QUADRILATERALS

IMPORTANT POINTS

\diamond A quadrilateral is a figure bounded by four line segments such that no three of them are parallel.
\diamond Two sides of quadrilateral are consecutive or adjacent sides, if they have a common point (vertex).
\diamond Two sides of a quadrilateral are opposite sides, if they have no common end-point (vertex).
\diamond The consecutive angles of a quadrilateral are two angles which include a side in their intersection. In other words, two angles are consecutive, if they have a common arm.
\diamond Two angles of a quadrilateral are said to be opposite angles if they do not have a common arm.
\diamond The sum of the four angles of a quadrilateral is 360°.

* EXAMPLES *

Ex. 1 In a quadrilateral ABCD , the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are in the ratio $2: 4: 5: 7$. Find the measure of each angles of the quadrilateral.
Sol. We have $\angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}: \angle \mathrm{D}=2: 4: 5: 7$. So, let $\angle \mathrm{A}=2 \mathrm{x}^{\circ}, \angle \mathrm{B}=4 \mathrm{x}^{\circ}, \angle \mathrm{C}=5 \mathrm{x}^{\circ}$, $\angle \mathrm{D}=7 \mathrm{x}^{\circ}$.
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$\Rightarrow 2 \mathrm{x}+4 \mathrm{x}+5 \mathrm{x}+7 \mathrm{x}=360^{\circ}$
$\Rightarrow 18 \mathrm{x}=360^{\circ}$
$\Rightarrow \mathrm{x}=20^{\circ}$
Thus, the angles are :

$$
\begin{aligned}
& \angle \mathrm{A}=40^{\circ}, \angle \mathrm{B}=(4 \times 20)^{\circ}=80^{\circ}, \\
& \angle \mathrm{C}=(5 \times 20)^{\circ}=100^{\circ}
\end{aligned}
$$

and, $\angle \mathrm{D}=(7 \mathrm{x})^{\circ}=(7 \times 20)^{\circ}=140^{\circ}$

Ex. 2 The sides BA and DC of a quadrilateral $A B C D$ are produced as shown in fig.
Prove that $\mathrm{a}+\mathrm{b}=\mathrm{x}+\mathrm{y}$.
Sol. Join BD. In $\triangle A B D$, we have

In $\triangle \mathrm{CBD}$, we have

$$
\begin{equation*}
\angle \mathrm{CBD}+\angle \mathrm{CDB}=\mathrm{a}^{\circ} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get
$(\angle \mathrm{ABD}+\angle \mathrm{CBD})+(\angle \mathrm{ADB}+\angle \mathrm{CDB})=\mathrm{a}^{\mathrm{o}}+\mathrm{b}^{\circ}$
$\Rightarrow \mathrm{x}^{\mathrm{o}}+\mathrm{y}^{\mathrm{o}}=\mathrm{a}^{\mathrm{o}}+\mathrm{b}^{\mathrm{o}}$
Hence, $x+y=a+b$
Ex. 3 In a quadrilateral $\mathrm{ABCD}, \mathrm{AO}$ and BO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ respectively. Prove that $\angle \mathrm{AOB}=\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$.

Sol. In $\triangle \mathrm{AOB}$, we have

$$
\begin{aligned}
& \angle \mathrm{AOB}+\angle 1+\angle 2=180^{\circ} \\
\Rightarrow & \angle \mathrm{AOB}=180^{\circ}-(\angle 1+\angle 2) \\
\Rightarrow & \angle \mathrm{AOB}=180^{\circ}-\left(\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{~B}\right)
\end{aligned}
$$

$$
\left[\Theta \angle 1=\frac{1}{2} \angle \mathrm{~A} \text { and } \angle 2=\frac{1}{2} \angle \mathrm{~B}\right]
$$

$$
\begin{aligned}
\Rightarrow & \angle \mathrm{AOB}=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}) \\
\Rightarrow & \angle \mathrm{AOB}=180^{\circ}-\frac{1}{2}\left[360^{\circ}-(\angle \mathrm{C}+\angle \mathrm{D})\right] \\
& {\left[\Theta \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}\right.} \\
& \left.\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}=360^{\circ}-(\angle \mathrm{C}+\angle \mathrm{D})\right] \\
\Rightarrow & \angle \mathrm{AOB}=180^{\circ}-180^{\circ}+\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D}) \\
\Rightarrow & \angle \mathrm{AOB}=\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})
\end{aligned}
$$

Ex. 4 In figure bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{D}$ of quadrilateral ABCD meet CD and AB produced at P and Q respectively. Prove that

$$
\angle \mathrm{P}+\angle \mathrm{Q}=\frac{1}{2}(\angle \mathrm{ABC}+\angle \mathrm{ADC})
$$

Sol. In $\triangle \mathrm{PBC}$, we have

$$
\begin{align*}
& \therefore \quad \angle \mathrm{P}+\angle 4+\angle \mathrm{C}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{P}+\frac{1}{2} \angle \mathrm{~B}+\angle \mathrm{C}=180^{\circ} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{QAD}$, we have $\angle \mathrm{Q}+\angle \mathrm{A}+\angle 1=180^{\circ}$
$\Rightarrow \angle \mathrm{Q}+\angle \mathrm{A}+\frac{1}{2} \angle \mathrm{D}=180^{\circ}$
Adding (i) and (ii), we get

$$
\begin{gathered}
\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{A}+\angle \mathrm{C}+\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{D} \\
=180^{\circ}+180^{\circ} \\
\Rightarrow \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{A}+\angle \mathrm{C}+\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{D}=360^{\circ} \\
\Rightarrow \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{A}+\angle \mathrm{C}+\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{D}) \\
=\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}
\end{gathered}
$$

$[\therefore$ In a quadrilateral $\mathrm{ABCD} \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$

$$
\left.+\angle \mathrm{D}=360^{\circ}\right]
$$

$$
\begin{aligned}
& \Rightarrow \angle \mathrm{P}+\angle \mathrm{Q}=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{D}) \\
& \Rightarrow \angle \mathrm{P}+\angle \mathrm{Q}=\frac{1}{2}(\angle \mathrm{ABC}+\angle \mathrm{ADC})
\end{aligned}
$$

Ex. 5 In a parallelogram $A B C D$, prove that sum of any two consecutive angles is 180°.
Sol. Since ABCD is a parallelogram. Therefore, $A D \| B C$.

Now, $\mathrm{AD} \| \mathrm{BC}$ and transversal AB intersects them at A and B respectively.
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
[Θ Sum of the interior angles on the same side of the transversal is 180°]

Similarly, we can prove that
$\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}, \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$ and $\angle \mathrm{D}+\angle \mathrm{A}=180^{\circ}$.
\diamond A quadrilateral having exactly one pair of parallel sides, is called a trapezium.
\diamond A trapezium is said to be an isoscels trapezium, if its non-parallel sides are equal.
\diamond A quadrilateral is a parallelogram if its both pairs of opposite sides are parallel.
\diamond A parallelogram having all sides equal is called a rhombus.
\diamond A parallelogram whose each angle is a right angle, is called a rectangle.
\diamond A square is a rectangle with a pair of adjacent sides equal.
\diamond A quadrilateral is a kite if it has two pairs of equal adjacent sides and unequal opposite sides.
\diamond A diagonal of a parallelogram divides it into two congruent triangles.
\diamond In a parallelogram, opposite sides are equal.
\diamond The opposite angles of a parallelogram are equal.
\diamond The diagonals of a parallelogram bisect each other.
\diamond In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
\diamond If diagonal of a parallelogram bisects one of the angles of the parallelogram, it also bisects the second angle.
\diamond The angle bisectors of a parallegram form a rectangle.

