CONTINUITY

1. DEFINITION

A function $f(\mathrm{x})$ is said to be continuous at $\mathrm{x}=\mathrm{a}$; where $\mathrm{a} \in$ domain of $f(\mathrm{x})$, if
$\lim _{\mathrm{x} \rightarrow \mathrm{a}^{-}} f(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} f(\mathrm{x})=f(\mathrm{a})$
i.e., $\mathrm{LHL}=$ RHL $=$ value of a function at $\mathrm{x}=\mathrm{a}$
or $\lim _{\mathrm{x} \rightarrow \mathrm{a}} f(\mathrm{x})=f(\mathrm{a})$

1.1 Reasons of discontinuity

If $f(\mathrm{x})$ is not continuous at $\mathrm{x}=\mathrm{a}$, we say that $f(\mathrm{x})$ is discontinuous at $\mathrm{x}=\mathrm{a}$.
There are following possibilities of discontinuity :

1. $\lim _{x \rightarrow \mathrm{a}^{-}} f(\mathrm{x})$ and $\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} f(\mathrm{x})$ exist but they are not equal.
2. $\quad \lim _{\mathrm{x} \rightarrow \mathrm{a}^{-}} f(\mathrm{x})$ and $\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} f(\mathrm{x})$ exists and are equal but not equal to $f(\mathrm{a})$.
3. $f(\mathrm{a})$ is not defined.
4. At least one of the limits does not exist. Geometrically, the graph of the function will exhibit a break at the point of discontinuity.

The graph as shown is discontinuous at $\mathrm{x}=1,2$ and 3 .

2. PROPERTIES OF CONTINUOUS FUNCTIONS

Let $f(\mathrm{x})$ and $g(\mathrm{x})$ be continuous functions at $\mathrm{x}=\mathrm{a}$. Then,

1. $\mathrm{c} f(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$, where c is any constant.
2. $f(\mathrm{x}) \pm g(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
3. $f(\mathrm{x}) \cdot g(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
4. $\quad f(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$, provided $g(\mathrm{a}) \neq 0$.-
5. If $f(\mathrm{x})$ is continuous on $[\mathrm{a}, \mathrm{b}]$ such that $f(\mathrm{a})$ and $f(\mathrm{~b})$ are of opposite signs, then there exists at least one solution of equation $f(\mathrm{x})=0$ in the open interval (a, b).

3. THE INTERMEDIATE VALUE THEOREM

Suppose $f(\mathrm{x})$ is continuous on an interval I , and a and b are any two points of I . Then if y_{0} is a number between $f(\mathrm{a})$ and $f(\mathrm{~b})$, their exits a number c between a and b such that $f(\mathrm{c})=\mathrm{y}_{0}$.

The Function f, being continuous on (a,b) takes on every value between $f(\mathrm{a})$ and $f(\mathrm{~b})$

Noto.

That a function f which is continuous in $[\mathrm{a}, \mathrm{b}]$ possesses the following properties :
(i) If f (a) and f (b) possess opposite signs, then there exists at least one solution of the equation $f(\mathrm{x})=0$ in the open interval (a, b).
(ii) If K is any real number between $f(\mathrm{a})$ and $f(\mathrm{~b})$, then there exists at least one solution of the equation f $(x)=K$ in the open interval (a, b).

4. CONTINUITY IN AN INTERVAL

(a) A function f is said to be continuous in (a, b) if f is continuous at each and every point $\in(a, b)$.
(b) A function f is said to be continuous in a closed interval $[\mathrm{a}, \mathrm{b}]$ if:
(1) $\quad f$ is continuous in the open interval (a, b) and
(2) f is right continuous at 'a' i.e. Limit $f(\mathrm{x})=f(\mathrm{a})=$ a finite quantity.
(3) f is left continuous at 'b'; i.e. $\underset{\mathrm{x} \rightarrow \mathrm{b}^{-}}{\operatorname{Limit}}$ $f(\mathrm{x})=f(\mathrm{~b})=$ a finite quantity.

5. A LIST OF CONTINUOUS FUNCTIONS

Function $\mathrm{f}(\mathrm{x})$

1. constant c
2. x^{n}, n is an integer ≥ 0
3. x^{-n}, n is a positive integer
4. $|x-a|$
5. $\quad P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots . .+a_{n}$
6. $\frac{p(x)}{q(x)}$, where $p(x)$ and
$q(x)$ are polynomial in x
7. $\sin x$
8. $\quad \cos x$
9. $\tan x$
10. $\cot x$
11. $\sec \mathrm{X}$
12. $\operatorname{cosec} \mathrm{X}$
13. e^{x}
e^{x}
14. $\log _{e} x$

Interval in which
$f(x)$ is continuous
$(-\infty, \infty)$
$(-\infty, \infty)$
$(-\infty, \infty)-\{0\}$
$(-\infty, \infty)$
$(-\infty, \infty)$
$(-\infty, \infty)-\{x ; q(x)=0\}$
$(-\infty, \infty)$
$(-\infty, \infty)$
$(-\infty, \infty)-\left\{(2 n+1) \frac{\pi}{2}: n \in I\right\}$
$(-\infty, \infty)-\{\mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}$
$(-\infty, \infty)-\{(2 n+1)$
$\pi / 2: \mathrm{n} \in \mathrm{I}\}$
$(-\infty, \infty)-\{n \pi: n \in I\}$
$(-\infty, \infty)$
$(0, \infty)$

6. TYPES OF DISCONTINUITIES

Type-1 : (Removable type of discontinuities)

