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Periodic and Oscillatory (Vibratory) Motion 

 

 

 

 

 

 

 

(1) A motion, which repeat itself over and over again after a regular 

interval of time is called a periodic motion 

Revolution of earth around the sun (period one year), Rotation of 

earth about its polar axis (period one day), Motion of hour’s hand of a clock 

(period 12-hour) etc are common example of periodic motion.  

(2) Oscillatory or vibratory motion is that motion in which a body 

moves to and fro or back and forth repeatedly about a fixed point in a 

definite interval of time. In such a motion, the body is confined with in well-

defined limits on either side of mean position. Oscillatory motion is also 

called as harmonic motion. 

(i) Common examples are  

(a) The motion of the pendulum of a wall clock 

(b) The motion of a load attached to a spring, when it is pulled and 

then released. 

(c) The motion of liquid contained in U-tube when it is compressed 

once in one limb and left to itself. 

(d) A loaded piece of wood floating over the surface of a liquid when 

pressed down and then released executes oscillatory motion. 

 

 

 

 

 

 

(ii) Harmonic oscillation is that oscillation which can be expressed in 

terms of single harmonic function (i.e. sine or cosine function). Example : 

tay sin  or tay cos  

(iii) Non-harmonic oscillation is that oscillation which can not be 
expressed in terms of single harmonic function. It is a combination of two 
or more than two harmonic oscillations. Example : 

tbtay  2sinsin  . 

Simple Harmonic Motion 

(1) Simple harmonic motion is a special type of periodic motion, in 

which a particle moves to and fro repeatedly about a mean position. 

(2) In linear S.H.M. a restoring force which is always directed towards 

the mean position and whose magnitude at any instant is directly 

proportional to the displacement of the particle from the mean position at 

that instant i.e. Restoring force  Displacement of the particle from mean 

position. 

   F   – x   F = – kx  

Where k is known as force constant. Its S.I. unit is Newton/meter and 
dimension is [MT –2]. 

(3) In stead of straight line motion, if particle or centre of mass of 
body is oscillating on a small arc of circular path, then for angular S.H.M.  

Restoring torque ()   – Angular displacement () 

Some Important Definitions 

(1) Time period (T) : It is the least interval of time after which the 

periodic motion of a body repeats itself.  

S.I. unit of time period is second. 

(2) Frequency (n) : It is defined as the number of oscillations executed 
by body per second. S.I unit of frequency is hertz (Hz). 

(3) Angular Frequency () : Angular frequency of a body executing 

periodic motion is equal to product of frequency of the body with factor 2. 

Angular frequency  = 2  n  
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Its unit is rad/sec. 

(4) Phase () : Phase of a vibrating particle at any instant is a physical 
quantity, which completely express the position and direction of motion, of 
the particle at that instant with respect to its mean position. 

In oscillatory motion the phase of a vibrating particle is the argument 
of sine or cosine function involved to represent the generalised equation of 
motion of the vibrating particle. 

     )sin(sin 0  taay  

here, 0  t = phase of vibrating particle. 


0

 = Initial phase or epoch. It is the phase of a vibrating particle at t = 
0. 

 

 

 

 

 

 

(1) Same phase : Two vibrating particle are said to be in same phase, if 

the phase difference between them is an even multiple of  or path 

difference is an even multiple of ( / 2) or time interval is an even multiple 

of (T / 2) because 1 time period is equivalent to 2 rad or 1 wave length (). 

(2) Opposite phase : When the two vibrating particles cross their 

respective mean positions at the same time moving in opposite directions, 

then the phase difference between the two vibrating particles is 180o . 

Opposite phase means the phase difference between the particle is an 

odd multiple of  (say , 3, 5, 7…..) or the path difference is an odd 

multiple of  (say ,.......)
2

3
,

2


or the time interval is an odd multiple of 

(T / 2). 

(3) Phase difference :  If two particles performs S.H.M and their 

equation are 

    )sin( 11   tay   and  )sin( 22   tay  

then phase difference )()( 12   tt 12    

Displacement in S.H.M. 

(1) The displacement of a particle executing S.H.M. at an instant is 

defined as the distance of particle from the mean position at that instant.  

(2) Simple harmonic motion is also defined as the projection of 

uniform circular motion on any diameter of circle of reference.  