Ex. 6 In a parallelogram $\mathrm{ABCD}, \angle \mathrm{D}=115^{\circ}$, determine the measure of $\angle \mathrm{A}$ and $\angle \mathrm{B}$.

Sol. Since the sum of any two consecutive angles of a parallelogram is 180°. Therefore,

$$
\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ} \text { and } \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}
$$

Now, $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+115^{\circ}=180^{\circ}\left[\Theta \angle \mathrm{D}=115^{\circ}\right.$ (given) $]$
$\Rightarrow \angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\Rightarrow 65^{\circ}+\angle \mathrm{B}=180^{\circ} \Rightarrow \angle \mathrm{B}=115^{\circ}$
Thus, $\angle \mathrm{A}=65^{\circ}$ and $\angle \mathrm{B}=115^{\circ}$
Ex. 7 In figure, $\mathrm{AB}=\mathrm{AC}, \angle \mathrm{EAD}=\angle \mathrm{CAD}$ and $C D \| A B$. Show that $A B C D$ is a parallelogram.

Sol. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
[Given]
$\Rightarrow \quad \angle \mathrm{ABC}=\angle \mathrm{ACB}$
(Angles opposite the equal sides are equal)

$$
\angle \mathrm{EAD}=\angle \mathrm{CAD}[\text { Given }] \ldots .(2)
$$

Now, $\quad \angle \mathrm{EAC}=\angle \mathrm{ABC}+\angle \mathrm{ACB}$
$\binom{$ An exterior angle is equal to sum of }{ two interior opposite angles of a triangles }
$\Rightarrow \quad \angle \mathrm{EAD}+\angle \mathrm{CAD}=\angle \mathrm{ABC}+\angle \mathrm{ACB}$
$\Rightarrow \quad \angle \mathrm{CAD}+\angle \mathrm{CAD}=\angle \mathrm{ACB}+\angle \mathrm{ACB}$
By (1) and (2)
$\Rightarrow \quad 2 \angle \mathrm{CAD}=2 \angle \mathrm{ACB}$
$\Rightarrow \quad \angle \mathrm{CAD}=\angle \mathrm{ACB}$
$\Rightarrow \quad \mathrm{BC} \| \mathrm{AD}$
Also, $\quad \mathrm{CD} \| \mathrm{AB}$
[Given]
Thus, we have both pairs of opposite sides of quadrilateral ABCD parallel. Therefore, ABCD is a parallelogram.

Ex. 8 ABCD is a parallelogram and line segments AX, CY are angle bisector of $\angle \mathrm{A}$ and $\angle \mathrm{C}$ respectively then show $\mathrm{AX} \| \mathrm{CY}$.

Sol. Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD , we have $\angle \mathrm{A}=\angle \mathrm{C}$
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{C}$
$\Rightarrow \quad \angle 1=\angle 2$
[Θ AX and CY are bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{C}$ respectively]
Now, $\mathrm{AB} \| \mathrm{DC}$ and the transversal CY intersects them.
$\therefore \quad \angle 2=\angle 3$
[Θ Alternate interior angles are equal]
From (i) and (ii), we get

$$
\angle 1=\angle 3
$$

Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1=\angle 3$ i.e. corresponding angles are equal.
$\therefore \quad \mathrm{AX} \| \mathrm{CY}$
Ex. 9 In the adjoining figure, a point O is taken inside an equilateral quad. ABCD such that $\mathrm{OB}=\mathrm{OD}$. Show that A, O and C are in the same straight line.

Sol. Given a quad. ABCD in which $\mathrm{AB}=\mathrm{BC}$ $=C D=D A$ and O is a point within it such that $\mathrm{OB}=\mathrm{OD}$.

To prove $\angle \mathrm{AOB}+\angle \mathrm{COB}=180^{\circ}$
Proof In $\triangle \mathrm{OAB}$ and OAD , we have

$$
\begin{array}{ll}
& \mathrm{AB}=\mathrm{AD} \text { (given), } \mathrm{OA}=\mathrm{OA} \\
\text { (common) and } & \mathrm{OB}=\mathrm{OD} \text { (given) }
\end{array}
$$

$\therefore \quad \triangle \mathrm{OAB} \cong \triangle \mathrm{OAD}$
$\therefore \quad \angle \mathrm{AOB}=\angle \mathrm{AOD}$
Similarly, $\triangle \mathrm{OBC} \cong \triangle \mathrm{ODC}$
$\therefore \angle \mathrm{COB}=\angle \mathrm{COD}$
Now, $\angle \mathrm{AOB}+\angle \mathrm{COB}+\angle \mathrm{COD}+\angle \mathrm{AOD}$

$$
=360^{\circ} \quad[\angle \text { at a point }]
$$

$\Rightarrow 2(\angle \mathrm{AOB}+\angle \mathrm{COB})=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COB}=180^{\circ}$
Ex. 10 In figure AN and CP are perpendiculars to the diagonal BD of a parallelogram ABCD . Prove that :
(i) $\triangle \mathrm{ADN} \cong \triangle \mathrm{CBP}$
(ii) $\mathrm{AN}=\mathrm{CP}$

Sol. Since ABCD is a parallelogram.
$\therefore \mathrm{AD} \| \mathrm{BC}$
Now, $\mathrm{AD} \| \mathrm{BC}$ and transversal BD intersects them at B and D .
$\therefore \quad \angle 1=\angle 2$
[Θ Alternate interior angles are equal]
Now, in $\triangle \mathrm{s}$ ADN and CBP, we have

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \angle \mathrm{AND}=\angle \mathrm{CPD} \text { and, } \mathrm{AD}=\mathrm{BC}
\end{aligned}
$$

[Θ Opposite sides of a $\|^{\mathrm{gm}}$ are equal]
So, by AAS criterion of congruence

$$
\Delta \mathrm{ADN} \cong \Delta \mathrm{CBP}
$$

$$
\mathrm{AN}=\mathrm{CP}
$$

[Θ Corresponding parts of congruent triangles are equal]

Ex. 11 In figure, ABCD is a trapezium such that $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$.

$\mathrm{BE} \| \mathrm{AD}$ and BE meets BC at E .
Show that (i) ABED is a parallelogram.
(ii) $\angle \mathrm{A}+\angle \mathrm{C}=\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$.

Sol. Here, $\mathrm{AB} \| \mathrm{CD}$
(Given)
$\Rightarrow \quad \mathrm{AB} \| \mathrm{DE}$
Also, $\quad \mathrm{BE} \| \mathrm{AD}$ (Given)
From (1) and (2),
ABED is a parallelogram
$\Rightarrow \quad \mathrm{AD}=\mathrm{BE}$
Also, $\quad \mathrm{AD}=\mathrm{BC}$ (Given)
From (3) and (4),

$$
\begin{align*}
& \mathrm{BE}=\mathrm{BC} \\
\Rightarrow \quad & \angle \mathrm{BEC}=\angle \mathrm{BCE} \tag{5}
\end{align*}
$$

Also, $\quad \angle \mathrm{BAD}=\angle \mathrm{BED}$
(opposite angles of parallelogram ABED)
i.e., $\quad \angle \mathrm{BED}=\angle \mathrm{BAD}$

Now, $\angle \mathrm{BED}+\angle \mathrm{BEC}=180^{\circ}$ (Linear pair of angles)
$\Rightarrow \quad \angle \mathrm{BAD}+\angle \mathrm{BCE}=180^{\circ}$
By (5) and (6)
$\Rightarrow \quad \angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
Similarly, $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
Ex. 12 In figure ABCD is a parallelogram and $\angle \mathrm{DAB}=60^{\circ}$. If the bisectors AP and BP of angles A and B respectively, meet at P on $C D$, prove that P is the mid-point of $C D$.

