SIMILAR TRIANGLES

CONTENTS

- Concept of Similarity
- Thales Theorem
- Criteria for Similarity of Triangles
- Area of Two Similar Triangles
- Phythagoras Theorem

Some Important Theorems

$>$ CONCEPT OF SIMILARITY

Geometric figures having the same shape but different sizes are known as similar figures. Two congruent figures are always similar but similar figures need not be congruent.

Illustration 1 :

Any two line segments are always similar but they need not be congruent. They are congruent, if their lengths are equal.

Illustration 2 :

Any two circles are similar but not necessarily congruent. They are congruent if their are equal.

Illustration 3 :

(i) Any two square are similar (see fig. (i))

Fig.(i)

Fig.(ii)
(ii) Any two equilateral triangles are similar (see fig. (ii))

SIMILAR POLYGONS

Definition

Two polygons are said to be similar to each other, if
(i) their corresponding angles are equal, and
(ii) the lengths of their corresponding sides are proportional.

If two polygons ABCDE and PQRST are similar, then from the above definition it follows that :

Angle at A $=$ Angle at P, Angle at $B=$ Angle at Q, Angle at $\mathrm{C}=$ Angle at R , Angle at $\mathrm{D}=$ Angle at S , Angle at $\mathrm{E}=$ Angle at T
and, $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CD}}{\mathrm{RS}}=\frac{\mathrm{DE}}{\mathrm{ST}}$
If two polygons ABCDE and PQRST , are similar, we write ABCED ~ PQRST.
Here, the symbol ' \sim ' stands for is similar to.

SIMILAR TRIANGLE AND THEIR

 PROPERTIES
\diamond Definition

Two triangles are said to be similar, if their
(i) corresponding angles are equal and,
(ii) corresponding sides are proportional.

Two triangles ABC and DEF are similar, if
(i) $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ and,
(ii) $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$

SOME BASIC RESULTS ON PROPORTIONALITY

Basic Proportionality Theorem or Thales Theorem
If a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio.

Given : A triangle ABC in which $\mathrm{DE} \| \mathrm{BC}$, and intersects AB in D and AC in E .
To Prove : $\frac{A D}{D B}=\frac{A E}{E C}$
Construction : Join BE, CD and draw $\mathrm{EF} \perp \mathrm{BA}$ and $\mathrm{DG} \perp \mathrm{CA}$.

Proof: Since EF is perpendicular to AB . Therefore, EF is the height of triangles ADE and DBE .
Now, $\operatorname{Area}(\triangle \mathrm{ADE})=\frac{1}{2}($ base \times height $)=\frac{1}{2}($ AD.EF $)$
and, $\operatorname{Area}(\triangle \mathrm{DBE})=\frac{1}{2}($ base \times height $)=\frac{1}{2}(\mathrm{DB} \cdot \mathrm{EF})$
$\therefore \frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{DBE})}=\frac{\frac{1}{2}(\mathrm{AD} \cdot \mathrm{EF})}{\frac{1}{2}(\mathrm{DB} \cdot \mathrm{BF})}=\frac{\mathrm{AD}}{\mathrm{DB}} \ldots$
Similarly, we have

$$
\begin{equation*}
\frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{DEC})}=\frac{\frac{1}{2}(\mathrm{AE} \cdot \mathrm{DG})}{\frac{1}{2}(\mathrm{EC} \cdot \mathrm{DG})}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{ii}
\end{equation*}
$$

But, $\triangle \mathrm{DBE}$ and $\triangle \mathrm{DEC}$ are on the same base DE and between the same parallels DE and BC.
$\therefore \quad$ Area $(\triangle D B E)=\operatorname{Area}(\triangle D E C)$
$\Rightarrow \frac{1}{\operatorname{Area}(\triangle \mathrm{DBE})}=\frac{1}{\operatorname{Area}(\triangle \mathrm{DEC})}$
[Taking reciprocals of both sides]
$\Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{DBE})}=\frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{DEC})}$
[Multiplying both sides by Area ($\triangle \mathrm{ADE}$)]

$$
\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

[Using (i) and (ii)]
Corollary : If in a $\triangle \mathrm{ABC}$, a line $\mathrm{DE} \| \mathrm{BC}$, intersects $A B$ in D and $A C$ in E, then :
(i) $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
(ii) $\frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$