(3) If the projection is taken on y-axis. then from the figure  

 

 

 

 

 

 

 

tay sin t
T

a
2

sin tna 2sin )sin(   ta  

(i) tay sin         when the time is noted from the instant when 

the vibrating particle is at mean position. 

(ii) tay cos         when the time is noted from the instant when 

the vibrating particle is at extreme position. 

(iii) )sin(   tay  when the vibrating particle is  phase leading 

or lagging from the mean position. 

(4) If the projection of P is taken on X-axis then equations of S.H.M. 
can be given as  

  )(cos   tax 







 


t

T
a

2
cos )2(cos   tna  

 

 

 

 

 

 

(5) Direction of displacement is always away from the equilibrium 

position, particle either is moving away from or is coming towards the 

equilibrium position. 

Velocity in S.H.M. 

(1) Velocity of the particle executing S.H.M. at any instant, is defined as 

the time rate of change of its displacement at that instant. 

(2) In case of S.H.M. when motion is considered from the equilibrium 

position, displacement tay sin  

So  ta
dt

dy
v  cos ta  2sin1  22 ya   

[As sin t = y/a] 

(3) At mean position or equilibrium position (y = 0 and  = t = 0), 

velocity of particle is maximum and it is v
max

 = a. 

(4) At extreme position (y =  a and  = t =/2), velocity of 
oscillating particle is zero i.e. v = 0. 

(5) From 22 yav   )( 2222 yav    22

2

2

ya
v




 

  1
2

2

22

2


a

y

a

v


 

This is the equation of ellipse. 

Hence the graph between v and y is 

an ellipse.  

For  = 1, graph between v and y 

is a circle. 

 

(6) Direction of velocity is either 

towards or away from mean position depending on the position of particle. 

Acceleration in S.H.M. 

(1) The acceleration of the particle executing S.H.M. at any instant, is 

defined as the rate of change of its velocity at that instant. So acceleration   

0 
 t 

t = 0 

t 
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)cos( ta
dt

d

dt

dv
A  ta  sin2 y2  

[As tay sin ] 

(2) In S.H.M. as y2onAccelerati   is not constant. So 

equations of translatory motion can not be applied. 

(3) In S.H.M. acceleration is maximum at extreme position (at y =  a). 

Hence aA 2
max   when 1maximumsin t  i.e.  at 

4

T
t    or 

2


 t . From equation (ii) aA 2

max ||     when ay  . 

(i) In S.H.M. acceleration is minimum at mean position  

From equation (i) 0min A  when 0sin t  i.e. at 0t  or 

2

T
t   or  t . From equation (ii) 0min A  when 0y  

(ii) Acceleration is always directed towards the mean position and so is 

always opposite to displacement  

i.e.,      yA   

Graph between acceleration 

(A) and displacement (y) is a 

straight line as shown 

Slope of the line = – 2  

Comparative Study of 

Displacement Velocity 

and Acceleration 

(1) All the three quantities displacement, velocity and acceleration 

show harmonic variation with time having same period.  

(2) The velocity amplitude is  times the displacement amplitude  

(3) The acceleration amplitude is 2  times the displacement 

amplitude  

(4) In S.H.M. the velocity is ahead of displacement by a phase angle  
/ 2 

(5) In S.H.M. the acceleration is ahead of velocity by a phase angle  / 

2 

(6) The acceleration is ahead of displacement by a phase angle of  

Table 16.1 : Various physical quantities in S.H.M. at different position : 
 

Graph Formula At mean 
position 

At extreme 
position 

Displacement  

 

 

 

 

 

 

 
 
 

tay sin  

 
 
 
y = 0 

 

 

y =  a 

Velocity 

 

 

 

 

tav  cos  

)
2

sin(


  ta

 

vmax =a 

  

vmin = 0 

 

 

 

or 

22 yav    

Acceleration  

 

 

 

 

 

 

 

taA  sin2  

)sin(2   ta

or 

yA 2  

 
 
 
Amin = 0 

 

 

|Amax| 

= 2a  

Force 

 

 

 

 

 

 

tamF  sin2

 
or  

ymF 2  

 
 
 
Fmin = 0 

 
 

maxF  

am 2  

 

Energy in S.H.M. 

(1) Potential energy : This is an account of the displacement of the 

particle from its mean position.  