In case, $\underset{\mathrm{x} \rightarrow \mathrm{c}}{\operatorname{Limit}} f(\mathrm{x})$ exists but is not equal to $f(\mathrm{c})$ then the function is said to have a removable discontnuity or discontinuity of the first kind. In this case, we can redefine the function such that $\underset{\mathrm{x} \rightarrow \mathrm{c}}{\operatorname{Limit}} f(\mathrm{x})=f(\mathrm{c})$ and make it continuous at $x=c$. Removable type of discontinuity can be further classified as :
(a) Missing Point Discontinuity :

Where $\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} f(\mathrm{x})$ exists finitely but $f(\mathrm{a})$ is not defined. E.g. $f(\mathrm{x})=\frac{(1-\mathrm{x})\left(9-\mathrm{x}^{2}\right)}{(1-\mathrm{x})}$ has a missing point discontinuity at $x=1$, and
$f(\mathrm{x})=\frac{\sin \mathrm{x}}{\mathrm{x}}$ has a missing point discontinuity at $\mathrm{x}=0$.

missing point discontinuity at $\mathrm{x}=\mathrm{a}$
(b) Isolated Point Discontinuity :

Where $\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} f(\mathrm{x})$ exists $\& f(\mathrm{a})$ also exists but;

$$
\operatorname{Limit}_{x \rightarrow a} \neq f(a)
$$

E.g. $f(\mathrm{x})=\frac{\mathrm{x}^{2}-16}{\mathrm{x}-4}, \mathrm{x} \neq 4$ and $f(4)=9$ has an isolated point discontinuity at $x=4$.

Similarly $f(\mathrm{x})=[\mathrm{x}]+[-\mathrm{x}]=\left[\begin{array}{cl}0 & \text { if } \mathrm{x} \in \mathrm{I} \\ -1 & \text { if } \mathrm{x} \notin \mathrm{I}\end{array}\right.$ has an isolated point discontinuity at all $\mathrm{x} \in \mathrm{I}$.

Isolated point discontinuity at $\mathrm{x}=\mathrm{a}$

Type-2 : (Non-Removable type of discontinuities)

In case, $\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} f(\mathrm{x})$ does not exist, then it is not possible to make the function continuous by redefining it. Such discontinuities are known as non-removable discontinuity or discontinuity of the 2 nd kind. Non-removable type of discontinuity can be further classified as :

non-removable discontinuity at $\mathrm{x}=\mathrm{a}$

(a) Finite Discontinuity :

E.g., $f(x)=x-[x]$ at all integral $x ; f(x)=\tan ^{-1} \frac{1}{x}$ at $x=0$ and

$$
f(\mathrm{x})=\frac{1}{1+2^{\frac{1}{\mathrm{x}}}} \text { at } \mathrm{x}=0 \quad\left(\text { note that } f\left(0^{+}\right)=0 ; f\left(0^{-}\right)=1\right)
$$

(b) Infinite Discontiunity :

E.g., $f(\mathrm{x})=\frac{1}{\mathrm{x}-4}$ or $g(\mathrm{x})=\frac{1}{(\mathrm{x}-4)^{2}}$ at $\mathrm{x}=4 ; f(\mathrm{x})=2^{\tan \mathrm{x}}$
at $\mathrm{x}=\frac{\pi}{2}$ and $f(\mathrm{x})=\frac{\cos \mathrm{x}}{\mathrm{x}}$ at $\mathrm{x}=0$.
(c) Oscillatory Discontinuity :
E.g., $f(x)=\sin \frac{1}{x}$ at $x=0$.

In all these cases the value of $f(\mathrm{a})$ of the function at $\mathrm{x}=\mathrm{a}$ (point of discontinuity) may or may not exist but $\underset{x \rightarrow a}{\operatorname{Limita}}$ does not exist.

From the adjacent graph note that
$-f$ is continuous at $\mathrm{x}=-1$

- f has isolated discontinuity at $\mathrm{x}=1$
$-f$ has missing point discontinuity at $\mathrm{x}=2$
$-f$ has non-removable (finite type) discontinity at the origin.

Note

(a) In case of dis-continuity of the second kind the nonnegative difference between the value of the RHL at $x=a$ and LHL at $x=a$ is called the jump of discontinuity. A function having a finite number of jumps in a given interval I is called a piece wise continuous or sectionally continuous function in this interval.
(b) All Polynomials, Trigonometrical functions, exponential and Logarithmic functions are continuous in their domains.
(c) If $f(\mathrm{x})$ is continuous and $g(\mathrm{x})$ is discontinuous at $\mathrm{x}=\mathrm{a}$ then the product function $\phi(\mathrm{x})=f(\mathrm{x}) . g(\mathrm{x})$ is not necessarily be discontinuous at $\mathrm{x}=\mathrm{a}$. e.g.

$$
f(\mathrm{x})=\mathrm{x} \text { and } g(\mathrm{x})=\left[\begin{array}{cc}
\sin \frac{\pi}{\mathrm{x}} & \mathrm{x} \neq 0 \\
0 & \mathrm{x}=0
\end{array}\right.
$$

(d) If $f(\mathrm{x})$ and $g(\mathrm{x})$ both are discontinuous at $\mathrm{x}=\mathrm{a}$ then the product function $\phi(\mathrm{x})=f(\mathrm{x}) . g(\mathrm{x})$ is not necessarily be discontinuous at $\mathrm{x}=\mathrm{a}$. e.g.

$$
f(\mathrm{x})=-g(\mathrm{x})=\left[\begin{array}{cc}
1 & \mathrm{x} \geq 0 \\
-1 & \mathrm{x}<0
\end{array}\right.
$$

(e) Point functions are to be treated as discontinuous eg. $f(\mathrm{x})=\sqrt{1-\mathrm{x}}+\sqrt{\mathrm{x}-1}$ is not continuous at $\mathrm{x}=1$.
(f) A continuous function whose domain is closed must have a range also in closed interval.
(g) If f is continuous at $\mathrm{x}=a$ and g is continuous at $\mathrm{x}=f(\mathrm{a})$ then the composite $g[f(\mathrm{x})]$ is continous at $\mathrm{x}=\mathrm{a}$ E. $\mathrm{g} f(\mathrm{x})=\frac{\mathrm{x} \sin \mathrm{x}}{\mathrm{x}^{2}+2}$ and $g(\mathrm{x})=|\mathrm{x}|$ are continuous at x $=0$, hence the composite $(g o f)(x)=\left|\frac{\mathrm{x} \sin \mathrm{x}}{\mathrm{x}^{2}+2}\right|$ will also be continuous at $\mathrm{x}=0$.

