BINOMIAL THEOREM & MATHEMATICAL INDUCTION

BINOMIAL THEOREM

If $a, b \in R$ and $n \in N$, then

$$(a+b)^n = {}^nC_0 a^n b^0 + {}^nC_1 a^{n-1} b^1 + {}^nC_2 a^{n-2} b^2 + \dots + {}^nC_n a^0 b^n$$

REMARKS :

- 1. If the index of the binomial is n then the expansion contains n + 1 terms.
- 2. In each term, the sum of indices of a and b is always n.
- 3. Coefficients of the terms in binomial expansion equidistant from both the ends are equal.
- 4. $(a-b)^n = {}^nC_0a^nb^0 {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^{2-} \dots + (-1)^n {}^nC_0a^0b^n.$

GENERAL TERM AND MIDDLE TERMS IN EXPANSION OF $(A + B)^{N}$

 $t_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$

 $t_{r^{+1}} \text{ is called a general term for all } r \in N \text{ and } 0 \leq r \leq n.$ Using this formula we can find any term of the expansion.

MIDDLE TERM (S):

1. In $(a + b)^n$ if n is even then the number of terms in the expansion is odd. Therefore there is only one

middle term and it is $\left(\frac{n+2}{2}\right)^{\text{th}}$ term.

2. In $(a + b)^n$, if n is odd then the number of terms in the expansion is even. Therefore there are two middle terms and those are

$$\left(\frac{n+1}{2}\right)^{\text{th}} \text{and} \left(\frac{n+3}{2}\right)^{\text{th}} \text{ terms}$$

BINOMIAL THEOREM FOR ANY INDEX

If n is negative integer then n! is not defined. We state binomial theorem in another form.

$$(a+b)^n = a^n + \frac{n}{1!}a^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2$$

$$+\frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3}+...\frac{+n(n-1)...(n-r+1)}{r!}a^{n-r}b^{r}+....$$

Here
$$t_{r+1} = \frac{(n-1)(n-2)...(n-r+1)}{r!}a^{n-r}b^{r+1}$$

THEOREM:

If n is any real number, a = 1, b = x and |x| < 1 then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

Here there are infinite number of terms in the expansion, The general term is given by

$$t_{r+1} = \frac{n(n-1)(n-2)...(n-r+1)x}{r!}, r \ge 0$$

Note.

- (i) Expansion is valid only when $-1 \le x \le 1$
- (ii) ${}^{n}C_{r}$ can not be used because it is defined only for natural number, so ${}^{n}C_{r}$ will be written $as \frac{n(n-1)....(n-r+1)}{r!}$

(iv) General term of the series
$$(1 + x)^{-n} = T_{r+1} \rightarrow (-1)^r$$

$$\frac{1 + x}{1 - x} \text{ if } |x| < |$$

(v) General term of the series
$$(1 - x)^{-n} \rightarrow T_{r+1}$$

= $\frac{(+1)(+2)...(+-1)}{r!}x$

(vi) If first term is not 1, then make it unity in the

Collowing way.
$$(a + x)^n = a^n (1 + x/a)^n \text{ if } \left| \frac{x}{a} \right| < 1$$

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

REMARKS:

1. If $|\mathbf{x}| < 1$ and n is any real number, then

$$(1-x)^n = 1-nx + \frac{n(n-1)}{2!}x^2 - \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

The general term is given by

$$t_{r+1} = \frac{(-1)^r n(n-1)(n-2)...(n-r+1)}{r!} x^r$$

2. If n is any real number and |b| < |a|, then

$$= (a+b)^{n} = \left[a\left(1+\frac{b}{a}\right)\right]^{n}$$
$$= a^{n}\left(1+\frac{b}{a}\right)^{n}$$

Note...

While expanding $(a + b)^n$ where n is a negative integer or a fraction, reduce the binomial to the form in which the first term is unity and the second term is numerically less than unity.