(i) The restoring force F = – ky against which work has to be done. 

Hence potential energy U is given by  

 
yx

dykyFdxdWdUU
00

2

2

1
ky + U

0

  

where U
0

 = Potential energy at equilibrium position.  

If   U
0

 = 0 then 22

2

1
ymU    [As mk /2  ] 

(ii) Also tamU  222 sin
2

1
 )2cos1(

4

1 22 tam    

     [As tay sin ] 

Hence potential energy varies periodically with double the frequency of 

S.H.M. 

(iii) Potential energy maximum and equal to total energy at extreme 

positions  

222
max

2

1

2

1
amkaU   when ay  ; 2/ t ; 

4

T
t   

(iv) Potential energy is minimum at mean position 

0min U        when 0y ;  0t ;  0t  

(2) Kinetic energy : This is because of the velocity of the particle 

Kinetic Energy  2

2

1
mvK  )(

2

1 222 yam     

[As 22 yav   ] 

(i)  Also tamK  222 cos
2

1
 )2cos1(

4

1 22 tam    

[As tav  cos ] 

Hence kinetic energy varies periodically with double the frequency of 

S.H.M. 
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(ii) Kinetic energy is maximum at mean position and equal to total 

energy at mean position. 

  22

2

1
max

amK   when 0y ; 0t ; 0t  

(iii) Kinetic energy is minimum at extreme position. 

 0min K  when ay  ;  4/Tt  , 2/ t  

(3) Total mechanical energy : Total mechanical energy always remains 

constant and it is equal to sum of potential energy and kinetic energy i.e. 

KUE   

 E 22222

2

1
)(

2

1
ymyam   22

2

1
am  

 Total energy is not a position function. 

(4) Energy position graph  

 

 

 

 

 

 

 

(i) At y = 0; U = 0 and K = E  

(ii) At y =  a; U = E and K =0 

(iii) At 
2

a
y  ; 

4

E
U  and 

4

3E
K   

(iv) At 
2

a
y  ; 

2

E
KU   

Average Value of P.E. and K.E. 

The average value of potential energy for complete cycle is given by   

 
TT

average tam
T

dtU
T

U
0

222

0
)(sin

2

111
 22

4

1
am  

The average value of kinetic energy for complete cycle 


T

average dtK
T

K
0

1 22

0

222

4

1
cos

2

11
amdttam

T

T

    

Thus average values of kinetic energy and potential energy of 
harmonic oscillator are equal and each equal to half of the total energy 

averageaverage UK  22

4

1

2

1
amE  . 

Differential Equation of S.H.M. 

For S.H.M. (linear) Acceleration  – (Displacement) 

   yA    or yA 2 or   y
dt

yd 2

2

2

  

or 0
2

2

 ky
dt

yd
m  [As  

m

k
 ] 

For angular S.H.M.      c    and    02
2

2
 



dt

d
 

where 
I

c
2   [As c = Restoring torque constant and I = Moment 

of inertia] 

How to Find Frequency and Time Period of S.H.M.  

Step 1 : When particle is in its equilibrium position, balance all forces 

acting on it and locate the equilibrium position mathematically. 

Step 2 : From the equilibrium position, displace the particle slightly by 

a displacement y and find the expression of net restoring force on it.  

Step 3 : Try to express the net restoring force acting on particle as a 

proportional function of its displacement from mean position. The final 

expression should be obtained in the form.  

  kyF   

Here we put – ve sign as direction of F is opposite to the displacement 
y. If a be the acceleration of particle at this displacement, we have 

y
m

k
a 








       

Step 4 : Comparing this equation with the basic differential equation 

of S.H.M. we get 
m

k
2  

m

k
  or 

m

k
n

2

1
  

As  is the angular frequency of the particle in S.H.M., its time period 

of oscillation can be given as 


2
T

k

m
2  

(i) In different types of S.H.M. the quantities m and k will go on taking 

different forms and names. In general m is called inertia factor and k is 

called spring factor. 

Thus 
factor Spring 

factor Inertia
2T or 

factor Inertia

factorSpring

2

1


n  

(ii) In linear S.H.M. the spring factor stands for force per unit 

displacement and inertia factor for mass of the body executing S.H.M. and 

in Angular S.H.M. k stands for restoring torque per unit angular 

displacement and inertial factor for moment of inertia of the body executing 

S.H.M.  