DIFFERENTIABILITY

1. DEFINITION

Let $f(\mathrm{x})$ be a real valued function defined on an open interval (a, b) where $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$. Then $f(\mathrm{x})$ is said to be differentiable or derivable at $\mathrm{x}=\mathrm{c}$,
iff, $\lim _{\mathrm{x} \rightarrow \mathrm{c}} \frac{f(\mathrm{x})-f(\mathrm{c})}{(\mathrm{x}-\mathrm{c})}$ exists finitely.
This limit is called the derivative or differentiable coefficient of the function $f(\mathrm{x})$ at $\mathrm{x}=\mathrm{c}$, and is denoted by
$f^{\prime}(\mathrm{c})$ or $\frac{\mathrm{d}}{\mathrm{dx}}(f(\mathrm{x}))_{\mathrm{x}=\mathrm{c}}$.

- Slope of Right hand secant $=\frac{f(\mathrm{a}+\mathrm{h})-f(\mathrm{a})}{\mathrm{h}}$ as $\mathrm{h} \rightarrow 0, \mathrm{P} \rightarrow \mathrm{A}$ and secant $(\mathrm{AP}) \rightarrow$ tangent at A
$\Rightarrow \quad$ Right hand derivative $=\operatorname{Lim}_{\mathrm{h} \rightarrow 0}\left(\frac{f(\mathrm{a}+\mathrm{h})-f(\mathrm{a})}{\mathrm{h}}\right)$
$=\quad$ Slope of tangent at A (when approached from right) $f^{\prime}\left(\mathrm{a}^{+}\right)$.
- Slope of Left hand secant $=\frac{f(\mathrm{a}-\mathrm{h})-f(\mathrm{a})}{-\mathrm{h}}$ as h
$\rightarrow 0, \mathrm{Q} \rightarrow \mathrm{A}$ and secant $\mathrm{AQ} \rightarrow$ tangent at A
$\Rightarrow \quad$ Left hand derivative $=\operatorname{Lim}_{\mathrm{h} \rightarrow 0}\left(\frac{f(\mathrm{a}-\mathrm{h})-f(\mathrm{a})}{-\mathrm{h}}\right)$
$=$ Slope of tangent at A (when approached from left) $f^{\prime}\left(\mathrm{a}^{-}\right)$. Thus, $f(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{c}$.

$$
\Leftrightarrow \quad \lim _{\rightarrow \mathrm{c}} \frac{f()-f(\mathrm{c})}{(-\mathrm{c})} \text { exists finitely }
$$

$\Leftrightarrow \quad \lim _{\rightarrow c^{-}} \frac{f()-f(c)}{(-c)}=\lim _{\rightarrow c^{+}} \frac{f()-f(c)}{(-c)}$
$\Leftrightarrow \quad \lim _{\mathrm{h} \rightarrow 0} \frac{f(\mathrm{c}-\mathrm{h})-f(\mathrm{c})}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0} \frac{f(\mathrm{c}+\mathrm{h})-f(\mathrm{c})}{\mathrm{h}}$

Hence, $\quad \lim _{\mathbf{x} \rightarrow \mathbf{c}^{-}} \frac{f(\mathbf{x})-\boldsymbol{f}(\mathbf{c})}{(\mathbf{x}-\mathbf{c})}=\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\boldsymbol{f}(\mathbf{c}-\mathbf{h})-\boldsymbol{f}(\mathbf{c})}{-\mathbf{h}}$ is
called the left hand derivative of $f(\mathrm{x})$ at $\mathrm{x}=\mathrm{c}$ and is denoted by $f^{\prime}\left(\mathrm{c}^{-}\right)$or $\mathrm{L} f^{\prime}(\mathrm{c})$.

While, $\quad \lim _{\mathbf{x} \rightarrow \mathbf{c}^{+}} \frac{f(\mathbf{x})-f(\mathbf{c})}{\mathbf{x}-\mathbf{c}}=\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{c}+\mathbf{h})-f(\mathbf{c})}{\mathbf{h}}$ is
called the right hand derivative of $f(\mathrm{x})$ at $\mathrm{x}=\mathrm{c}$ and is denoted by $f^{\prime}\left(\mathrm{c}^{+}\right)$or $\mathrm{R} f^{\prime}(\mathrm{c})$.

If $f^{\prime}\left(\mathrm{c}^{-}\right) \neq f^{\prime}\left(\mathrm{c}^{+}\right)$, we say that $f(\mathrm{x})$ is not differentiable at $x=c$.

2. DIFFERENTIABILITY IN A SET

1. A function $f(\mathrm{x})$ defined on an open interval (a, b) is said to be differentiable or derivable in open interval (a, b), if it is differentiable at each point of (a, b).
2. A function $f(\mathrm{x})$ defined on closed interval $[\mathrm{a}, \mathrm{b}]$ is said to be differentiable or derivable. "If f is derivable in the open interval (a, b) and also the end points a and b, then f is said to be derivable in the closed interval $[\mathrm{a}, \mathrm{b}]$ ".
i.e., $\lim _{\rightarrow \mathrm{a}^{+}} \frac{f()-f(\mathrm{a})}{-\mathrm{a}}$ and $\lim _{\rightarrow \mathrm{b}^{-}} \frac{f()-f(\mathrm{~b})}{-\mathrm{b}}$, both exist.