Sol. We have, $\angle \mathrm{DAB}=60^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \\
\therefore \quad & 60^{\circ}+\angle \mathrm{B}=180^{\circ} \Rightarrow \angle \mathrm{B}=120^{\circ}
\end{aligned}
$$

Now, AB || DC and transversal AP intersects them.

$$
\begin{aligned}
& \therefore \quad \angle \mathrm{PAB}=\angle \mathrm{APD} \\
& \Rightarrow \angle \mathrm{APD}=30^{\circ} \quad\left[\Theta \angle \mathrm{PAB}=30^{\circ}\right]
\end{aligned}
$$

Thus, in $\triangle \mathrm{APD}$, we have
$\angle \mathrm{PAD}=\angle \mathrm{APD} \quad\left[\right.$ Each equal to $\left.30^{\circ}\right]$
$\Rightarrow \mathrm{AD}=\mathrm{PD}$
[Θ Angles opposite to equal sides are equal] Since BP is the bisector of $\angle \mathrm{B}$. Therefore,

$$
\angle \mathrm{ABP}=\angle \mathrm{PBC}=60^{\circ}
$$

Now, $\mathrm{AB}|\mid \mathrm{DC}$ and transversal BP intersects them.

$$
\begin{array}{ll}
\therefore & \angle \mathrm{CPB}=\angle \mathrm{ABP} \\
\Rightarrow & \angle \mathrm{CPB}=60^{\circ} \quad\left[\Theta \angle \mathrm{ABP}=60^{\circ}\right]
\end{array}
$$

Thus, in $\triangle \mathrm{CBP}$, we have

$$
\angle \mathrm{CBP}=\angle \mathrm{CPB} \quad\left[\text { Each equal to } 60^{\circ}\right]
$$

$\Rightarrow \mathrm{CP}=\mathrm{BC}$
Θ [Sides opp, to equal angles are equal]
$\Rightarrow \mathrm{CP}=\mathrm{AD}$
$\left[\Theta \mathrm{ABCD}\right.$ is a $\|^{\mathrm{gm}} \therefore \mathrm{AD}=\mathrm{BC}$]
From (i) and (ii), we get

$$
\mathrm{PD}=\mathrm{CP}
$$

$\Rightarrow P$ is the mid point of $C D$.
\diamond A quadrilateral is a parallelogam if its opposite sides are equal.
$\diamond A$ quadrilateral is a parallelogram if its opposite angles are equal.
\diamond If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
\diamond A quadrilateral is a parallelogram, if its one pair of opposite sides are equal and parallel.

Ex. 13 Prove that the line segments joining the midpoint of the sides of a quadrilateral forms a parallelogram.

Sol. Points E, F, G and H are the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively, of the quadrilateral $A B C D$. We have to prove that EFGH is a parallelogram.

Join the diagonal $A C$ of the quadrilateral ABCD.

Now, in $\triangle \mathrm{ABC}$, we have E and F mid-points of the sides BA and BC .
$\Rightarrow \quad \mathrm{EF} \| \mathrm{AC}$
and $\quad \mathrm{EF}=\frac{1}{2} \mathrm{AC}$
Similarly, from $\triangle \mathrm{ADC}$, we have

$$
\begin{equation*}
\mathrm{GH} \| \mathrm{AC} \tag{2}
\end{equation*}
$$

and $\quad \mathrm{GH}=\frac{1}{2} \mathrm{AC}$
Then from (1) and (2), we have

$$
\mathrm{EF} \| \mathrm{GH}
$$

and $\quad \mathrm{EF}=\mathrm{GH}$
This proves that EFGH is a parallelogram.
Ex. 14 In figure $A B C D$ is a parallelogram and X, Y are the mid-points of sides AB and DC respectively. Show that AXCY is a parallelogram.
Sol. Since X and Y are the mid-points of $A B$ and DC respectively. Therefore,

$$
\begin{equation*}
\mathrm{AX}=\frac{1}{2} \mathrm{AB} \text { and } \mathrm{CY}=\frac{1}{2} \mathrm{DC} \tag{i}
\end{equation*}
$$

But, $\mathrm{AB}=\mathrm{DC}$
[$\Theta \mathrm{ABCD}$ is a $\|^{\mathrm{gm}}$]

$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{DC}$
$\Rightarrow \mathrm{AX}=\mathrm{CY}$
Also, AB || DC
$\Rightarrow \mathrm{AX} \| \mathrm{YC}$
Thus, in quadrilateral AXCY, we have
$A X \| Y C$ and $A X=Y C$
[From (ii) and (iii)]
Hence, quadrilateral AXCY is a parallelogram.

Ex. 15 Prove that the line segments joining the midpoints of the sides of a rectangle forms a rhombus.
Sol. $\quad \mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the mid-points of the sides $A B, B C, C D$ and $D A$ of the rectangle $A B C D$.

Here, $\quad \mathrm{AC}=\mathrm{BD} \quad(\Theta \Delta \mathrm{ABC} \cong \triangle \mathrm{BAD})$
Now, $\quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
and $\quad \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \quad \mathrm{SR} \| \mathrm{PQ}$ and $\mathrm{SR}=\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
Similarly, $\mathrm{PS} \| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}=\frac{1}{2} \mathrm{BD}$
$\Rightarrow \quad \mathrm{SR}\|\mathrm{PQ}, \mathrm{PS}\| \mathrm{QR}$
and $\quad \mathrm{SR}=\mathrm{PQ}=\mathrm{PS}=\mathrm{QR} \quad(\Theta \mathrm{AC}=\mathrm{BD})$
PQRS is a rhombus.
Ex. 16 In figure ABCD is a parallelogram and X and Y are points on the diagonal BD such that DX $=\mathrm{BY}$. Prove that
(i) AXCY is a parallelogram
(ii) $\mathrm{AX}=\mathrm{CY}, \mathrm{AY}=\mathrm{CX}$
(iii) $\triangle \mathrm{AYB} \cong \triangle \mathrm{CXD}$

Sol. Given : ABCD is a parallelogram. X and Y are points on the diagonal BD such that DX $=\mathrm{BY}$
To Prove :
(i) AXCY is a parallelogram
(ii) $\mathrm{AX}=\mathrm{CY}, \mathrm{AY}=\mathrm{CX}$
(iii) $\triangle \mathrm{AYB} \cong \triangle \mathrm{CXD}$

Construction : join AC to meet BD at O .
Proof:
(i) We know that the diagonals of a parallelogram bisect each other. Therefore, AC and BD bisect each other at O .

$\therefore \mathrm{OB}=\mathrm{OD}$
But,BY=DX
$\therefore \mathrm{OB}-\mathrm{BY}=\mathrm{OD}-\mathrm{DX}$
$\Rightarrow \mathrm{OY}=\mathrm{OX}$
Thus, in quadrilateral AXCY diagonals AC and XY are such that $\mathrm{OX}=\mathrm{OY}$ and $\mathrm{OA}=\mathrm{OC}$ i.e. the diagonals AC and XY bisect each other.

Hence, AXCY is a parallelogram.
(ii) Since AXCY is a parallelogram
$\therefore \mathrm{AX}=\mathrm{CY}$ and $\mathrm{AY}=\mathrm{CX}$
(iii) In triangles AYB and CXD, we have

$$
\begin{aligned}
& \mathrm{AY}=\mathrm{CX} \\
& \mathrm{AB}=\mathrm{CD}
\end{aligned}
$$

[From (ii)]
[$\Theta \mathrm{ABCD}$ is a parallelogram]

$$
\mathrm{BY}=\mathrm{DX}
$$

[Given]
So, by SSS-criterion of congruence, we have

$$
\Delta \mathrm{AYB} \cong \triangle \mathrm{CXD}
$$

Ex. 17 In fig. ABC is an isosceles triangle in which $A B=A C . C P \| A B$ and $A P$ is the bisector of exterior $\angle \mathrm{CAD}$ of $\triangle \mathrm{ABC}$. Prove that $\angle \mathrm{PAC}=\angle \mathrm{BCA}$ and ABCP is a parallelogram.
Sol. Given : An isosceles $\triangle \mathrm{ABC}$ having $\mathrm{AB}=\mathrm{AC} . \mathrm{AP}$ is the bisector of ext $\angle \mathrm{CAD}$ and $\mathrm{CP} \| \mathrm{AB}$.