For linear S.H.M.  

lacementForce/Disp
2

m

k

m
T  

onAccelerati

ntDisplaceme
2  

Simple Pendulum 

(1) An ideal simple pendulum consists of a heavy point mass body 

(bob) suspended by a weightless, inextensible and perfectly flexible string 

from a rigid support about which it is free to oscillate. 

(2) But in reality neither point mass nor weightless string exist, so 

we can never construct a simple pendulum strictly according to the 
definition.  

(3) Suppose simple pendulum of length l is displaced through a 

small angle   from it’s mean (vertical) position. Consider mass of the bob 

is m and linear displacement from mean position is x 
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Fig. 16.12 
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Restoring force acting on the bob  

 sinmgF     or    mgF   
l

x
mg   

(When   is small sin    
Length

Arc~   = 
l

OP
 = 

l

x
) 

   k
l

mg

x

F



  (Spring factor) 

So 
factorSpring 

factor Inertia
2T

lmg

m

/
2

g

l
2  

Factor Affecting Time Period of Simple Pendulum 

(1) Amplitude : The period of simple pendulum is independent of 

amplitude as long as its motion is simple harmonic. But if  is not small, sin 

    then motion will not remain simple harmonic but will become 

oscillatory. In this situation if 
0

 is the amplitude of motion. Time period  

 

 































16
1.......

2
sin

2

1
12

2
0

0
02

2


 T

g

l
T  

(2) Mass of the bob : Time period of simple pendulum is also 

independent of mass of the bob. This is why 

(i) If the solid bob is replaced by a hollow sphere of same radius but 

different mass, time period remains unchanged. 

(ii) If a girl is swinging in a swing and another sits with her, the time 

period remains unchanged. 

(3) Length of the pendulum : Time period lT   where l is the 

distance between point of suspension and center of mass of bob and is 

called effective length. 

(i) When a sitting girl on a swinging swing stands up, her center of 

mass will go up and so l and hence T will decrease. 

(ii) If a hole is made at the bottom of a hollow sphere full of water 

and water comes out slowly through the hole and time period is recorded 

till the sphere is empty, initially and finally the center of mass will be at the 

center of the sphere. However, as water drains off the sphere, the center of 

mass of the system will first move down and then will come up. Due to this 

l and hence T first increase, reaches a maximum and then decreases till it 

becomes equal to its initial value. 

(iii) Different graphs 

 

 

 

 

 

 

(4) Effect of g :
g

T
1

  i.e. as g increase T decreases.  

(i) As we go high above the earth surface or we go deep inside the 

mines the value of g decrease, hence time period of pendulum (T) increases. 

(ii) If a clock, based on simple pendulum is taken to hill (or on  any 

other planet), g will decrease so T will increases and clock will become 

slower.  

(iii) Different graphs 

 

 

 

 

 

 

(5) Effect of temperature on time period : If the bob of simple 

pendulum is suspended by a wire then effective length of pendulum will 

increase with the rise of temperature due to which the time period will 

increase. 

)1(0   ll    (If   is the rise in temperature, 0l  initial 

length of wire, l = final length of wire) 

2/1

00

)1(  
l

l

T

T
 

2

1
1  

So  
2

1
1

0T

T
 i.e.  



2

1

T

T
 

Oscillation of Pendulum in Different Situations 

(1) Oscillation in liquid : If bob a simple pendulum of density  is 

made to oscillate in some fluid of density  (where  <) then time period 

of simple pendulum gets increased. 

As thrust will oppose its weight hence  mgmgeff. Thrust 

or  




V

gV
ggeff .  i.e. 












1. ggeff    

 


 


g

geff.
 

 1
'

.









effg

g

T

T
 

(2) Oscillation under the influence of electric field : If a bob of mass 

m carries a positive charge q and pendulum is placed in a uniform electric 

field of strength E 

(i) If electric field directed vertically upwards. 

Effective acceleration 

m

qE
ggeff .  

T 

l  T2 

l 

l  T2 

T2 

l 

l  T2 
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l  

Fig. 16.9 
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So  

m

qE
g

l
T



 2  

 

(ii) If electric field is vertically downward then  

m

qE
ggeff .  

m

qE
g

l
T



 2  

 

 

(3) Pendulum in a lift :  If the pendulum is suspended from the 
ceiling of the lift.  