A function f is said to be a differentiable function if it is differentiable at every point of its domain.

Note

1. If $f(\mathrm{x})$ and $g(\mathrm{x})$ are derivable at $\mathrm{x}=\mathrm{a}$ then the functions $f(\mathrm{x})+g(\mathrm{x}), f(\mathrm{x})-g(\mathrm{x}), f(\mathrm{x}) . g(\mathrm{x})$ will also be derivable at $x=a$ and if $g(a) \neq 0$ then the function $f(\mathrm{x}) / \mathrm{g}(\mathrm{x})$ will also be derivable at $\mathrm{x}=\mathrm{a}$.
2. If $f(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{a}$ and $g(\mathrm{x})$ is not differentiable at $x=a$, then the product function $\mathrm{F}(\mathrm{x})=f(\mathrm{x}) . g(\mathrm{x})$ can still be differentiable at $\mathrm{x}=$ a. E.g. $f(\mathrm{x})=\mathrm{x}$ and $g(\mathrm{x})=|\mathrm{x}|$.
3. If $f(\mathrm{x})$ and $g(\mathrm{x})$ both are not differentiable at $\mathrm{x}=\mathrm{a}$ then the product function; $F(\mathrm{x})=f(\mathrm{x}) . g(\mathrm{x})$ can still be differentiable at $x=$ a. E.g., $f(\mathrm{x})=|\mathrm{x}|$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|$.
4. If $f(\mathrm{x})$ and $g(\mathrm{x})$ both are not differentiable at $\mathrm{x}=\mathrm{a}$ then the sum function $F(\mathrm{x})=f(\mathrm{x})+g(\mathrm{x})$ may be a differentiable function. E.g., $f(\mathrm{x})=|\mathrm{x}|$ and $g(\mathrm{x})=-|\mathrm{x}|$.
5. If $f(\mathrm{x})$ is derivable at $\mathrm{x}=\mathrm{a}$
$\Rightarrow \quad f^{\prime}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
e.g. $f(x)=\left[\begin{array}{ccc}{ }^{2} \sin \frac{1}{-} & \text { if } & \neq 0 \\ 0 & \text { if } & =0\end{array}\right.$

3. RELATION B/W CONTINUITY \&

DIFFERENNINBILINY

In the previous section we have discussed that if a function is differentiable at a point, then it should be continuous at that point and a discontinuous function cannot be differentiable. This fact is proved in the following theorem.

Theorem : If a function is differentiable at a point, it is necessarily continuous at that point. But the converse is not necessarily true,
or $\quad f(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{c}$
$\Rightarrow \quad f(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{c}$.

Note

Converse : The converse of the above theorem is not necessarily true i.e., a function may be continuous at a point but may not be differentiable at that point.
E.g., The function $f(\mathrm{x})=|\mathrm{x}|$ is continuous at $\mathrm{x}=0$ but it is not differentiable at $x=0$, as shown in the figure.

The figure shows that sharp edge at $\mathrm{x}=0$ hence, function is not differentiable but continuous at $\mathrm{x}=0$.
(a) Let $f^{\prime+}(\mathrm{a})=\mathrm{p} \& f^{\prime-}(\mathrm{a})=\mathrm{q}$ where p \& q are finite then
(i) $\mathrm{p}=\mathrm{q} \quad \Rightarrow f$ is derivable at $\mathrm{x}=\mathrm{a}$
$\Rightarrow f$ is continuous at $\mathrm{x}=\mathrm{a}$.
(ii) $\mathrm{p} \neq \mathrm{q} \quad \Rightarrow f$ is not derivable at $\mathrm{x}=\mathrm{a}$.

It is very important to note that f may be still continuous
at $\mathrm{x}=\mathrm{a}$.
In short, for a function f :
Differentiable $\quad \Rightarrow$ Continuous;
Not Differentiable \nRightarrow Not Continuous
(i.e., function may be continuous)

But,
Not Continuous $\quad \Rightarrow$ Not Differentiable.
(b) If a function f is not differentiable but is continuous at $x=a$ it geometrically implies a sharp corner at $\mathbf{x}=\mathbf{a}$.

Theorem 2: Let f and g be real functions such that fog is defined if g is continuous at $x=a$ and f is continuous at g (a), show that fog is continuous at $x=a$.

DIFFERENTIATION

1. DEFINITION

(a) Let us consider a function $\mathrm{y}=f(\mathrm{x})$ defined in a certain interval. It has a definite value for each value of the independent variable x in this interval.
Now, the ratio of the increment of the function to the increment in the independent variable,
$\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{f(\mathrm{x}+\Delta \mathrm{x})-f(\mathrm{x})}{\Delta \mathrm{x}}$

Now, as $\Delta \mathrm{x} \rightarrow 0, \Delta \mathrm{y} \rightarrow 0$ and $\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}} \rightarrow$ finite quantity, then derivative $f(\mathrm{x})$ exists and is denoted by y^{\prime} or $f^{\prime}(\mathrm{x})$ or $\frac{\mathrm{dy}}{\mathrm{dx}}$

Thus, $f^{\prime}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 0}\left(\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}\right)=\lim _{\Delta \mathrm{x} \rightarrow 0} \frac{f(\mathrm{x}+\Delta \mathrm{x})-f(\mathrm{x})}{\Delta \mathrm{x}}$
(if it exits)
for the limit to exist,
$\lim _{\mathrm{h} \rightarrow 0} \frac{f(\mathrm{x}+\mathrm{h})-f(\mathrm{x})}{\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0} \frac{f(\mathrm{x}-\mathrm{h})-f(\mathrm{x})}{-\mathrm{h}}$
(Right Hand derivative) (Left Hand derivative)
(b) The derivative of a given function f at a point $x=a$ of its domain is defined as :
$\underset{\mathrm{h} \rightarrow 0}{\operatorname{Limit}} \frac{f(\mathrm{a}+\mathrm{h})-f(\mathrm{a})}{\mathrm{h}}$, provided the limit exists $\&$ is denoted by $f^{\prime}(a)$.