To Prove : $\angle \mathrm{PAC}=\angle \mathrm{BCA}$ and ABCP
Proof: In $\triangle A B C$, we have

$$
\begin{align*}
& \mathrm{AB} \tag{Given}\\
&=\mathrm{AC} \tag{i}\\
& \Rightarrow \angle 1=\angle 2
\end{align*}
$$

$\left[\begin{array}{c}\Theta \text { Angles opposite to equal } \\ \text { sides in a } \Delta \text { are equal }\end{array}\right]$
Now, in $\triangle \mathrm{ABC}$, we have

$$
\text { ext } \angle \mathrm{CAD}=\angle 1+\angle 2
$$

$\left[\begin{array}{c}\Theta \text { An exterior angles is equal to the } \\ \text { sum of two opposite int erior angles }\end{array}\right]$
$\Rightarrow \operatorname{ext} \angle \mathrm{CAD}=2 \angle 2[\Theta \angle 1=\angle 2($ from $(\mathrm{i}))]$
$\Rightarrow 2 \angle 3=2 \angle 2$
[Θ AP in the bisector of ext. $\angle \mathrm{CAD} \therefore \angle \mathrm{CAD}$ $=2 \angle 3]$
$\Rightarrow \angle 3=\angle 2$
Thus, AC intersects lines AP and BC at A and C respectively such that $\angle 3=\angle 2$ i.e., alternate interior angles are equal. Therefore,

$$
\mathrm{AP} \| \mathrm{BC} .
$$

But,CP || AB
[Gvien]
Thus, ABCP is a quadrilateral such that $\mathrm{AP} \| \mathrm{BC}$ and $\mathrm{CP} \| \mathrm{AB}$. Hence, ABCP is a parallelogram.
Ex. 18 In the given figure, ABCD is a square and $\angle \mathrm{PQR}=90^{\circ}$. If $\mathrm{PB}=\mathrm{QC}=\mathrm{DR}$, prove that

(i) $\mathrm{QB}=\mathrm{RC}$, (ii) $\mathrm{PQ}=\mathrm{QR}$, (iii) $\angle \mathrm{QPR}=45^{\circ}$.

Sol. $\mathrm{BC}=\mathrm{DC}, \mathrm{CQ}=\mathrm{DR} \Rightarrow \mathrm{BC}-\mathrm{CQ}=\Delta \mathrm{CDR}$
$\Rightarrow \mathrm{QB}=\mathrm{RC}$
From $\triangle \mathrm{CQR}, \angle \mathrm{RQB}=\angle \mathrm{QCR}+\angle \mathrm{QRC}$
$\Rightarrow \angle \mathrm{RQP}+\angle \mathrm{PQB}=90^{\circ}+\angle \mathrm{QRC}$
$\Rightarrow 90^{\circ}+\angle \mathrm{PQB}=90^{\circ}+\angle \mathrm{QRC}$
Now, $\triangle \mathrm{RCQ} \cong \triangle \mathrm{QBP}$ and therefore,
$\mathrm{QR}=\mathrm{PQ}$

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{QR} \Rightarrow \angle \mathrm{QPR}=\angle \mathrm{PRQ} \\
& \mathrm{Bur}, \angle \mathrm{QPR}+\angle \mathrm{PRQ}=90^{\circ} \\
& \mathrm{So}, \angle \mathrm{QPR}=45^{\circ}
\end{aligned}
$$

\diamond Each of the four angles of a rectangel is a right angle.
\diamond Each of the four sides of a rhombus is of the same length.
\diamond Each of the angles of a square is a right angle and each of the four sides is of the same length.
\diamond The diagonals of a rectangle are of equal length.
\diamond If the two diagonals of parallelogram are equal, it is a rectangle.
\diamond The diagonals of a rhombus are perpendicular to each other.
\diamond If the diagonals of a parallelogram are perpendicular, then it is a rhombus.
\diamond The diagonals of a square are equal and perpendicular to each other.
\diamond If the diagonals of a parallelogram are equal and intersect at right angles then the parallelogram is a square.

* EXAMPLES *

Ex. 19 Prove that in a parallelogram
(i) opposite sides are equal
(ii) opposite angles are equal
(iii) each diagonal bisects the parallelogram

Sol. Given : A \|gm ABCD in which AB \| DC and $\mathrm{AD} \| \mathrm{BC}$.

To prove (i) $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$;
(ii) $\angle \mathrm{B}=\angle \mathrm{D}$ and $\angle \mathrm{A}=\angle \mathrm{C}$,
(iii) $\triangle \mathrm{ABC}=\Delta \mathrm{CDA}$ and $\Delta \mathrm{ABD}=\Delta \mathrm{CDB}$

Construction join A and C .
In $\triangle \mathrm{ABC}$ and CDA , we have,

$\angle 1=\angle 2$
[Alt. int. \angle, as $\mathrm{AB} \| \mathrm{DC}$ and CA cuts them]
$\angle 3=\angle 4$
[Alt. int. \angle, as $\mathrm{BC} \| \mathrm{AD}$ and CA cuts them]
$\mathrm{AC}=\mathrm{CA}$ (common)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ [AAS-criterial]
(i) $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ (proved)

$$
\therefore \mathrm{AB}=\mathrm{CD} \text { and } \mathrm{BC}=\mathrm{AD} \text { (c.p.c.t.) }
$$

(ii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ (proved)
$\therefore \angle \mathrm{B}=\angle \mathrm{D}$ (c.p.c.t.)
Also, $\angle 1=\angle 2$ and $\angle 3=\angle 4$
$\angle 1+\angle 4=\angle 2+\angle 3 \Rightarrow \angle \mathrm{~A}=\angle \mathrm{C}$
Hence, $\angle \mathrm{B}=\angle \mathrm{D}$ and $\angle \mathrm{A}=\angle \mathrm{C}$
(iii) Since $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$ and congruent triangles are equal in area,

So we have $\triangle \mathrm{ABC}=\triangle \mathrm{CDA}$
Similarly, $\triangle \mathrm{ABD}=\triangle \mathrm{CDB}$
Ex. 20 If the diagonals of a parallelogram are perpendicular to each other, prove that it is a rhombus.

Sol. Since the diagonals of a $\|$ gm bisect each other,

we have, $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$.
Now, in $\triangle A O D$ and COD, we have

$$
\mathrm{OA}=\mathrm{OC}, \angle \mathrm{AOD}=\angle \mathrm{COD}=90^{\circ}
$$

and OD is common
$\therefore \quad \triangle \mathrm{AOD} \cong \triangle \mathrm{COD}$
$\therefore \mathrm{AD}=\mathrm{CD}$ (c.p.c.t.)
Now, $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{AD}=\mathrm{BC}$
(opp. sides of a \|gm)
and $\mathrm{AD}=\mathrm{CD}$ (proved)
$\therefore \mathrm{AB}=\mathrm{CD}=\mathrm{AD}=\mathrm{BC}$
Hence, ABCD is a rhombus.