(i) If the lift is at rest or moving down ward /up ward with constant 
velocity. 

    
g

l
T 2  

and  
l

g
n

2

1
  

(ii) If the lift is moving up ward with constant acceleration a  

    
ag

l
T


 2  

and 
l

ag
n




2

1
 

Time period decreases and frequency increases 

(iii) If the lift is moving down ward with constant acceleration a 

   
ag

l
T


 2  

and 
l

ag
n




2

1
 

Time period increase and frequency decreases  

(iv) If the lift is moving down ward with acceleration  ga   

   



gg

l
T 2   

and 
l

gg
n




2

1
= 0 

It means there will be no oscillation in a pendulum.  

Similar is the case in a satellite and at the centre of earth where 

effective acceleration becomes zero and pendulum will stop.  

(4) Pendulum in an accelerated vehicle : The time period of simple 

pendulum whose point of suspension moving horizontally with acceleration 

a  

 

 

 

 

 

 

In this case effective acceleration 22
. aggeff   

 
2/122 )(

2
ag

l
T


   and  )/(tan 1 ga  

If simple pendulum suspended in a car that is moving with constant 

speed v around a circle of radius r.  

  
2

2
2

2


















r

v
g

l
T   

Some Other Types of Pendulum 

(1) Infinite length pendulum :  If the length of the pendulum is 

comparable to the radius of earth then  

  













Rl
g

T
11

1
2  

(i) If Rl  , then 
Rl

11
   so  

g

l
T 2  

(ii) If 
Rl

Rl
11

  then)(     

so 6.84
10

104.6
22

6




 
g

R
T  minutes 

and it is the maximum time period which an oscillating simple 
pendulum can have 

(iii) If Rl     so  hour
g

R
T 1

2
2    

(2) Second’s Pendulum : It is that simple pendulum whose time 
period of vibrations is two seconds. 

Putting T = 2 sec and 2sec/8.9 mg   in 
g

l
T 2  we get  

993.0
4

8.94
2







l m = 99.3 cm  

Hence length of second’s pendulum is 99.3 cm or nearly 1 meter on 
earth surface. 

For the moon the length of the second’s pendulum will be 1/6 meter 

[As 
6

Earthg
gmoon  ] 

(3) Compound pendulum : Any rigid body suspended from a fixed 

support constitutes a physical pendulum. Consider the situation when the 

body is displaced through a small angle . Torque on the body about O is 

given by  
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          sinmgl                 …(i) 

 where l = distance between point of suspension and centre of mass 
of the body.  

 If I be the M.I. of the body about O. Then  I  …(ii) 

 From (i) and (ii), we get 


sin
2

2

mgl
dt

d
I   as  and 

2

2

dt

d 
 are 

oppositely directed  


I

mgl

dt

d


2

2

 since  is very small 

 Comparing with the equation .2

2

2





dt

d
we get  

 
mgl

I
T

I

mgl
 2  

 Also 2mlII cm    (Parallel axis theorem) 

 22 mlmk   (where k = radius of gyration) 

  
g

l
l

K

mgl

mlmK
T








2

22

22 
g

leff2  

 l
eff 

=
 

Effective length of pendulum = Distance between point of 

suspension and centre of mass. 

Table 16. 2: Some common physical pendulum 

Body Time period 

Bar 

 

 

 

g

l
T

3

2
2  

Ring 

 

 
 

 

g

R
T

2
2  

Disc  

 

 

 

g

R
T

2

3
2  

 

Spring System 

When a spring is stretched or compressed from its normal position (x = 
0) by a small distance x, then a restoring force is produced in the spring 
because it obeys Hook’s law  

i.e.   xF    xkF    

where k is called spring constant. 

(i) It’s S.I. unit Newton/metre, C.G.S unit Dyne/cm and dimension is 
[MT–2] 

(ii) Actually k is a measure of the stiffness/softness of the spring. 

(iii) For massless spring constant restoring elastic force is same every 
where  

(iv) When a spring compressed or stretched then work done is stored 
in the form of elastic potential energy in it. 

(v) Spring constant depend upon radius and length of the wire used in 
spring.  

(vi) The spring constant k is inversely proportional to the spring 
length. 