Proof : (i) From the basic proportionality theorem, we have

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
\Rightarrow & \frac{\mathrm{DB}}{\mathrm{AD}}=\frac{\mathrm{EC}}{\mathrm{AE}}[\text { Taking reciprocals of both sides }] \\
\Rightarrow & 1+\frac{\mathrm{DB}}{\mathrm{AD}}=1+\frac{\mathrm{EC}}{\mathrm{AE}} \text { [Adding } 1 \text { on both sides] } \\
\Rightarrow & \frac{\mathrm{AD}+\mathrm{DB}}{\mathrm{AD}}=\frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{AE}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}
\end{aligned}
$$

(ii) From the basic proportionality theorem, we have

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{DE}}{\mathrm{EC}}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}+1=\frac{\mathrm{AE}}{\mathrm{EC}}+1 \\
& \quad \quad[\text { Adding } 1 \text { on both sides] } \\
& \Rightarrow \frac{\mathrm{AD}+\mathrm{DB}}{\mathrm{DB}}=\frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}
\end{aligned}
$$

So, if in a $\triangle A B C, D E \| B C$, and intersect $A B$ in D and $A C$ in E, then we have
(i) $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
(ii) $\frac{\mathrm{DB}}{\mathrm{AD}}=\frac{\mathrm{EC}}{\mathrm{AE}}$
(iii) $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
(iv) $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
(v) $\frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$
(vi) $\frac{\mathrm{DB}}{\mathrm{AB}}=\frac{\mathrm{EC}}{\mathrm{AC}}$

Converse of Basic Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

Given : $\mathrm{A} \triangle \mathrm{ABC}$ and a line I intersecting AB in D and $A C$ in E, such that $\frac{A D}{D B}=\frac{A E}{E C}$

To prove : $\lambda \|$ BC i.e. $\mathrm{DE} \| \mathrm{BC}$

Proof : If possible, let DE be not parallel to BC. Then, there must be another line parallel to BC . Let DF \|BC.

Since DF || BC. Therefore from Basic Proportionality Theorem, we get

$$
\begin{equation*}
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AF}}{\mathrm{FC}} \tag{i}
\end{equation*}
$$

But, $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad$ (Given)
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{\mathrm{AF}}{\mathrm{FC}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
\Rightarrow & \frac{\mathrm{AF}}{\mathrm{FC}}+1=\frac{\mathrm{AE}}{\mathrm{EC}}+1 \text { [Adding } 1 \text { on both sides] }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{AF}+\mathrm{FC}}{\mathrm{FC}}=\frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}} \\
& \Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{FC}}=\frac{\mathrm{AC}}{\mathrm{EC}} \Rightarrow \mathrm{FC}=\mathrm{EC}
\end{aligned}
$$

This is possible only when F and E coincide i.e. DF is the line I itself. But, DF || BC. Hence, I || BC.

* EXAMPLES *

Ex. 1 D and E are points on the sides AB and AC respectively of a $\triangle A B C$ such that $D E \| B C$.

Find the value of x , when

(i) $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=(\mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=(3 \mathrm{x}-19) \mathrm{cm}$
(ii) $\mathrm{AD}=(7 \mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=(5 \mathrm{x}-2) \mathrm{cm}$,
$\mathrm{DB}=(3 \mathrm{x}+4) \mathrm{cm}$ and $\mathrm{EC}=3 \mathrm{xcm}$.
Sol. (i) In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}(\mathrm{By}$ thales theorem $)$
$\frac{4}{x-4}=\frac{8}{3 x-19}$
$4(3 x-19)=8(x-4)$
$12 x-76=8 x-32$
$4 \mathrm{x}=44$
$\mathrm{x}=17$
(ii) In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad$ (By thales theorem)
$\frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x}$
$21 \mathrm{x}^{2}-12 \mathrm{x}=15 \mathrm{x}^{2}-6 \mathrm{x}+20 \mathrm{x}-8$
$6 x^{2}-26 x+8=0$
$3 x^{2}-13 x+4=0$
$(x-4)(3 x-1)=0 \Rightarrow x=4,1 / 3$

Ex. 2 Let X be any point on the side BC of a triangle ABC . If XM, XN are drawn parallel to BA and CA meeting CA, BA in M, N respectively; MN meets BC produced in T , prove that $\mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$.