Note that alternatively, we can define
$f^{\prime}(\mathrm{a})=\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} \frac{f(\mathrm{x})-f(\mathrm{a})}{\mathrm{x}-\mathrm{a}}$, provided the limit exists.
This method is called first principle of finding the derivative of $f(x)$.

2. DERIVATIVE OF STANDARD FUNCTION

(i) $\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1} ; x \in R, n \in R, x>0$
(ii) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
(iii) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{a}^{\mathrm{x}}\right)=\mathrm{a}^{\mathrm{x}} \cdot \ln \mathrm{a}(\mathrm{a}>0)$
(iv) $\frac{\mathrm{d}}{\mathrm{dx}}(\ln |\mathrm{x}|)=\frac{1}{\mathrm{x}}$
(v) $\frac{d}{d x}\left(\log _{a}|x|\right)=\frac{1}{x} \log _{a} e$
(vi) $\frac{d}{d x}(\sin x)=\cos x$
(vii) $\frac{d}{d x}(\cos x)=-\sin x$
(viii) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(ix) $\frac{d}{d x}(\sec x)=\sec x \cdot \tan x$
(x) $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cdot \cot x$
(xi) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
(xii) $\frac{\mathrm{d}}{\mathrm{dx}}($ constant $)=0$
(xiii) $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}, \quad-1<x<1$
(xiv) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}}, \quad-1<\mathrm{x}<1$
(xv) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}, \quad \mathrm{x} \in \mathrm{R}$
(xvi) $\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+\mathrm{x}^{2}}, \quad \mathrm{x} \in \mathrm{R}$
(xvii) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\sec ^{-1} \mathrm{x}\right)=\frac{1}{|\mathrm{x}| \sqrt{\mathrm{x}^{2}-1}}, \quad|\mathrm{x}|>1$
(xviii) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\operatorname{cosec}^{-1} \mathrm{x}\right)=\frac{-1}{|\mathrm{x}| \sqrt{\mathrm{x}^{2}-1}}, \quad|\mathrm{x}|>1$
(xix) Results:

If the inverse functions $f \& g$ are defined by
$\mathrm{y}=f(\mathrm{x}) \& \mathrm{x}=g(\mathrm{y})$. Then $\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$.
$\Rightarrow \quad \mathrm{g}^{\prime}(\mathrm{f}(\mathrm{x})) \cdot \mathrm{f}^{\prime}(\mathrm{x})=1$.
This result can also be written as, if $\frac{d y}{d x}$ exists $\& \frac{d y}{d x} \neq 0$, then

$$
\frac{d x}{d y}=1 /\left(\frac{d y}{d x}\right) \text { or } \frac{d y}{d x} \cdot \frac{d x}{d y}=1 \text { or } \frac{d y}{d x}=1 /\left(\frac{d x}{d y}\right)\left[\frac{d x}{d y} \neq 0\right]
$$

3. THEOREMS ON DERIVATIVES

If u and v are derivable functions of x, then,
(i) Term by term differentiation: $\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$
(ii) Multiplication by a constant $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{Ku})=\mathrm{K} \frac{\mathrm{du}}{\mathrm{dx}}$, where K is any constant
(iii) "Product Rule" $\frac{d}{d x}(u . v)=u \frac{d v}{d x}+v \frac{d u}{d x}$ known as In general,
(a) If $u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{n}$ are the functions of x, then

$$
\begin{aligned}
& \frac{d}{d x}\left(u_{1} \cdot u_{2} \cdot u_{3} \cdot u_{4} \ldots \cdot u_{n}\right) \\
& =\left(\frac{d u_{1}}{d x}\right)\left(u_{2} u_{3} u_{4} \ldots u_{n}\right)+\left(\frac{d u_{2}}{d x}\right)\left(u_{1} u_{3} u_{4} \ldots u_{n}\right)
\end{aligned}
$$

$+\left(\frac{d u_{3}}{d x}\right)\left(u_{1} u_{2} u_{4} \ldots u_{n}\right)+\left(\frac{d u_{4}}{d x}\right)\left(u_{1} u_{2} u_{3} u_{5} \ldots u_{n}\right)$
$+\ldots+\left(\frac{d u_{n}}{d x}\right)\left(u_{1} u_{2} u_{3} \ldots u_{n-1}\right)$
(iv) "Quotient Rule" $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v\left(\frac{d u}{d x}\right)-u\left(\frac{d v}{d x}\right)}{v^{2}}$ where $v \neq 0$ known as
(b) Chain Rule : If $\mathrm{y}=f(\mathrm{u}), \mathrm{u}=g(\mathrm{w}), \mathrm{w}=h(\mathrm{x})$
then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d w} \cdot \frac{d w}{d x}$
or $\frac{\mathrm{dy}}{\mathrm{dx}}=f^{\prime}(\mathrm{u}) \cdot g^{\prime}(\quad) \cdot h^{\prime}(\mathrm{x})$

Note
 In general if $\mathrm{y}=f(\mathrm{u})$ then $\frac{\mathrm{dy}}{\mathrm{dx}}=f^{\prime}(\mathrm{u}) \cdot \frac{\mathrm{du}}{\mathrm{dx}}$.