 

 

 

 

 
 

 

 
springof Length

1

Extension

1
k  

That means if the length of spring is halved then its force constant 
becomes double. 

(vii) When a spring of length l is cut in two pieces of length l
1

 and l
2

 

such that 21 nll  .  

If the constant of a spring is k then spring constant of first part  

 
n

nk
k

)1(
1


  

Spring constant of second part  knk )1(2    

and ratio of spring constant 
nk

k 1

2

1   

Spring Pendulum 

A point mass suspended from a mass less spring or placed on a 
frictionless horizontal plane attached with spring (fig.) constitutes a linear 
harmonic spring pendulum 

 

 

 

 

 

 

Time period 
factorSpring

factorInertia
2T

k

m
2   

and Frequency  
m

k
n

2

1
  

(1) Time period of a spring pendulum depends on the mass suspended 

 mT   or 
m

n
1

 i.e. greater the mass greater will be the inertia 

and so lesser will be the frequency of oscillation and greater will be the time 
period. 

(2) The time period depends on the force constant k of the spring  i.e. 

k
T

1
   or  kn   

(3) Time of a spring pendulum is independent of acceleration due to 
gravity. That is why a clock based on spring pendulum will keep proper 
time every where on a hill or moon or in a satellite and time period of a 
spring pendulum will not change inside a liquid if damping effects are 
neglected. 
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(4) Massive spring : If the spring has a mass M and mass m is 

suspended from it, effective mass is given by 
3

M
m

ff
m

e
 . Hence 

k

ff
m

T
e

2  

(5) Reduced mass : If two masses of mass m
1

 and m
2

 are connected by 
a spring and made to oscillate on horizontal surface, the reduced mass m

r

 is 

given by 
21

111

mmm r

  so that   

 
k

m
T r2  

 

(6) If a spring pendulum, oscillating in a vertical plane is made to 
oscillate on a horizontal surface, (or on inclined plane) time period will 
remain unchanged. 

(7) Equilibrium position for a spring in a horizontal plain is the 
position of natural length of spring as weight is balanced by reaction. While 

in case of vertical motion equilibrium position will be 0yl   with 

mgky 0  

 

 

 

 

 

 

If the stretch in a vertically loaded spring is 0y  then for equilibrium 

of mass m,  mgky 0  i.e. 
g

y

k

m 0  

So that   
g

y

k

m
T 022    

Time period does not depends on ‘g’ because along with g, y
o

 will also 

change in such a way that 
k

m

g

y
0  remains constant 

Oscillation of Spring Combination 

(1) Series combination : If two springs of spring constants 1K  and 

2K  are joined in series as shown then 

   

 

 

 

 

 

 

(i) In series combination equal forces acts on spring but extension in 
springs are different. 

(ii) Spring constants of combination  

 
21

111

kkk s

   
21

21

kk

kk
k s


  

(iii) If n springs of different force constant are connected in series 

having force constant .......,, 321 kkk  respectively then   

 ........
1111

321


kkkkS

 

If all spring have same spring constant then 
n

k
kS   

(iv) Time period of combination 
21

21 )(
22

kk

kkm

k

m
T

S


   

(2) Parallel combination : If the springs are connected in parallel as 

shown  

 

 

 

 

 

 

 

 

 

 

 

 

(i) In parallel combination different forces acts on different  springs 
but extension in springs are same 

(ii) Spring constants of combination 21 kkkP     

(iii) If n springs of different force constant are connected in parallel 

having force constant .......,, 321 kkk  respectively then 

 321 kkkkP … 

If all spring have same spring constant then nkkP   

(iv) Time period of combination 
)(

22
21 kk

m

k

m
T

P

P


   

Various Formulae of S.H.M. 