Sol. In $\triangle T X M$, we have

XM $\|$ BN
$\therefore \quad \frac{\mathrm{TB}}{\mathrm{TX}}=\frac{\mathrm{TM}}{\mathrm{TN}}$
In $\triangle \mathrm{TMC}$, we have
XN \| CM
$\therefore \quad \frac{\mathrm{TX}}{\mathrm{TC}}=\frac{\mathrm{TN}}{\mathrm{TM}}$
From equations (i) and (ii), we get
$\frac{\mathrm{TB}}{\mathrm{TX}}=\frac{\mathrm{TX}}{\mathrm{TC}}$
$\Rightarrow \mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$
Ex. 3 In fig., $\mathrm{EF}\|\mathrm{AB}\| \mathrm{DC}$. Prove that $\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}$.

Sol. We have,

$$
\begin{aligned}
& \mathrm{EF}\|\mathrm{AB}\| \mathrm{DC} \\
\Rightarrow & \mathrm{EP} \| \mathrm{DC}
\end{aligned}
$$

Thus, in $\triangle \mathrm{ADC}$, we have EP || DC

Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{A P}{P C} \tag{i}
\end{equation*}
$$

Again, EF || AB || DC
$\Rightarrow \mathrm{FP} \| \mathrm{AB}$
Thus, in $\triangle C A B$, we have
FP || BA
Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{\mathrm{BF}}{\mathrm{FC}}=\frac{\mathrm{AP}}{\mathrm{PC}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}
$$

Ex. 4 In figure, $\angle \mathrm{A}=\angle \mathrm{B}$ and $\mathrm{DE} \| \mathrm{BC}$. Prove that $\mathrm{AD}=\mathrm{BE}$

Sol.

$$
\begin{align*}
& \angle \mathrm{A}=\angle \mathrm{B} \\
& \Rightarrow \mathrm{BC}=\mathrm{AC} \tag{i}
\end{align*}
$$

(Sides opposite to equal angles are equal)
Now, DE \| AB
$\Rightarrow \frac{C D}{D A}=\frac{C E}{E B}$
(By basic proportionality theorem)
$\Rightarrow \frac{C D}{D A}+1=\frac{C E}{E B}+1$
(Adding 1 on both sides)

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{CD}+\mathrm{DA}}{\mathrm{DA}}=\frac{\mathrm{CE}+\mathrm{EB}}{\mathrm{~EB}} \Rightarrow \frac{\mathrm{CA}}{\mathrm{DA}}=\frac{\mathrm{CE}}{\mathrm{~EB}} \\
& \Rightarrow \frac{\mathrm{AC}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{BE}} \Rightarrow \frac{\mathrm{AC}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{BE}} \\
& \Rightarrow \frac{1}{\mathrm{AD}}=\frac{1}{\mathrm{BE}} \Rightarrow \mathrm{AD}=\mathrm{BE}
\end{aligned}
$$

Ex. $5 \quad$ In fig., $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AD}=4 \mathrm{x}-3, \mathrm{DB}=3 \mathrm{x}-1$, $\mathrm{AE}=8 \mathrm{x}-7$ and $\mathrm{EC}=5 \mathrm{x}-3$, find the value of x .

Sol. In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{DE} \| \mathrm{BC}
$$

$\therefore \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad$ [By Thale's Theorem]
$\Rightarrow \quad \frac{4 \mathrm{x}-3}{3 \mathrm{x}-1}=\frac{8 \mathrm{x}-7}{5 \mathrm{x}-3}$
$\Rightarrow(4 x-3)(5 x-3)=(3 x-1)(8 x-7)$

$$
\mathrm{x}=1
$$

Ex. 6 Prove that the line segment joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram.
Sol. Given : A quadrilateral ABCD in which P, Q, R, S are the midpoints of $A B, B C, C D$ and DA respectively.
To prove : PQRS is a parallelogram.

Construction : Join AC.
Proof : In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are the midpoints of $A B$ and $B C$ respectively.
$\therefore \mathrm{PQ} \| \mathrm{AC}$
In $\triangle D A C, S$ and R are the midpoints of $A D$ and $C D$ respectively.
$\therefore \mathrm{SR} \| \mathrm{AC}$
From (i) and (ii), we get PQ $\|$ SR.
Similarly, PS || QR.
Hence, PQRS is a parallelogram
Ex. 7 In fig. DE \| BC and $\mathrm{CD} \| \mathrm{EF}$. Prove that $\mathrm{AD}^{2}=\mathrm{AB} \times \mathrm{AF}$.