Particular expansion of the binomials for negative index, $|\mathbf{x}| < 1$

1.
$$\frac{1}{1+x} = (1+x)^{-1}$$

= $1-x+x^2-x^3+x^4-x^5+x^4$

2.
$$\frac{1}{1-x} = (1+x)^{-1}$$

= 1 + x + x² + x³ + x⁴ + x⁵ +

3.
$$\frac{1}{(1+x)^2} = (1+x)^{-2}$$
$$= 1 - 2x + 3x^2 - 4x^3 + \dots$$

4.
$$\frac{1}{(1-x)^2} = (1-x)^{-2}$$

 $= 1 + 2x + 3x^2 + 4x^3 + \dots$

BINOMIAL COEFFICIENTS

The coefficients ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,..., ${}^{n}C_{n}$ in the expansion of $(a+b)^{n}$ are called the binomial coefficients and denoted by C_{0} , C_{1} , C_{2} ,, C_{n} respectively

$$(1 + x)^{n} = {}^{n}C_{0}x^{0} + {}^{n}C_{1}x^{1} + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{n}x^{n} \qquad \dots (i)$$

Put x = 1.
$$(1 + 1)^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

$$2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

:.
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + ... + {}^{n}C_{n} = 2^{n}$$

: $C_{n} + C_{n} + C_{n} + ... + C_{n} = 2^{n}$

$$\therefore C_0 + C_1 + C_2 + \dots + C_n = 2$$

...

 $\therefore \quad \text{The sum of all binomial coefficients is } 2^n.$ Put x = -1, in equation (i), $(1-1)^n = {}^nC_0 - {}^nC_1 + {}^nC_2 - \dots + (-1)^n {}^nC$

$$\therefore \quad 0 = {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - \dots + (-1){}^{n}C_{n}$$

$$\therefore \quad {}^{n}C_{0} - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n}{}^{n}C_{n} = 0$$

$$\therefore \quad {}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots$$

$$C_{0} + C_{2} + C_{4} + ... = C_{1} + C_{3} + C_{5} + ...$$

$$C_{0}, C_{2}, C_{4}, ... \text{ are called as even coefficients}$$

$$C_{1}, C_{3}, C_{5} ... \text{ are called as odd coefficients}$$

$$\text{Let } C_{0} + C_{2} + C_{4} + ... = C_{1} + C_{3} + C_{5} + ... = k$$

$$\text{Now } C_{0} + C_{1} + C_{2} + C_{3} + ... + C_{n} = 2^{n}$$

$$\therefore \quad (C_{0} + C_{2} + C_{4} + ...) + (C_{1} + C_{3} + C_{5} ...) = 2^{n}$$

$$\therefore \quad (C_0 + C_2 + C_4)$$
$$\therefore \quad k + k = 2^n$$
$$2k = 2^n$$

$$\therefore k = \frac{2^n}{2}$$

$$\therefore$$
 k = 2ⁿ⁻¹

$$\therefore \qquad C_0 + C_2 + C_4 + \ldots = C_1 + C_3 + C_5 + \ldots = 2^{n-1}$$

:. The sum of even coefficients = The sum of odd coefficients = 2^{n-1}

Properties of Binomial Coefficient

For the sake of convenience the coefficients ⁿC₀, ⁿC₁,, ⁿC_r,, ⁿC_n are usually denoted by C₀, C₁,, C_r,, C_n respectively. (i) $C_0 + C_1 + C_2 + ..., + C_n = 2^n$ (ii) $C_0 - C_1 + C_2 - ..., + (-1)^n C_n = 0$ (iii) $C_0 + C_2 + C_4 + ..., = C_1 + C_3 + C_5 + ..., = 2^{n-1}$. (iv) ⁿC_{r1} = ⁿC_{r2} \Rightarrow r₁ = r₂or r₁ + r₂ = n (v) ⁿC_r + ⁿC_{r-1} = ⁿ⁺¹C_r (vi) rⁿC_r = nⁿ⁻¹C_{r-1}

