a constant velocity along the direction of \vec{B} . The other component $v \sin_{\theta}$ will produce the force F = q Bv \sin_{θ} , which will supply the necessary centripetal force to the charged particle in moving along a circular path of radius r.

$$\therefore \text{ Centripetal force} = \frac{m(v\sin\theta)^2}{r} = B \text{ qv } \sin\theta$$
$$\therefore \text{ v } \sin\theta = \frac{Bqr}{m}$$

Angular velocity of rotation = w = $\frac{v \sin \omega}{r} = \frac{Bq}{m}$ Frequency of rotation = $v = \frac{\omega}{2\pi} = \frac{Bq}{2\pi m}$

Time period of revolution = T = $\frac{1}{v} = \frac{2\pi m}{Bq}$

- **10. Cyclotron:** It is a device used to accelerate and hence energies the positively charged particle. This is done by placing the particle in an oscillating electric field and a perpendicular magnetic field. The particle moves in a circular path.
 - :. Centripetal force = magnetic Lorentz force

$$\Rightarrow \frac{mv^2}{r} = Bqv \Rightarrow \frac{mv}{Bq} = r \leftarrow \text{ radius of the circular path}$$

Time to travel a semicircular path = $\frac{\pi r}{v} = \frac{\pi m}{Bq}$ = constant.

If \mathbf{v}_0 be the maximum velocity of the particle and \mathbf{r}_0 be the maximum radius of its path then

$$\frac{\mathrm{mv_0}^2}{\mathrm{r_0}} = \mathrm{Bqv_0} \Longrightarrow \mathrm{v_0} = \frac{\mathrm{Bqr_0}}{\mathrm{m}}$$

Max. K.E. of the particle = $\frac{1}{2}mv_0^2 = \frac{1}{2}m\left(\frac{Bqr_0}{m}\right)^2 \implies (K.E.)_{max.} = \frac{B^2q^2r_0^2}{2m}$

Time period of the oscillating electric field \Rightarrow T = $\frac{2\pi m}{Bq}$.

Time period is independent of the speed and radius.

Cyclotron frequency = $v = \frac{1}{T} = \frac{Bq}{2\pi m}$

Cyclotron angular frequency = $\omega_0 = 2\pi v = \frac{Bq}{m}$

11. Force on a current carrying conductor placed in a magnetic field:

 $\vec{F} = I | \vec{\ell} \times \vec{B} |$ or $F = I \ell B \sin \theta$

where I is the current through the conductor

B is the magnetic field intensity.

l is the length of the conductor.

 $\boldsymbol{\theta}$ is the angle between the direction of current and magnetic field.

(i) When $\theta = 0^\circ$ or 180° , $\sin \theta = 0 \Rightarrow F = 0$

 \therefore When a conductor is placed along the magnetic field, no force will act on the conductor.

(ii) When $\theta = 90^\circ$, $\sin \theta = 1$, F is maximum.

```
F_{max} = I \ell B
```

when the conductor is placed perpendicular to the magnetic field, it will experience maximum force.

12. Force between two parallel conductors carrying current:-

(a) When the current is in same direction the two conductors will attract each other with a force

 $F = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{r}$ per unit length of the conductor

MOVING CHARGES AND MAGNETISM

- (b) When the current is in opposite direction the two conductors will repel each other with the same force.
- (c) S.I. unit of current is 1 ampere. (A).

1A is the current which on flowing through each of the two parallel uniform linear conductor placed in free space at a distance of 1 m from each other produces a force of 2×10^{-7} N/m along their lengths.

13. Torque on a current carrying coil placed in a magnetic field:-

 $\vec{\tau} = \vec{M} \times \vec{B} \Rightarrow \tau = MB \sin \alpha = nIBA \sin \alpha$ where M is the magnetic dipole moment of the coil.

M = nIA

where n is the number of turns of the coil.

I is the current through the coil.

B is the magnetic field intensity.

A is the area of the coil.

 α is the angle between the magnetic field $\left(\overline{B}\right)$ and the perpendicular to the plane of the coil.

Special Cases:

(i) If the coil is placed parallel to magnetic field $\theta = 0^{\circ}$, $\cos \theta = 1$ then torque is maximum.

 $\tau_{max.} = nIBA$

(ii) If the coil is placed perpendicular to magnetic field, $\theta = 90^{\circ}$, $\cos \theta = 0$

 $\therefore \tau = 0$

14. Moving coil galvanometer:- This is based on the principle that when a current carrying coil is placed in a magnetic field it experiences a torque. There is a restoring torque due to the phosphor bronze strip which brings back the coil to its normal position.

In equilibrium, Deflecting torque = Restoring torque

nIBA = k_{θ} [k = restoring torque/unit twist of the phosphor bronze strip]

$$I = \frac{k}{nBA} \theta = G\theta \qquad \text{where } G = \frac{k}{nBA} = \text{Galvanometer constant}$$

$$\therefore \quad I \propto \theta$$

Current sensitivity of the galvanometer is the deflection produced when unit current is passed through the galvanometer.

$$I_s = \frac{\theta}{I} = \frac{nBA}{k}$$

Voltage sensitivity is defined as the deflection produced when unit potential difference is applied across the galvanometer.

 $V_s = \frac{\theta}{V} = \frac{\theta}{IR} = \frac{nBA}{kR}$ [R = Resistance of the galvanometer]

 Condition for the maximum sensitivity of the galvanometer:-The galvanometer is said to be sensitive if a small current produces a large deflection.

$$\therefore \quad \theta = \frac{nBA}{k}I$$

:..

 \therefore θ will be large if (i) n is large, (ii) B is large (iii) A is large and (iv) k is small.

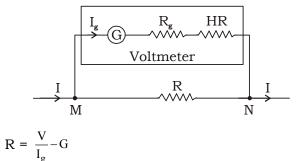
16. Conversion of galvanometer into voltmeter and ammeter

(a) A galvanometer is converted to voltmeter by putting a high resistance in series with it.

Total resistance of voltmeter = R_g + R where R_g is the galvonometer resistance. R is the resistance added in series.

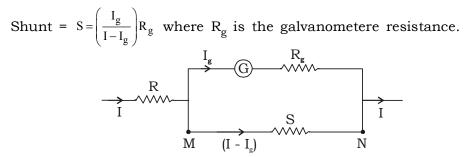
Current through the galvanometer = $I_g = \frac{V}{Rg+R}$

where V is the potential difference across the voltmeter.



Range of the voltmeter: 0 - V volt.

(b) A galvanometer is converted into an ammeter by connecting a low resistance in parallel with it (shunt)



I is the total current through the ammeter.

 I_g is the current through the ammeter. Effective resistance of the ammeter $R=\frac{R_g}{R_g+S}$

The range of the ammeter is 0 - I A. An ideal ammeter has zero resistance.