Sol. In $\triangle \mathrm{ABC}$, we have

DE \| BC

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ADC}$, we have
FE \| DC
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{AF}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
From (i) and (ii), we get

$$
\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{AF}} \Rightarrow \mathrm{AD}^{2}=\mathrm{AB} \times \mathrm{AF}
$$

Ex. 8 In the given figure PA, QB and RC each is perpendicular to AC such that $\mathrm{PA}=\mathrm{x}$, $\mathrm{RC}=\mathrm{y}, \mathrm{QB}=\mathrm{z}, \mathrm{AB}=\mathrm{a}$ and $\mathrm{BC}=\mathrm{b}$. Prove that $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\frac{1}{\mathrm{z}}$.

Sol. $\quad \mathrm{PA} \perp \mathrm{AC}$ and $\mathrm{QB} \perp \mathrm{AC} \Rightarrow \mathrm{QB} \| \mathrm{PA}$.
Thus, in $\triangle \mathrm{PAC}, \mathrm{QB} \| \mathrm{PA}$. So, $\Delta \mathrm{QBC} \sim \Delta \mathrm{PAC}$
$\therefore \frac{\mathrm{QB}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{z}}{\mathrm{x}}=\frac{\mathrm{b}}{\mathrm{a}+\mathrm{b}}$
[By the property of similar Δ]
In $\triangle \mathrm{RAC}, \mathrm{QB} \| \mathrm{RC}$. So, $\Delta \mathrm{QBC} \sim \Delta \mathrm{RAC}$
$\therefore \frac{\mathrm{QB}}{\mathrm{RC}}=\frac{\mathrm{AB}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{z}}{\mathrm{y}}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}$
[By the property of similar Δ]
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{z}{x}+\frac{z}{y}=\left(\frac{b}{a+b}+\frac{a}{a+b}\right)=1 \\
& \Rightarrow \frac{z}{x}+\frac{z}{y}=1 \Rightarrow \frac{1}{x}+\frac{1}{y}=\frac{1}{z}
\end{aligned}
$$

Hence, $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\frac{1}{\mathrm{z}}$.

Ex. 9 In fig., $L M \| A B$. If $A L=x-3, A C=2 x$, $B M=x-2$ and $B C=2 x+3$, find the value of x .

Sol. In $\triangle \mathrm{ABC}$, we have
LM || AB
$\therefore \quad \frac{\mathrm{AL}}{\mathrm{LC}}=\frac{\mathrm{MB}}{\mathrm{MC}} \quad[\mathrm{By}$ Thale's Theorem $]$
$\Rightarrow \frac{\mathrm{AL}}{\mathrm{AC}-\mathrm{AL}}=\frac{\mathrm{BM}}{\mathrm{BC}-\mathrm{BM}}$
$\Rightarrow \quad \frac{x-3}{2 x-(x-3)}=\frac{x-2}{(2 x+3)-(x-2)}$
$\Rightarrow \quad \frac{x-3}{x+3}=\frac{x-2}{x+5}$
$\Rightarrow(x-3)(x+5)=(x-2)(x+3)$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-15=\mathrm{x}^{2}+\mathrm{x}-6$
$\Rightarrow \mathrm{x}=9$
Ex. 10 In a given $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}$. If $A C=14 \mathrm{~cm}$, find $A E$.

Sol. In $\triangle \mathrm{ABC}$, we have
DE \| BC
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad[\mathrm{By}$ Thales Theorem $]$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{AC}-\mathrm{AE}} \\
& \Rightarrow \quad \frac{3}{4}=\frac{\mathrm{AE}}{14-\mathrm{AE}} \quad[\Theta \mathrm{AC}=5.6] \\
& \Rightarrow 3(14-\mathrm{AE})=4 \mathrm{AE}
\end{aligned}
$$

$\Rightarrow 42-3 \mathrm{AE}=4 \mathrm{AE}$
$\Rightarrow 42=7 \mathrm{AE} \Rightarrow \mathrm{AE}=\frac{42}{7}=6 \mathrm{~cm}$
Ex. 11 In figure, $\mathrm{DE} \|$ BC. Find AE.