4. METHODS OF DIFFERENTIATION

4.1 Derivative by using Trigonometrical Substitution

Using trigonometrical transformations before differentiation shorten the work considerably. Some important results are given below :
(i) $\quad \sin 2 x=2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^{2} x}$
(ii) $\quad \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}$
(iii) $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}, \tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}$
(iv) $\sin 3 x=3 \sin x-4 \sin ^{3} x$
(v) $\cos 3 x=4 \cos ^{3} x-3 \cos x$
(vi) $\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}$
(vii) $\tan \left(\frac{\pi}{4}+x\right)=\frac{1+\tan x}{1-\tan x}$
(viii) $\tan \left(\frac{\pi}{4}-x\right)=\frac{1-\tan x}{1+\tan x}$
(ix) $\sqrt{(1 \pm \sin x)}=\left|\cos \frac{x}{2} \pm \sin \frac{x}{2}\right|$
(x) $\tan ^{-1} x \pm \tan ^{-1} y=\tan ^{-1}\left(\frac{x \pm y}{1 \mp x y}\right)$
(xi) $\sin ^{-1} x \pm \sin ^{-1} y=\sin ^{-1}\left\{x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}}\right\}$
(xii) $\cos ^{-1} x \pm \cos ^{-1} y=\cos ^{-1}\left\{x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}}\right\}$
(xiii) $\sin ^{-1} x+\cos ^{-1} x=\tan ^{-1} x+\cot ^{-1} x=\sec ^{-1} x+\operatorname{cosec}^{-1} x=\pi / 2$
(xiv) $\sin ^{-1} x=\operatorname{cosec}^{-1}(1 / x) ; \cos ^{-1} x=\sec ^{-1}(1 / x) ; \tan ^{-1} x=\cot ^{-1}(1 / x)$

Some standard substitutions :

Expressions Substitutions

$$
\sqrt{\left(a^{2}-x^{2}\right)} \quad x=a \sin \theta \text { or } a \cos \theta
$$

$$
\sqrt{\left(a^{2}+x^{2}\right)} \quad x=a \tan \theta \text { or } a \cot \theta
$$

$$
\sqrt{\left(x^{2}-a^{2}\right)} \quad x=a \sec \theta \text { or } a \operatorname{cosec} \theta
$$

$$
\sqrt{\left(\frac{a+x}{a-x}\right)} \text { or } \sqrt{\left(\frac{a-x}{a+x}\right)} x=a \cos \theta \text { or } a \cos 2 \theta
$$

$$
\sqrt{(a-x)(x-b)} \text { or } \quad x=a \cos ^{2} \theta+b \sin ^{2} \theta
$$

$$
\sqrt{\left(\frac{a-x}{x-b}\right)} \text { or } \sqrt{\left(\frac{x-}{a-x}\right)}
$$

$$
\sqrt{(x-a)(x-b)} \text { or } \quad x=a \sec ^{2} \theta-b \tan ^{2} \theta
$$

$$
\sqrt{\left(\frac{x-a}{x-b}\right)} \text { or } \sqrt{\left(\frac{x-}{x-a}\right)}
$$

$$
\sqrt{\left(2 a x-x^{2}\right)} \quad x=a(1-\cos \theta)
$$

4.2 Logarithmic Differentiation

To find the derivative of :
If $\mathrm{y}=\left\{f_{1}(\mathrm{x})\right\}^{f_{2}(\mathrm{x})}$ or $\mathrm{y}=f_{1}(\mathrm{x}) . f_{2}(\mathrm{x}) . f_{3}(\mathrm{x}) \ldots$
or $\quad \mathrm{y}=\frac{f_{1}(\mathrm{x}) \cdot f_{2}(\mathrm{x}) \cdot f_{3}(\mathrm{x}) \ldots}{g_{1}(\mathrm{x}) \cdot g_{2}(\mathrm{x}) \cdot g_{3}(\mathrm{x}) \ldots}$
then it is convenient to take the logarithm of the function first and then differentiate. This is called derivative of the logarithmic function.

Important Notes (Alternate methods)

1. If $\mathrm{y}=\{f(\mathrm{x})\}^{g(\mathrm{x})}=\mathrm{e}^{g(\mathrm{x}) \ln f(\mathrm{x})}\left((\text { variable })^{\text {variable }}\right)\left\{\because \mathrm{x}=\mathrm{e}^{\ln \mathrm{x}}\right\}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{g(\mathrm{x}) \ln f(\mathrm{x})} \cdot\left\{g(\mathrm{x}) \cdot \frac{\mathrm{d}}{\mathrm{dx}} \ln f(\mathrm{x})+\ln f(\mathrm{x}) \cdot \frac{\mathrm{d}}{\mathrm{dx}} g(\mathrm{x})\right\} \\
& =\{f(\mathrm{x})\}^{g(\mathrm{x})} \cdot\left\{g(\mathrm{x}) \cdot \frac{f^{\prime}(\mathrm{x})}{f(\mathrm{x})}+\ln f(\mathrm{x}) \cdot g^{\prime}(\mathrm{x})\right\}
\end{aligned}
$$

2. If $\mathrm{y}=\{f(\mathrm{x})\}^{g(\mathrm{x})}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=$ Derivative of y treating $f(\mathrm{x})$ as constant + Derivative of y treating $g(\mathrm{x})$ as constant

$$
\begin{aligned}
& =\{f(\mathrm{x})\}^{g(\mathrm{x})} \cdot \ln f(\mathrm{x}) \cdot \frac{\mathrm{d}}{\mathrm{dx}} g(\mathrm{x})+g(\mathrm{x})\{f(\mathrm{x})\}^{g(\mathrm{x})-1} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} f(\mathrm{x}) \\
& =\{f(\mathrm{x})\}^{g(\mathrm{x})} \cdot \ln f(\mathrm{x}) \cdot g^{\prime}(\mathrm{x})+g(\mathrm{x}) \cdot\{f(\mathrm{x})\}^{g(\mathrm{x})-1} \cdot f^{\prime}(\mathrm{x})
\end{aligned}
$$