(1) S.H.M. of a liquid in U tube : If a liquid of density  contained in a 

vertical U tube performs S.H.M. in its two limbs. Then time period  

g

L
T

2
2

g

h
2  

where L = Total length of liquid column,  

h = Height of undisturbed liquid in each limb (L=2h) 

(2) S.H.M. of a floating cylinder : If l is the length of cylinder dipping 

in liquid then 

Time period  
g

l
T 2  

 

 

(3) S.H.M. of a small ball rolling down in hemi-spherical bowl  

  
g

rR
T


 2  
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 k1 
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R = Radius of the bowl 

r  =Radius of the ball 

(4) S.H.M. of a piston in a cylinder  

 
PA

Mh
T 2  

M = mass of the piston 

A = area of cross section 

h = height of cylinder 

P = pressure in a cylinder 

(5) S.H.M. of a body in a tunnel dug along any chord of earth 

 

g

R
T 2 = 84.6 minutes  

 

(6) Torsional pendulum : In a torsional pendulum an object is 

suspended from a wire. If such a wire is twisted, due to elasticity it exert a 

restoring toque  = C.   

In this case time period is given by 

  
C

I
T 2  

where I = Moment of inertia a disc 

C = Torsional constant of wire = 
l

r

2

4
 

 = Modulus of elasticity of wire and r = Radius of wire 

(7) Longitudinal oscillations of an elastic wire : Wire/string pulled a 

distance l and left. It executes longitudinal oscillations. Restoring force 








 


l

l
AYF  

Y = Young’s modulus 

A = Area of cross-section 

Hence 
AY

ml

k

m
T  22   

Free, Damped, Forced and Maintained Oscillations  

 

 

 

 

 

 

 

 

(1) Free oscillation  

(i) The oscillation of a particle with fundamental frequency under the 
influence of restoring force are defined as free oscillations 

(ii) The amplitude, frequency and energy of oscillation remains 

constant 

(iii) Frequency of free oscillation is called natural frequency because it 
depends upon the nature and structure of the body.  

 

 

 

 

 

 

(2) Damped oscillation  

(i) The oscillation of a body whose amplitude goes on decreasing with 
time are defined as damped oscillation 

(ii) In these oscillation the amplitude of oscillation decreases 

exponentially due to damping forces like frictional force, viscous  force, 

hystersis etc.  

(iii) Due to decrease in amplitude the energy of the oscillator also goes 

on decreasing exponentially  

 

 

 

 

 

 

(iv) The force produces a resistance to the oscillation is called damping 

force.  

If the velocity of oscillator is v then  

Dumping force ,bvFd   b = damping constant 

(v) Resultant force on a damped oscillator is given by  

 KvKxFFF dR  0
2

2

 Kx
dt

dx
b

dt

xmd
 

(vi) Displacement of damped oscillator is given by  

 )sin(2/    texx mbt
m  where  angular frequency of 

the damped oscillator = 22
0 )2/( mb  

The amplitude decreases continuously with time according to  

     tmb
mexx )2/(  

(vii) For a damped oscillator if the damping is small then the 
mechanical energy decreases exponentially with time as  

    mbt
meKxE /2

2

1   

(3) Forced oscillation  

(i) The oscillation in which a body oscillates under the influence of an 
external periodic force are known as forced oscillation 

(ii) The amplitude of oscillator decrease due to damping forces but on 
account of the energy gained from the external source it remains constant. 

(iii) Resonance : When the frequency of external force is equal to the 
natural frequency of the oscillator. Then this state is known as the state of 
resonance. And this frequency is known as resonant frequency.  

(iv) While swinging in a swing if you apply a push periodically by 
pressing your feet against the ground, you find that not only the oscillations 
can now be maintained but the amplitude can also be increased. Under this 
condition the swing has forced or driven oscillation. 
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(v) In forced oscillation, frequency of damped oscillator is equal to the 
frequency of external force. 

(vi) Suppose an external driving force is represented by  

  F(t) = F
0

 cos 
d

 t  

The motion of a particle under combined action of  

(a) Restoring force (–Kx) 

(b) Damping force (–bv) and  

(c) Driving force F(t) is given by tFbvKxma dcos0  

 tF
dt

dx
bKx

d

xd
m dcos02

2
2   

The solution of this equation gives )sin(0   txx d  with 

amplitude 
22

0
2

0
0

)/()(

/

mb

mF
x

 

 and 
mb /

)(
tan

2
0

2







  

where 
m

K
0  = Natural frequency of oscillator. 

(vii) Amplitude resonance : The amplitude of forced oscillator depends 

upon the frequency d  of external force.  

When ,d   the amplitude is maximum but not infinite because of 

presence of damping force. The corresponds frequency is called resonant 

frequency )( 0 . 