BINOMIAL THEOREM & MATHEMATICAL INDUCTION

Some Important Results

(i)
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
,
Putting $x = 1$ and -1 , we get
 $C_0 + C_1 + C_2 + \dots + C_n = 2^n$ and
 $C_0 - C_1 + C_2 - C_3 + \dots + C_n x^n = 0$
(ii) Differentiating $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$,
on both sides we have, $n(1+x)^{n-1} = C_1 + 2C_2 x + 3C_3 x^2 + \dots + nC_n x^{n-1} \dots (1)$
 $x = 1$
 $\Rightarrow n2^{n-1} = C_1 + 2C_2 + 3C_3 + \dots + nC_n$
 $x = -1$
 $\Rightarrow 0 = C_1 - 2C_2 + \dots + (-1)^{n-1} nC_n$.
Differentiating (1) again and again we will have
different results.
(iii) Integrating $(1+x)^n$, we have,
 $\frac{(1+x)^{n+1}}{n+1} + C = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1}$

(where C is a constant)

Put x = 0, we get C =
$$-\frac{1}{(n+1)}$$

Therefore

$$\frac{(1+x)^{n+1}-1}{n+1} = C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots + \frac{C_n x^{n+1}}{n+1} \quad \dots (2)$$

Put x = 1 in (2) we get

$$\frac{2^{n+1}-1}{n+1} = C_0 + \frac{C_1}{2} + \dots + \frac{C_n}{n+1}$$

Put x = -1 in (2) we get,

$$\frac{1}{n+1} = C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots$$

Illustration

1

Find the coefficient of x^4 in the expansion of $\frac{1+x}{1-x} \text{if} \mid x \mid < 1$

Sol.
$$\frac{1+x}{1-x} = (1+x)(1-x)^{-1}$$

= $(1+x)\left[1+\frac{(-1)}{1!}(-x)\frac{(-1)(-1-1)}{2!}(-x)^2 + \frac{(-1)(-1-1)(-1-2)}{3!}(-x)^3....to\infty\right]$

$$= (1 + x) (1 + x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty)$$

= $[1 + x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty] + [x + x^{2} + x^{3} + x^{4} + \dots \text{ to } \infty]$
= $1 + 2x + 2x^{2} + 2x^{3} + 2x^{4} + 2x^{5} + \dots \text{ to } \infty$
Hence coefficient of $x^{4} = 2$

Illustration

n+1

Find the square root of 99 correct to 4 places of deicmal.

Sol.
$$(99)^{1/2} = (100-1)^{1/2} \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= \left[100 \left(1 - \frac{1}{100} \right) \right]^{\frac{1}{2}}$$

$$= (100)^{1/2} [1-0]^{1/2} = 10 (1-01)^{1/2}$$

$$10 \left[1 + \frac{1}{2!} (-01) + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} (-01)^2 + \dots \text{ to } \infty \right]$$

$$= 10 [1-0.005 - 0.0000125 + \dots \text{ to } \infty]$$

=10(.9949875)=9.94987=9.9499

Multinomial Expansion

In the expansion of $(x_1 + x_2 + \dots + x_n)^m$ where $m, n \in N$ and $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are independent variables, we have Total number of terms = ${}^{m+n-1}C_{n-1}$ (i)

Coefficient of $x_1^{r_1} x_2^{r_2} x_3^{r_3} \dots x_n^{r_n}$ (where $r_1 + r_2 + r_3 + r_3$) (ii)

.....+
$$r_n = m, r_i \in N \cup \{0\}$$
 is $\frac{m!}{r_1!r_2!....r_n!}$

(iii) Sum of all the coefficients is obtained by putting all the variables x_1 equal to 1.

Illustration

Find the total number of terms in the expansion of $(1 + a + b)^{10}$ and coefficient of a^2b^3 .

Sol. Total number of terms = ${}^{10+3-1}C_{3-1} = {}^{12}C_2 = 66$

Coefficient of $a^2b^3 = \frac{10!}{2! \times 3! \times 5!} = 2520$