Sol. Let $\mathrm{AE}=\mathrm{xcm}$
Then $E C=(9-x) \mathrm{cm}$

$$
\mathrm{AD}=2 \mathrm{~cm}
$$

$$
\mathrm{DB}=(6-2) \mathrm{cm}=4 \mathrm{~cm}
$$

We have $\frac{\mathrm{AE}}{\mathrm{BE}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
[By Basic Proportionality Theorem]
$\Rightarrow \frac{x}{9-x}=\frac{2}{4} \Rightarrow 4 x=2(9-x)$
$\Rightarrow 6 x=18 \quad \Rightarrow x=3$
Hence, $\mathrm{AE}=3 \mathrm{~cm}$
Ex. 12 In figure, ABC is a triangle in which $A B=A C$. Points D and E are points on the sides $A B$ and $A C$ respectively such that $A D=A E$. Show that the points B, C, E and D are concyclic.

Sol. In order to prove that the points B, C, E and D are concyclic, it is sufficient to show that $\angle \mathrm{ABC}+\angle \mathrm{CED}=180^{\circ}$ and $\angle \mathrm{ACB}+\angle \mathrm{BDE}$ $=180^{\circ}$.

In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{AB}=\mathrm{AC} \text { and } \mathrm{AD}=\mathrm{AE}
$$

$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AE}$
$\Rightarrow \mathrm{DB}=\mathrm{EC}$

Thus, we have

$$
\begin{aligned}
& \mathrm{AD}=\mathrm{AE} \text { and } \mathrm{DB}=\mathrm{EC} \\
\Rightarrow & \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
\Rightarrow & \mathrm{DE} \| \mathrm{BC}
\end{aligned}
$$

[By the converse of Thale's Theorem]
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ADE}$ [Corresponding angles]
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BDE}=\angle \mathrm{ADE}+\angle \mathrm{BDE}$
[Adding $\angle \mathrm{BDE}$ on both sides]
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BDE}=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{BDE}=180^{\circ}$
$[\Theta \mathrm{AB}=\mathrm{AC} \quad \therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}]$
Again, $\mathrm{DE} \| \mathrm{BC}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{AED}$
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{CED}=\angle \mathrm{AED}+\angle \mathrm{CED}$
[Adding $\angle \mathrm{CED}$ on both sides]
$\Rightarrow \angle \mathrm{ACB}+\angle \mathrm{CED}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{CED}=180^{\circ}[\Theta \angle \mathrm{ABC}=\angle \mathrm{ACB}]$
Thus, BDEC is quadrilateral such that
$\angle \mathrm{ACB}+\angle \mathrm{BDE}=180^{\circ}$ and
$\angle \mathrm{ABC}+\angle \mathrm{CED}=180^{\circ}$
Ex. 13 In fig., $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{1}{3}$ and $\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{1}{4}$. Using converse of basic proportionality theorem, prove that $\mathrm{DE} \| \mathrm{BC}$.

Sol. $\quad \frac{\mathrm{AE}}{\mathrm{AC}}=\frac{1}{4}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{AC}}{\mathrm{AE}}=4 \Rightarrow \frac{\mathrm{AC}}{\mathrm{AE}}-1=3 \\
& \Rightarrow \frac{\mathrm{AC}-\mathrm{AE}}{\mathrm{AE}}=3 \Rightarrow \frac{\mathrm{EC}}{\mathrm{AE}}=3 \Rightarrow \frac{\mathrm{AE}}{\mathrm{EC}}=\frac{1}{3}
\end{aligned}
$$

Ex. 14 Using basic proportionality theorem, prove that the lines drawn through the points of trisection of one side of a triangle parallel to another side trisect the third side.

Sol.