4.3 Implict Differentiation : $\phi(x, y)=0$

(i) In order to find dy/dx in the case of implicit function, we differentiate each term w.r.t. x, regarding y as a function of x $\&$ then collect terms in dy/dx together on one side to finally find $d y / d x$.
(ii) In answers of $\mathrm{dy} / \mathrm{dx}$ in the case of implicit function, both x \& y are present.
Alternate Method: $\operatorname{If} f(x, y)=0$
then $\frac{d y}{d x}=-\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}=-\frac{\text { diff. of } f \text { w.r.t. } x \text { treating } y \text { as constant }}{\text { diff. of } f \text { w.r.t. } y \text { treating } x \text { as constant }}$

4.4 Parametric Differentiation

If $\mathrm{y}=f(\mathrm{t}) \& \mathrm{x}=g(\mathrm{t})$ where t is a Parameter, then
$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$

 1. $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$

2. $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d t}{d x}\left(\because \frac{d y}{d x}\right.$ in terms of $\left.t\right)$
$=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{f^{\prime}(\mathrm{t})}{g^{\prime}(\mathrm{t})}\right) \cdot \frac{1}{f^{\prime}(\mathrm{t})}\{\operatorname{From}(1)\}$

$$
=\frac{f^{\prime \prime}(\mathrm{t}) g^{\prime}(\mathrm{t})-g^{\prime \prime}(\mathrm{t}) f^{\prime}(\mathrm{t})}{\left\{f^{\prime}(\mathrm{t})\right\}}
$$

4.5 Derivative of a Function w.r.t. another Function

Let $\mathrm{y}=f(\mathrm{x}) ; \mathrm{z}=g(\mathrm{x})$ then $\frac{\mathrm{dy}}{\mathrm{dz}}=\frac{\mathrm{dy} / \mathrm{dx}}{\mathrm{dz} / \mathrm{dx}}=\frac{f^{\prime}(\mathrm{x})}{g^{\prime}(\mathrm{x})}$

4.6 Derivative of Infinite Series

If taking out one or more than one terms from an infinite series, it remains unchanged. Such that
(A) If $\mathrm{y}=\sqrt{f(\mathrm{x})+\sqrt{f(\mathrm{x})+\sqrt{f(\mathrm{x})+\ldots \ldots . . \infty}}}$
then $\mathrm{y}=\sqrt{f(\mathrm{x})+\mathrm{y}} \Rightarrow\left(\mathrm{y}^{2}-\mathrm{y}\right)=f(\mathrm{x})$
Differentiating both sides w.r.t. x , we get $(2 \mathrm{y}-1) \frac{\mathrm{dy}}{\mathrm{dx}}=f^{\prime}(\mathrm{x})$
(B) If $\mathrm{y}=\{\mathrm{f}(\mathrm{x})\}^{\left.\{\mathrm{f}(\mathrm{x})\}^{\{\mathrm{f}(\mathrm{x})}\right\}^{\cdots \cdots \cdots \infty} \text {... }}$ then $\mathrm{y}=\{f(\mathrm{x})\}^{\mathrm{y}} \Rightarrow \mathrm{y}=\mathrm{e}^{\mathrm{y} \ln f(\mathrm{x})}$

Differentiating both sides w.r.t. x , we get
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}\{f(\mathrm{x})\}^{\mathrm{y}-1} \cdot f^{\prime}(\mathrm{x})}{1-\{f(\mathrm{x})\}^{\mathrm{y}} \cdot \ell \mathrm{n} f(\mathrm{x})}=\frac{\mathrm{y}^{2} f^{\prime}(\mathrm{x})}{f(\mathrm{x})\{1-\mathrm{y} \ell \ln f(\mathrm{x})\}}$

5. DERIVATIVE OF ORDER TWO \& THREE

Let a function $\mathrm{y}=f(\mathrm{x})$ be defined on an open interval (a, b). It's derivative, if it exists on (a, b), is a certain function $f^{\prime}(\mathrm{x})\left[\mathrm{or}(\mathrm{dy} / \mathrm{dx})\right.$ or $\left.\mathrm{y}^{\prime}\right] \&$ is called the first derivative of y w.r.t. x . If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second derivative of y w.r.t. $x \&$ is denoted by $f^{\prime \prime}(x)$ or $\left(d^{2} y / d^{2}\right)$ or $y^{\prime \prime}$.

Similarly, the $3^{\text {rd }}$ order derivative of y w.r.t. x, if it exists, is defined by $\frac{d^{3} y}{d x}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)$ it is also denoted by $f^{\prime \prime}(x)$ or $y^{\prime \prime \prime}$.