Ex. 21 PQRS is a square. Determine \angle SRP.
Sol. PQRS is a square.
$\therefore \quad \mathrm{PS}=\mathrm{SR}$ and $\angle \mathrm{PSR}=90^{\circ}$
Now, in \triangle PSR, we have

$$
\mathrm{PS}=\mathrm{SR}
$$

$\Rightarrow \angle 1=\angle 2 \quad\left[\begin{array}{r}\Theta \text { Angles opp. to } \\ \text { equal sides are equal }\end{array}\right]$
But, $\angle 1+\angle 2+\angle \mathrm{PSR}=180^{\circ}$
$\therefore 2 \angle 1+90^{\circ}=180^{\circ} \quad\left[\Theta \angle \mathrm{PSR}=90^{\circ}\right]$
$\Rightarrow 2 \angle 1=90^{\circ}$
$\Rightarrow \angle 1=45^{\circ}$
Ex. 22 In the adjoining figure, ABCD is a rhombus. If $\angle \mathrm{A}=70^{\circ}$, find $\angle \mathrm{CDB}$

Sol.

We have $\angle \mathrm{C}=\angle \mathrm{A}=70^{\circ}$
(opposite \angle of a ||gm)
Let $\angle \mathrm{CDB}=\mathrm{x}^{\circ}$
In $\triangle \mathrm{CDB}$, we have

$$
\mathrm{CD}=\mathrm{CB} \Rightarrow \angle \mathrm{CBD}=\angle \mathrm{CDB}=\mathrm{x}^{\circ}
$$

$\therefore \quad \angle \mathrm{CDB}+\angle \mathrm{CBD}+\angle \mathrm{DCB}=180^{\circ}$
(angles of a triangle)
$\Rightarrow \mathrm{x}^{\mathrm{o}}+\mathrm{x}^{\mathrm{o}}+70^{\circ}=180^{\circ}$
$\Rightarrow 2 \mathrm{x}=110$, i.e., $\mathrm{x}=55$
Hence, $\angle \mathrm{CDB}=55^{\circ}$

Ex. 23 ABCD is a rhombus with $\angle \mathrm{ABC}=56^{\circ}$. Determine $\angle \mathrm{ACD}$.

Sol. ABCD is a parallelogram

$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ADC}$
$\Rightarrow \angle \mathrm{ADC}=56^{\circ} \quad\left[\Theta \angle \mathrm{ABC}=56^{\circ}\right.$ (Given) $]$
$\Rightarrow \angle \mathrm{ODC}=28^{\circ} \quad\left[\Theta \angle \mathrm{ODC}=\frac{1}{2} \angle \mathrm{ADC}\right]$
Now, $\triangle \mathrm{OCD}$ we have,

$$
\begin{aligned}
& \angle \mathrm{OCD}+\angle \mathrm{ODC}+\angle \mathrm{COD}=180^{\circ} \\
\Rightarrow & \angle \mathrm{ODC}+28^{\circ}+90^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{OCD}=62^{\circ} \Rightarrow \angle \mathrm{ACD}=62^{\circ}
\end{aligned}
$$

The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
\diamond The line drawn through the mid-point of one side of a triangle, parallel to another side, intersects the third side at its mid-point.

Ex. 24 Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.

Sol. Given : A trapezium ABCD in which $\mathrm{AB} \| \mathrm{DC}$ and P and Q are the mid-points of its diagonals AC and BD respectively.

To Prove :
(i) $\mathrm{PQ} \| \mathrm{AB}$ or DC
(ii) $\mathrm{PQ}=\frac{1}{2}(\mathrm{AB}-\mathrm{DC})$

Construction : Join DP and produce DP to meet AB in R .

Proof : Since $\mathrm{AB} \| \mathrm{DC}$ and transversal AC cuts them at A and C respectively.

$$
\begin{equation*}
\angle 1=\angle 2 \tag{i}
\end{equation*}
$$

$[\therefore$ Alternate angles are equal]
Now, in $\Delta \mathrm{s}$ APR and DPC, we have

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \mathrm{AP}=\mathrm{CP}
\end{aligned}
$$

[From (i)]
and, $\angle 3=\angle 4 \quad$ [Vertically opposite angles]
So, by ASA criterion of congruence

$$
\begin{align*}
& \Delta \mathrm{APR} \cong \triangle \mathrm{DPC} \\
\Rightarrow & \mathrm{AR}=\mathrm{DC} \text { and } \mathrm{PR}=\mathrm{DP} \tag{ii}
\end{align*}
$$

$\left[\begin{array}{c}\Theta \text { Corresponding parts of } \\ \text { congruent triangles are equal }\end{array}\right]$
In $\triangle \mathrm{DRB}, \mathrm{P}$ and Q are the mid-points of sides DR and DB respectively.
$\therefore \quad \mathrm{PQ} \| \mathrm{RB}$
$\Rightarrow \mathrm{PQ} \| \mathrm{AB}$
[$\Theta \mathrm{RB}$ is a part of AB]
$\Rightarrow \mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{DC}[\Theta \mathrm{AB} \| \mathrm{DC}$ (Given)]
This proves (i).
Again, P and Q are the mid-points of sides $D R$ and $D B$ respectively in $\triangle D R B$.

$$
\begin{aligned}
& \therefore \mathrm{PQ}=\frac{1}{2} \mathrm{RB} \Rightarrow \mathrm{PQ}=\frac{1}{2}(\mathrm{AB}-\mathrm{AR}) \\
& \Rightarrow \mathrm{PQ}=\frac{1}{2}(\mathrm{AB}-\mathrm{DC})[\text { From (ii) }, \mathrm{AR}=\mathrm{DC}]
\end{aligned}
$$

This proves (ii).

A diagonal of a parallelogram divides it into two triangles of equal area.
\diamond For each base of a parallelogram, the corresponding altitude is the line segment from a point on the base, perpendicular to the line containing the opposite side.
\diamond Parallelograms on the same base and between the same parallels are equal in area.
\diamond A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
\diamond The area of a parallelogram is the product of its base and the corresponding altitude.
\diamond Parallelograms on equal bases and between the same parallels are equal in area.

* EXAMPLES *

Ex. 25 In the adjoining figure, ABCD is parallelogram and X, Y are the points on diagonal BD such that $D X=B Y$. Prove that CXAY is a parallelogram.

Sol. Join AC, meeting BD at O.
Since the diagonals of a parallelogram bisect each other, we have $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OD}=\mathrm{OB}$.

Now, $\mathrm{OD}=\mathrm{OB}$ and $\mathrm{DX}=\mathrm{BY}$
$\Rightarrow \mathrm{OD}-\mathrm{DX}=\mathrm{OB}-\mathrm{BY} \Rightarrow \mathrm{OX}=\mathrm{OY}$
Now, $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OX}=\mathrm{OY}$
\therefore CXAY is a quadrilateral whose diagonals bisect each other.
\therefore CXAY is a $\| \mathrm{gm}$
Ex. 26 Prove that the four triangles formed by joining in pairs, the mid-points of three sides of a triangle, are concurrent to each other.

Sol. Given : A triangle ABC and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the midpoints of sides $B C, C A$ and $A B$ respectively.

To Prove :

$$
\Delta \mathrm{AFE} \cong \Delta \mathrm{FBD} \cong \Delta \mathrm{EDC} \cong \Delta \mathrm{DEF} .
$$

Proof : Since the segment joining the midpoints of the sides of a triangle is half of the third side. Therefore,

$\mathrm{DE}=\frac{1}{2} \mathrm{AB} \Rightarrow \mathrm{DE}=\mathrm{AF}=\mathrm{BF}$
$\mathrm{EF}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{EF}=\mathrm{BD}=\mathrm{CD}$
$\mathrm{DF}=\frac{1}{2} \mathrm{AC} \Rightarrow \mathrm{DF}=\mathrm{AE}=\mathrm{EC}$

Now, in $\triangle \mathrm{s}$ DEF and AFE, we have

$$
\begin{align*}
\mathrm{DE} & =\mathrm{AF} \tag{i}\\
\mathrm{DF} & =\mathrm{AE} \tag{ii}\\
\text { and, } \mathrm{EF} & =\mathrm{FE}
\end{align*}
$$

[Common]
So, by SSS criterion of congruence,
$\Delta \mathrm{DEF} \cong \triangle \mathrm{AFE}$
Similarly, $\Delta \mathrm{DEF} \cong \Delta \mathrm{FBD}$ and $\Delta \mathrm{DEF}$ $\cong \Delta \mathrm{EDC}$

Hence, $\Delta \mathrm{AFE} \cong \Delta \mathrm{FBD} \cong \Delta \mathrm{EDC} \cong \Delta \mathrm{DEF}$
Ex. 27 In fig, AD is the median and $\mathrm{DE} \| \mathrm{AB}$. Prove that BE is the median.