$l_{1}\left\|\mathrm{BC}, l_{2}\right\| \mathrm{BC}$
and $\mathrm{AP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{P}_{2} \mathrm{~B}$ (given)

$$
=\frac{1}{3} \mathrm{AB} .
$$

To prove, $\mathrm{AQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{~B}$

$$
=\frac{1}{3} \mathrm{AC} .
$$

Proof $\frac{\mathrm{AQ}_{1}}{\mathrm{AC}}=\frac{\mathrm{AP}_{1}}{\mathrm{AB}}=\frac{\frac{1}{3} \mathrm{AB}}{\mathrm{AB}}$
$\Rightarrow \frac{\mathrm{AQ}_{1}}{\mathrm{AC}}=\frac{1}{3} \Rightarrow \mathrm{AQ}_{1}=\frac{1}{3} \mathrm{AC}$
Ex. 15 In the given figure, $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ and $\angle \mathrm{ADE}$ $=\angle \mathrm{ACB}$. Prove that $\triangle \mathrm{ABC}$ is an isosceles triangle.

Sol. We have,

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \Rightarrow \mathrm{DE} \| \mathrm{BC}
$$

[By the converse of Thale's theorem]
$\therefore \angle \mathrm{ADE}=\angle \mathrm{ABC}$ (corresponding $\angle \mathrm{s}$)
But, $\angle \mathrm{ADE}=\angle \mathrm{ACB}$ (given)
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}$.
$\mathrm{So}, \mathrm{AB}=\mathrm{AC}$ [sides opposite to equal angles]
Hence, $\triangle \mathrm{ABC}$ is an isosceles triangles.

Ex. 16 In fig., if DE || AQ and DF || AR. Prove that EF \| QR.
[NCERT]
Sol. In $\triangle \mathrm{PQA}$, we have
$\mathrm{DE} \| \mathrm{AQ} \quad$ [Given]

Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{P E}{E Q}=\frac{P D}{D A} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{PAR}$, we have

$$
\mathrm{DF} \| \mathrm{AD}
$$

[Given]
Therefore, by basic proportionality theorem, we have

$$
\begin{equation*}
\frac{\mathrm{PD}}{\mathrm{DA}}=\frac{\mathrm{PF}}{\mathrm{FR}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}}
$$

$\Rightarrow \mathrm{EF} \| \mathrm{QR}$
[By the converse of Basic Proportionality Theorem]
Ex. 17 Two triangles ABC and DBC lie on the same side of the base BC. From a point P on BC , PQ \| AB and PR \| BD are drawn. They meet AC in Q and DC in R respectively. Prove that $\mathrm{QR} \| \mathrm{AD}$.

Sol. Given : Two triangles ABC and DBC lie on the same side of the base $B C$. Points P, Q and R are points on $B C, A C$ and $C D$ respectively such that $\mathrm{PR} \| \mathrm{BD}$ and $\mathrm{PQ} \| \mathrm{AB}$.

To Prove : QR || AD
Proof: In $\triangle A B C$, we have
PQ \| AB
$\therefore \quad \frac{\mathrm{CP}}{\mathrm{PB}}=\frac{\mathrm{CQ}}{\mathrm{QA}}$
[By Basic Proportionality Theorem]
In $\triangle B C D$, we have
PR || BD
$\therefore \frac{\mathrm{CP}}{\mathrm{PB}}=\frac{\mathrm{CR}}{\mathrm{RD}}$
[By Thale's Theorem]
From (i) and (ii), we have

$$
\frac{\mathrm{CQ}}{\mathrm{QA}}=\frac{\mathrm{CR}}{\mathrm{RD}}
$$

Thus, in $\triangle \mathrm{ACD}, \mathrm{Q}$ and R are points on AC and $C D$ respectively such that

$$
\frac{\mathrm{CQ}}{\mathrm{QA}}=\frac{\mathrm{CR}}{\mathrm{RD}}
$$

$$
\Rightarrow \mathrm{QR} \| \mathrm{AD} \quad[\mathrm{By} \text { the converse of Basic }
$$ proportionality theorem]

Ex. 18 ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$. E and F are points on non-parallel sides AD and BC respectively such that $E F \| A B$. Show that

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}
$$

Sol. Given : A trap. ABCD in which $\mathrm{AB} \| \mathrm{DC}$. E and F are points on $A D$ and $B C$ respectively such that $\mathrm{EF} \| \mathrm{AB}$.