 

 

 

 

 

 

 

 

(viii) Energy resonance : At ,0   oscillator absorbs maximum 

kinetic energy from the driving force system this state is called energy 
resonance.  

At resonance the velocity of a driven oscillator is in phase with the 
driving term. 

The sharpness of the resonance of a driven oscillator depends on the 
damping. 

In the driven oscillator, the power input of the driving term in 

maximum at resonance. 

(4) Maintained oscillation : The oscillation in which the loss of 

oscillator is compensated by the supplying energy from an external source 

are known as maintained oscillation. 

Super Position of S.H.M’s (Lissajous Figures) 

If two S.H.M's act in perpendicular directions, then their resultant 

motion is in the form of a straight line or a circle or a parabola etc. 

depending on the frequency ratio of the two S.H.M. and initial phase 

difference. These figures are called Lissajous figures. 

Let the equations of two mutually perpendicular S.H.M's of same 

frequency be  

tax sin1  and )sin(2   tay  

then the general equation of Lissajou's figure can be obtained as 

 2

21
2
2

2

2
1

2

sincos
2


aa

xy

a

y

a

x
  

For  = 0° : 0
2

21
2
2

2

2
1

2


aa

xy

a

y

a

x
 0

2

21
















a

y

a

x
 

 x
a

a
y

a

y

a

x

1

2

21

  

This is a straight line passes through origin 

and it's slope is 
1

2

a

a
. 

Table 16.3 : Lissajou's figures in other conditions  

(with )1
2

1 



 

Phase 

diff.() 

Equation Figure 
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21
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 x
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1
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Straight line 

 

 

 

 

 
 

For the frequency ratio 1:2: 21   the two perpendicular S.H.M's 

are  

)sin(1   tax  and tay sin2  

Different Lissajou's figures as follows 
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 Suppose a body of mass m vibrate separately with two different 
springs (of spring constants k

1

 and k
2

) with time period T
1

 and T
2

 

respectively. 
1

1 2
k

m
T   and 

2

2 2
k

m
T   

If the same body vibrates with series combination of these two 

springs then for the system time period 
2

2
2

1 TTT   

If the same body vibrates with parallel combination of these two 

springs then time period of the system 
2

2
2

1

21

TT

TT
T



  

 The pendulum clock runs slow due to increase in its time period 
whereas it becomes fast due to decrease in time period. 

 If infinite spring with force constant ..........8,4,2, kkkk  

respectively are connected in series. The effective force constant of the 

spring will be 2/k . 

 Percentage change in time period with l and g. 

If g is constant and length varies by n%. Then % change in time 

period 100
2

100 
 n

T

T
 

If l is constant and g varies by n%. Then % change in time period 

100
2

100 
 n

T

T
       

(Valid only for small percentage change say 5%). 

 Suppose a spring of force constant k oscillates with time period T. If 
it is divided in to n equal parts then spring constant of each part will 

become nk and time period of oscillation of each part will become 
n

T
. 

If these n parts connected in parallel then kn
ff

k
e

2 . So time period of 

the system becomes 
n

T
T '  

 If a particle performs S.H.M. whose velocity is 1v  at a 1x  distance 

from mean position and velocity 2v  at distance 2x  

 
2

1
2

2

2
2

2
1

xx

vv




 ; 

2
2

2
1

2
1

2
22

vv

xx
T




    

 
2

2
2

1

2
1

2
2

2
2

2
1

vv

xvxv
a




 ;  

2
1

2
2

2
1

2
2

2
2

2
1

max
xx

xvxv
v




  

 If tay sin1   and tby cos2   are two S.H.M. then by the 

superimposition of these two S.H.M. we get 21 yyy   

  tbtay  cossin    )sin(   tAy  this is also the 

equation of  S.H.M.; where 22 baA  and )/(tan 1 ab  

 In the absence of resistive force the work done by a simple 
pendulum in one complete oscillation is zero 

 If  is the angular amplitude of pendulum then  

Height rises by the bob h = l (1 – cos) 

Velocity at mean position  

      )cos1(2  glv  

Work done in displacement  

      )cos1(  mglUW  

K.E. at mean position  

       )cos1(  mglKEmean
 

Tension in the string of pendulum  

At mean position : 
l

mv
mgTA

2

(max)  =(3mg – 2mg cos ) 

At extream position : T = mg cos 
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