Sol. In order to prove that BE is the median, it is sufficient to show that E is the mid-point of AC.

Now, AD is the median in $\triangle \mathrm{ABC}$
$\Rightarrow D$ is the mid-point of $B C$.

Since $D E$ is a line drawn through the midpoint of side BC of $\triangle \mathrm{ABC}$ and is parallel to $A B$ (given). Therefore, E is the mid-point of AC . Hence, BE is the median of $\triangle \mathrm{ABC}$.

Ex. 28 Let $A B C$ be an isosceles triangle with $A B=A C$ and let D, E, F be the mid-points of BC, CA and AB respectively. Show that $\mathrm{AD} \perp \mathrm{FE}$ and AD is bisected by FE.

Sol. Given : An isosceles triangle ABC with D, E and F as the mid-points of sides BC, CA and $A B$ respectively such that $A B=A C . A D$ intersects FE at O .

To Prove : $\mathrm{AD} \perp \mathrm{FE}$ and AD is bisected by FE.
Constructon : Join DE and DF.
Proof : Since the segment joining the mid-points of two sides of a triangle is parallel to third side and is half of it. Therefore,

$$
\mathrm{DE} \| \mathrm{AB} \text { and } \mathrm{DE}=\frac{1}{2} \mathrm{AB}
$$

Also, $\mathrm{DF} \| \mathrm{AC}$ and $\mathrm{DF}=\frac{1}{2} \mathrm{AC}$

But, $\mathrm{AB}=\mathrm{AC}$
[Given]
$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \mathrm{DE}=\mathrm{DF}$
Now, $\mathrm{DE}=\frac{1}{2} \mathrm{AB} \Rightarrow \mathrm{DE}=\mathrm{AF}$
and, $\mathrm{DF}=\frac{1}{2} \mathrm{AC} \Rightarrow \mathrm{DF}=\mathrm{AE}$
From (i), (ii) and (iii) we have

$$
\mathrm{DE}=\mathrm{AE}=\mathrm{AF}=\mathrm{DF}
$$

$\Rightarrow \mathrm{DEAF}$ is a rhombus.
\Rightarrow Diagonals AD and FE bisect each other at right angle.
$\mathrm{AD} \perp \mathrm{FE}$ and AD is bisected by FE .
Ex. 29 ABCD is a parallelogram. P is a point on AD such that $\mathrm{AP}=\frac{1}{3} \mathrm{AD}$ and Q is a point on BC such that $\mathrm{CQ}=\frac{1}{3} \mathrm{BP}$. Prove that AQCP is a parallelogram.

Sol. ABCD is a parallelogram.

$$
\Rightarrow \mathrm{AD}=\mathrm{BC} \text { and } \mathrm{AD} \| \mathrm{BC}
$$

$$
\Rightarrow \quad \frac{1}{3} \mathrm{AD}=\frac{1}{3} \mathrm{BC} \text { and } \mathrm{AD} \| \mathrm{BC}
$$

$\Rightarrow \mathrm{AP}=\mathrm{CQ}$ and $\mathrm{AP} \| \mathrm{CQ}$
Thus, APCQ is a quadrilateral such that one pair of opposite side AP and CQ are parallel and equal.

Hence, APCQ is a parallelogram.
Ex. 30 In fig. D,E and F are, respectively the midpoints of sides BC, CA and AB of an equilateral triangle ABC . Prove that DEF is also an equilateral triangle.

Sol. Since the segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively.

$\Rightarrow \mathrm{DE}=\frac{1}{2} \mathrm{AB}$
E and F are the mid-points of $A C$ and $A B$ respectively.
$\therefore \mathrm{EF}=\frac{1}{2} \mathrm{BC}$
F and D are the mid-points AB and BC respectively.
$\Rightarrow \mathrm{FD}=\frac{1}{2} \mathrm{AC}$
Now, $\triangle \mathrm{ABC}$ is an equilateral triangle
$\Rightarrow \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{CA}$
$\Rightarrow \mathrm{DE}=\mathrm{EF}=\mathrm{FD}$
[Using (i), (ii) and (iii)]
Hence, $\triangle \mathrm{DEF}$ is an equilateral triangle.
Ex. 31 P, Q and R are, respectively, the mid-points of sides BC, CA and AB of a triangle ABC . PR and BQ meet at X . CR and PQ meet at Y .
Prove that $\mathrm{XY}=\frac{1}{4} B C$

Sol. Given : A $\triangle \mathrm{ABC}$ with P, Q and R as the mid-points of $B C, C A$ and $A B$ respectively. $P R$ and $B Q$ meet at X and $C R$ and $P Q$ meet at Y.
Construction : Join " X and Y .

Proof: Since the line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of it. Therefore, Q and R are mid-points of $A C$ and $A B$ respectively.
$\therefore \mathrm{RQ} \| \mathrm{BC}$ and $\mathrm{RQ}=\frac{1}{2} \mathrm{BC}$

$$
\left[\begin{array}{c}
\Theta \mathrm{P} \text { is the mid - point } \tag{i}\\
\text { of } \mathrm{BC}: \therefore \frac{1}{2} \mathrm{BC}=\mathrm{BP}
\end{array}\right]
$$

$\Rightarrow \mathrm{RQ} \| \mathrm{BP}$ and $\mathrm{RQ}=\mathrm{BP}$
$\Rightarrow \mathrm{BPQR}$ is a parallelogram.
Since the diagonals of a parallelogram bisect each other.
$\therefore \quad \mathrm{X}$ is the mid-point of PQ .

$$
\left[\begin{array}{c}
\Theta X \text { is the po int of int er sec tion of } \\
\text { diagonals } \\
\mathrm{BQ} \text { and } \mathrm{PR} \text { of } \|^{\mathrm{gm}} \mathrm{BPQR}
\end{array}\right]
$$

Similarly, Y is the mid-point of PQ .
Now, consider $\triangle P Q R$. $X Y$ is the line segment joining the mid-points of sides PR and PQ.
$\therefore \quad \mathrm{XY}=\frac{1}{2} \mathrm{RQ}$
But $\mathrm{RQ}=\frac{1}{2} \mathrm{BC}$
[From (i)]
Hence, $\mathrm{XY}=\frac{1}{4} B C$.
Ex. 32 Show that the quadrilateral, formed by joining the mid-points of the sides of a square, is also a square.
Sol. Given : A square ABCD in which P, Q, R, S are the mid-points of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ respectively. $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joined.

To Prove : PQRS is a square.
Construction : Join AC and BD.

Proof : In $\triangle A B C, P$ and Q are the mid-points of sides $A B$ and $B C$ respectively.

$$
\begin{equation*}
\therefore \mathrm{PQ} \| \mathrm{AC} \text { and } \mathrm{PQ}=\frac{1}{2} \mathrm{AC} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of CD and $A D$ respectively.
$\therefore \mathrm{RS} \| \mathrm{AC}$ and $\mathrm{RS}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii), we have

$$
\begin{equation*}
\mathrm{PQ} \| \mathrm{RS} \text { and } \mathrm{PQ}=\mathrm{RS} \tag{iii}
\end{equation*}
$$

Thus, in quadrilateral PQRS one pair of opposite sides are equal and parallel.