Some Standard Results :

(i) $\frac{d^{n}}{d x^{\mathrm{n}}}(a x+b)^{m}=\frac{m!}{(m-n)!} \cdot a^{n} \cdot(a x+b)^{m-n}, m \geq n$.
(ii) $\frac{d^{n}}{d x^{n}} x^{n}=n$!
(iii) $\frac{d^{n}}{{d x^{n}}^{n}}\left(e^{m x}\right)=m^{n} \cdot e^{m x}, m \in R$
(iv) $\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}(\sin (\mathrm{ax}+\mathrm{b}))=\mathrm{a}^{\mathrm{n}} \sin \left(\mathrm{ax}+\mathrm{b}+\frac{\mathrm{n} \pi}{2}\right), \mathrm{n} \in \mathrm{N}$
(v) $\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}(\cos (\mathrm{ax}+\mathrm{b}))=\mathrm{a}^{\mathrm{n}} \cos \left(\mathrm{ax}+\mathrm{b}+\frac{\mathrm{n} \pi}{2}\right), \mathrm{n} \in \mathrm{N}$
(vi) $\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left\{\mathrm{e}^{\mathrm{ax}} \sin (\mathrm{bx}+\mathrm{c})\right\}=\mathrm{r}^{\mathrm{n}} \cdot \mathrm{e}^{\mathrm{ax}} \cdot \sin (\mathrm{bx}+\mathrm{c}+\mathrm{n} \phi), \mathrm{n} \in \mathrm{N}$
where $r=\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}, \phi=\tan ^{-1}(\mathrm{~b} / \mathrm{a})$.
(vii) $\frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left\{\mathrm{e}^{\mathrm{ax}} \cdot \cos (\mathrm{bx}+\mathrm{c})\right\}=\mathrm{r}^{\mathrm{n}} \cdot \mathrm{e}^{\mathrm{ax}} \cdot \cos (\mathrm{bx}+\mathrm{c}+\mathrm{n} \phi), \mathrm{n} \in \mathrm{N}$ where $r=\sqrt{\left(a^{2}+b^{2}\right)}, \phi=\tan ^{-1}(b / a)$.

DIFFERENTIATION

6. DIFFERENTIATION OF DETERMINANTS

If $F(\mathrm{X})=\left|\begin{array}{ccc}f(\mathrm{x}) & g(\mathrm{x}) & h(\mathrm{x}) \\ \ell(\mathrm{x}) & m(\mathrm{x}) & n(\mathrm{x}) \\ u(\mathrm{x}) & v(\mathrm{x}) & w(\mathrm{x})\end{array}\right|$,
where $f, g, h, \ell, m, n, u, v, w$ are differentiable function of x then

$$
F^{\prime}(\mathrm{x})=\left|\begin{array}{ccc}
f^{\prime}(\mathrm{x}) & g^{\prime}(\mathrm{x}) & \mathrm{h}^{\prime}(\mathrm{x}) \\
\ell(\mathrm{x}) & \mathrm{m}(\mathrm{x}) & \mathrm{n}(\mathrm{x}) \\
\mathrm{u}(\mathrm{x}) & \mathrm{v}(\mathrm{x}) & \mathrm{w}(\mathrm{x})
\end{array}\right|+\left|\begin{array}{ccc}
f(\mathrm{x}) & g(\mathrm{x}) & \mathrm{h}(\mathrm{x}) \\
\ell^{\prime}(\mathrm{x}) & \mathrm{m}^{\prime}(\mathrm{x}) & \mathrm{n}(\mathrm{x}) \\
\mathrm{u}(\mathrm{x}) & \mathrm{v}(\mathrm{x}) & \mathrm{w}(\mathrm{x})
\end{array}\right|
$$

$$
+\left|\begin{array}{ccc}
f(\mathrm{x}) & g(\mathrm{x}) & \mathrm{h}(\mathrm{x}) \\
\ell(\mathrm{x}) & \mathrm{m}(\mathrm{x}) & \mathrm{n}(\mathrm{x}) \\
\mathrm{u}^{\prime}(\mathrm{x}) & \mathrm{v}^{\prime}(\mathrm{x}) & \mathrm{w}^{\prime}(\mathrm{x})
\end{array}\right|
$$

7. L' HOSPITAL'S RULE

If $f(x) \& g(x)$ are functions of x such that:
(i) $\lim _{\mathrm{x} \rightarrow \mathrm{a}} f(\mathrm{x})=0=\lim _{\mathrm{x} \rightarrow \mathrm{a}} g(\mathrm{x})$ or $\lim _{\mathrm{x} \rightarrow \mathrm{a}} f(\mathrm{x})=\infty=\lim _{\mathrm{x} \rightarrow \mathrm{a}} g(\mathrm{x})$ and
(ii) Both $f(\mathrm{x}) \& g(\mathrm{x})$ are continuous at $\mathrm{x}=\mathrm{a}$ and
(iii) Both $f(\mathrm{x}) \& g(\mathrm{x})$ are differentiable at $\mathrm{x}=\mathrm{a}$ and
(iv) Both $f^{\prime}(\mathrm{x}) \& g^{\prime}(\mathrm{x})$ are continuous at $\mathrm{x}=\mathrm{a}$, Then $\operatorname{Limit}_{\mathrm{x} \rightarrow \mathrm{a}} \frac{f(\mathrm{x})}{g(\mathrm{x})}=\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} \frac{f^{\prime}(\mathrm{x})}{g^{\prime}(\mathrm{x})}=\underset{\mathrm{x} \rightarrow \mathrm{a}}{\operatorname{Limit}} \frac{f^{\prime \prime}(\mathrm{x})}{g^{\prime \prime}(\mathrm{x})}$ \& so on till indeterminant form vanishes..

8. ANALYSIS \& GRAPHS OF SOME USEFUL FUNCTION

(i) $\mathrm{y}=\sin ^{-1}(\sin \mathrm{x})$

$$
\mathrm{x} \in \mathrm{R} ; \mathrm{y} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

(ii) $y=\cos ^{-1}(\cos x) \quad x \in R ; y \in[0, \pi]$

(iii) $\mathrm{y}=\tan ^{-1}(\tan \mathrm{x})$

$$
\mathrm{x} \in \mathrm{R}-\left\{\mathrm{x}: \mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}\right\} ; \mathrm{y} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