Hence, PQRS is a parallelogram.
Now, in $\Delta \mathrm{s}$ PBQ and RCQ, we have
$\mathrm{PB}=\mathrm{RC}$
$[\Theta \mathrm{ABCD}$, is a square $\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}$ and $\left.\frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC}\right]$
$\mathrm{BQ}=\mathrm{CQ} \quad[\Rightarrow \mathrm{PB}=\mathrm{CR}$ and $\mathrm{BQ}=\mathrm{CQ}]$
and $\angle \mathrm{PBQ}=\angle \mathrm{RCQ}$ [Each equal to 90°]
So, by SAS criterion of congruence

$$
\begin{align*}
& \Delta \mathrm{PBQ} \cong \Delta \mathrm{RCQ} \\
\Rightarrow & \mathrm{PQ}=\mathrm{QR} \tag{iv}
\end{align*}
$$

[Θ Corresponding parts of congruent $\Delta \mathrm{s}$ are equal]
From (iii) and (iv), we have
$P Q=Q R=R S$
But, PQRS is $\mathrm{a} \mid{ }^{\mathrm{gm}}$.
$\mathrm{QR}=\mathrm{PS}$
So, $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{PS}$
Now, PQ \| AC
[From (i)]
$\Rightarrow \mathrm{PM} \| \mathrm{NO}$

Since P and S are the mid-points of $A B$ and $A D$ respectively.
PS \| BD
$\Rightarrow \mathrm{PM} \| \mathrm{MO}$
Thus, in quadrilateral PMON, we have

$$
\begin{array}{ll}
\mathrm{PM} \| \mathrm{NO} & {[\text { From (vi) }]} \\
\mathrm{PN} \| \mathrm{MO} & {[\text { From (vii) }]}
\end{array}
$$

So, PMON is a parallelogram.
$\Rightarrow \angle \mathrm{MPN}=\angle \mathrm{MON}$
$\Rightarrow \quad \angle \mathrm{MPN}=\angle \mathrm{BOA} \quad[\Theta \angle \mathrm{MON}=\angle \mathrm{BOA}]$
$\Rightarrow \angle \mathrm{MPN}=90^{\circ}$
$\mathrm{z}\left[\begin{array}{cc}\Theta & \text { Diagonals of square are } \perp \\ \therefore & \mathrm{AC} \perp \mathrm{BD} \Rightarrow \angle \mathrm{BOA}=90^{\circ}\end{array}\right]$
$\Rightarrow \angle \mathrm{QPS}=90^{\circ}$
Thus, $P Q R S$ is a quadrilateral such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$ and $\angle \mathrm{QPS}=90^{\circ}$.

Hence, PQRS is a square.
Ex. $33 \triangle \mathrm{ABC}$ is a triangle right angled at B ; and P is the mid-point of AC . Prove that $\mathrm{PB}=\mathrm{PA}=\frac{1}{2} \mathrm{AC}$.

Sol. Given : $\triangle \mathrm{ABC}$ right angled at B, P is the midpoint of AC.

To Prove : $\mathrm{PB}=\mathrm{PA}=\frac{1}{2} \mathrm{AC}$.
Construction : Through P draw PQ \| BC meeting AB at Q .

Proof : Since PQ || BC. Therefore,

$$
\angle \mathrm{AQP}=\angle \mathrm{ABC}[\text { Corresponding angles }]
$$

$\Rightarrow \angle \mathrm{AQP}=90^{\circ}$
$\left[\Theta \angle \mathrm{ABC}=90^{\circ}\right]$
But, $\angle \mathrm{AQP}+\angle \mathrm{BQP}=180^{\circ}$
[$\Theta \angle \mathrm{AQP} \& \angle \mathrm{BQP}$ are angles of a linear pair]
$\therefore 90^{\circ}+\angle \mathrm{BQP}=180^{\circ}$
$\Rightarrow \angle \mathrm{BQP}=90^{\circ}$
Thus, $\angle \mathrm{AQP}=\angle \mathrm{BQP}=90^{\circ}$

Now, in $\triangle A B C, P$ is the mid-point of $A C$ and $P Q \| B C$. Therefore, Q is the mid-point of $A B$ i.e, $A Q=B Q$.

Consider now $\Delta \mathrm{s} A P Q$ and BPQ .
we have, $\mathrm{AQ}=\mathrm{BC} \quad$ [Proved above]

$$
\angle \mathrm{AQP}=\angle \mathrm{BQP} \quad[\text { From }(\mathrm{i})]
$$

and, $P Q=P Q$
So, by SAS cirterion of congruence

$$
\Delta \mathrm{APQ} \cong \angle \mathrm{BPQ}
$$

$\Rightarrow \mathrm{PA}=\mathrm{PB}$
Also,
$\mathrm{PS}=\frac{1}{2} \mathrm{AC}$, since P is the mid-point of AC
Hence, $\mathrm{PA}=\mathrm{PB}=\frac{1}{2} \mathrm{AC}$.
Ex. 34 Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.

Sol. Given : A rectangle ABCD in which $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the mid-points of sides $A B, B C, C D$ and DA respectively. $\mathrm{PQ}, \mathrm{QR}, \mathrm{RS}$ and SP are joined.
To Prove : PQRS is rhombus.
Construction : Join AC.
Proof: In $\triangle A B C, P$ and Q are the mid-points of sides $A B$ and $B C$ respectively.
$\therefore \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of CD and AD respectively.

$\therefore \quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii), we get
$P Q \| S R$ and $P Q=S R$
$\Rightarrow \mathrm{PQRS}$ is a parallelogram.

Now, ABCD is a rectangle.

$$
\begin{align*}
& \Rightarrow \mathrm{AD}=\mathrm{BC} \Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \\
& \Rightarrow \mathrm{AS}=\mathrm{BQ} \tag{iv}
\end{align*}
$$

In $\triangle \mathrm{s}$ APS and BPQ, we have

$$
\mathrm{AP}=\mathrm{BP} \quad[\therefore \mathrm{P} \text { is the mid-point of } \mathrm{AB}]
$$

$\angle \mathrm{PAS}=\angle \mathrm{PBQ}$ [Each equal to 90°]
and, $\mathrm{AS}=\mathrm{BQ}$
[From (iv)]

So, by SAS criterion of congruence

$$
\begin{gather*}
\Delta \mathrm{APS} \cong \triangle \mathrm{BPQ} \\
\mathrm{PS}=\mathrm{PQ} \tag{v}
\end{gather*}
$$

[Θ Corresponding parts of congruent triangles are equal]
From (iii) and (v), we obtain that $P Q R S$ is a parallelogram such that PS = PQ i.e., two adjacent sides are equal.
Hence, PQRS is a rhombus.

Important Points To Be Remembered

1. Sum of the angles of a quadrilateral is 360°.
2. A diagonal of a parallelogram divides it into two congruent triangles.
3. Two opposite angles of a parallelogram are equal.
4. The diagonals of a parallelogram bisect each other.
5. In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
6. If a diagonal of a parallelogram bisects one of the angles of the parallelogram it also bisects the second angle.
7. The angles bisectors of a parallelogram form a rectangle.
8. A quadrilateral is a parallelogram if its opposite sides are equal.
9. A quadrilateral is a parallelogram iff its opposite angles are equal.
10. The diagonals of a quadrilateral bisect each other, iff it is a parallelogram.
11. A quadrilateral is a parallelogram if its one pair of opposite sides are equal and parallel.
12. Each of the four angles of a rectangle is a right angle.
13. Each of the four sides of a rhombus of the same length.
14. The diagonals of a rectangle are of equal length.
15. Diagonals of a parallelogram are equal if and only if it is a rectangle.
16. The diagonals of a rhombus are perpendicular to each other.
17. Diagonals of a parallelogram are perpendicular if and only if it is a rhombus.
18. The diagonals of a square are equal and perpendicular to each other.
19. If the diagonals of a parallelogram are equal and intersect at right angle, then it is a square.
20. The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
21. A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
22. The quadrilateral formed by joining the midpoints of the sides of a quadrilateral, in order, is a parallelogram.

EXERCISE \# 1

Q. 1 The angle of a quadrilateral are respectively $100^{\circ}, 98^{\circ}, 92^{\circ}$. Find the fourth angle.
Q. 2 Three angles of a quadrilateral are respectively equal to $110^{\circ}, 50^{\circ}$ and 40°. Find its fourth angles.
Q. 3 In a quadrilateral ABCD , the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are in the ratio $1: 2: 4: 5$. Find the measure of each angles of the quadrilateral.
Q. 4 In a quadrilateral $\mathrm{ABCD}, \mathrm{CO}$ and DO are the bisectors of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ respectively. Prove that $\angle \mathrm{COD}=\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})$.
Q. 5 In fig. $A B C D$ and $P Q R C$ are rectangles and Q is the mid-point of AC.

$$
\text { Prove that (i) } \mathrm{DP}=\mathrm{PC} \quad \text { (ii) } \mathrm{PR}=\frac{1}{2} \mathrm{AC} .
$$

Q. 6 BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC . If L is the mid-point of BC , prove that $\mathrm{LM}=\mathrm{LN}$.
Q. 7 In the figure ABCD is a rectangle inscribed in a quadrant of a circle of radius 10 cm . If $\mathrm{AD}=2 \sqrt{5} \mathrm{~cm}$, find the area of the rectangle.

Q. 8 In the following figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$. Prove that

$$
\operatorname{arc}(\triangle \mathrm{AOD})=\operatorname{arc}(\triangle \mathrm{BOC})
$$

Q. 9 Prove that area of rhombus $=\frac{1}{2} \times$ product of the diagonals.
Q. 10 Show that each angle of a rectangle is a right angle.

Q. 11 ABCD is a rhombus with $\angle \mathrm{ABC}=58^{\circ}$. Find $\angle A C D$.
Q. 12 In the given figure, PQRS is a parallelogram in which PL and RM are bisectors of $\angle \mathrm{P}$ and $\angle \mathrm{R}$ respectively. Prove that PMRL is a parallelogram.

Q. 13 The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.
Q. 14 PQ and RS are two equal and parallel line segments. Any point M not lying on PQ or RS is joined to Q and S and lines through P parallel to QM and through R parallel to SM meet at N . Prove that line segments MN and $P Q$ are equal and parallel to each other.
Q. 15 In $\triangle A B C, P Q$ and R are mid-points of sides BC, CA and AB respectively. If $\mathrm{AC}=21 \mathrm{~cm}$, $\mathrm{BC}=29 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$, find the perimeter of the quadrilateral $A R P Q$.

$>$ Fill in the Blanks

Q. 16 The triangle formed by joining the mid-points of the sides of an isosceles triangle is. \qquad
Q. 17 The triangle formed by joining the mid-points of the sides of a right triangle is \qquad
Q. 18 The figure formed by joining the mid-points of consecutive sides of a quadrilateral is \qquad

True/False Type Questions
Q. 19 In any quadrilateral, if a pair of opposite sides is equal, it is a parallelogram.
Q. 20 If all the angles of a quadrilateral are equal, it is a parallelogram.
Q. 21 If three sides of a quadrilateral are equal, it is a parallelogram.
Q. 22 If three angles of a quadrilateral are equal, it is a parallelogram.
Q. 23 If all the sides of a quadrilateral are equal it is a parallelogram.
Q. 24 A square is inscribed in an isosceles right triangle so that the square and the triangle have one angle common. Show that the vertex of the square opposite the vertex of the common angle bisects the hypotenuse.
Q. 25 In a parallelogram $A B C D, A B=10 \mathrm{~cm}$ and $\mathrm{AD}=6 \mathrm{~cm}$. The bisector of $\angle \mathrm{A}$ meets DC in E. AE and BC produced meet at F. Find the length of $C F$.
Q. $26 \quad \mathrm{ABC}$ is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$
Q. 27 E, F are respectively the mid-points of nonparallel sides of a trapezium $A B C D$. Prove that
(i) $\mathrm{EF} \| \mathrm{AB}$ and (ii) $\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$

Q. 28 ABCD is $\| \mathrm{gm} . \mathrm{P}$ is a point on AD such that $\mathrm{AP}=\frac{1}{3} \mathrm{AD}$ and Q is a point on BC such that $\mathrm{CQ}=\frac{1}{3} \mathrm{BC}$. Prove that the quadrilateral AQCP is a $\| \mathrm{gm}$.

ANSWER KEY

1. 70°
2. Isosceles
3. False
4. 160°
5. Right triangle
6. False
7. $30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$
8. Parallelogram
9. True
10. $40 \mathrm{~cm}^{2}$.
11. 51 cm
12. False
13. 4 cm .
14. True

EXERCISE \# 2

Q. 1 In which quadrilateral is the lengths of diagonals equal ?
Q. 2 If the diagonals of a quadrilateral bisect each other at right angles, then it is a :
Q. 3 The length of the diagonals of a rhombus are 16 cm and 12 cm . The side of the rhombus is -
Q. 4 The length of a side of a rhombus is 5 m and one of its diagonals is of length 8 m . Find the length of the other diagonal
Q. 5 Find the angle where the bisectors of any two adjacent angles of a parallelogram intersect
Q. 6 Give name of the figure formed by joining the mid points of the adjacent sides of a quadrilateral :
Q. 7 Name the figure formed by joining the mid points of the adjacent sides of a rectangle
Q. 8 Three angles of a quadrilateral are of magnitudes $80^{\circ}, 95^{\circ}$ and 120°. Find the magnitude of the fourth angle
Q. 9 If ABCD is a rectangle, E, F are the mid points of $B C$ and $A D$ respectively and G is any point on $E F$, then prove that $\Delta \mathrm{GAB}=\frac{1}{4}(\mathrm{ABCD})$
Q. 10 Two consecutive angles of a parallelogram are in the ratio $1: 3$. Find the smaller angle
Q. 11 In the given figure, PQRS is a parallelogram in which $\angle \mathrm{PSR}=130^{\circ}$, then find $\angle \mathrm{RQT}$ -

Q. 12 If three angles of a quadrilateral are $100^{\circ}, 75^{\circ}$ and 105°, then find the measure of the fourth angle
Q. 13 In the given figure, ABCD is a rhombus. If $\angle \mathrm{A}=80^{\circ}$, then find $\angle \mathrm{CDB}$

Q. 14 The diagonals of a rhombus are 12 cm and 16 cm . Find the length of the side of the rhombus
Q. 15 In the given figure, PQRS is a rectangle. If $\angle \mathrm{RPQ}=30^{\circ}$, then find the value of $(x+y)$

Q. 16 If the length of the diagonal of a square is 8 cm . then find its area
Q. 17 In the given figure, ABCD is a rhombus. If $\angle \mathrm{OAB}=35^{\circ}$, then find the value of x

Q. 18 In the given figure, ABCD is a rhombus. Find the value of x

ANSWER KEY

1. Rectangle
2. Parallelogram
3. 50°
4. $32 \mathrm{~cm}^{2}$
5. Rhombus
6. 10 cm
7. 65°
8. 50°
9. 80°
10. 55°