To prove $: \frac{A E}{E D}=\frac{B F}{F C}$
Construction : Ioin AC, intersecting EF at G.
Proof : EF || AB and AB || DC
$\Rightarrow \mathrm{EF} \| \mathrm{DC}$
Now, in $\triangle \mathrm{ADC}, \mathrm{EG} \| \mathrm{DC}$
$\therefore \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AG}}{\mathrm{GC}}$
....(i) [By Thale's theorem]

Similarly, in $\triangle \mathrm{CAB}, \mathrm{GF} \| \mathrm{AB}$.
$\therefore \quad \frac{\mathrm{AG}}{\mathrm{GC}}=\frac{\mathrm{BF}}{\mathrm{FC}}$
$\left[\Theta \frac{\mathrm{GC}}{\mathrm{AG}}=\frac{\mathrm{FC}}{\mathrm{BF}}\right.$ by Thale's theorem $]$
From (i) and (ii), we get

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}
$$

Ex. 19 In fig., A, B and C are points on OP, OQ and OR respectively such that $\mathrm{AB} \| \mathrm{PQ}$ and AC \| PR. Show that BC \|QR. [NCERT]

Sol. In $\triangle \mathrm{OPQ}$, we have

In $\triangle \mathrm{OQR}$, we have

$$
\begin{gather*}
\mathrm{BC} \| \mathrm{QR} \\
\Rightarrow \tag{ii}\\
\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}
\end{gather*}
$$

From (i) and (ii), we get

$$
\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}}
$$

Thus, A and C are points on sides OP and OR respectively of $\triangle \mathrm{OPR}$, such that

$$
\frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}}
$$

$\Rightarrow \mathrm{AC} \| \mathrm{PR}$ [Using the converse of BPT]

Ex. 20 Any point X inside $\triangle D E F$ is joined to its vertices. From a point P in DX, PQ is drawn parallel to DE meeting XE at Q and QR is drawn parallel to EF meeting XF in R. Prove that PR || DF.

Sol. A $\triangle \mathrm{DEF}$ and a point X inside it. Point X is joined to the vertices D, E and F. P is any point on $D X . P Q \| D E$ and $Q R \| E F$.
To Prove : PR || DF
Construction : Join PR.
Proof : In $\triangle X E D$, we have
PQ \| DE

$$
\therefore \quad \frac{\mathrm{XP}}{\mathrm{PD}}=\frac{\mathrm{XQ}}{\mathrm{QE}}
$$

.(i) [By Thale's Theorem]

In $\triangle \mathrm{XEF}$, we have

$$
\begin{aligned}
& \mathrm{QR} \| \mathrm{EF} \\
\therefore & \frac{\mathrm{XQ}}{\mathrm{QE}}=\frac{\mathrm{XR}}{\mathrm{RF}} \ldots \text { (ii) [By Thale's Theorem] }
\end{aligned}
$$

From (i) and (ii), we have

$$
\frac{X P}{P D}=\frac{X R}{R F}
$$

Thus, in $\triangle \mathrm{XFD}$, points R and P are dividing sides XF and XD in the same ratio. Therefore, by the converse of Basic Proportionality Theorem, we have, PR \| DF

Theorem 1 :

The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which AD is the internal bisector of $\angle \mathrm{A}$ and meets BC in D .

To Prove : $\frac{B D}{D C}=\frac{A B}{A C}$

Construction : Draw CE || DA to meet BA produced in E.

Proof : Since CE || DA and AC cuts them.
$\therefore \quad \angle 2=\angle 3$
[Alternate angles]
and, $\angle 1=\angle 4$ [Corresponding angles]
But, $\angle 1=\angle 2 \quad[\Theta \mathrm{AD}$ is the bisector of $\angle \mathrm{A}]$
From (i) and (ii), we get

$$
\angle 3=\angle 4
$$

Thus, in $\triangle \mathrm{ACE}$, we have

$$
\begin{align*}
\angle 3 & =\angle 4 \\
\Rightarrow \quad \mathrm{AE} & =\mathrm{AC} \tag{iii}
\end{align*}
$$

[Sides opposite to equal angles are equal]
Now, in $\triangle B C E$, we have
DA \| CE

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{BA}}{\mathrm{AE}} \\
& \Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
\end{aligned}
$$

$[\Theta \quad \mathrm{BA}=\mathrm{AB}$ and $\mathrm{AE}=\mathrm{AC}($ From (iii) $)]$
Hence, $\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$

Theorem 2:

The external bisector of an angle of a triangle divides the opposite side externally in the ratio of the sides containing the angle.

Ex. 21 Prove that any line parallel to the parallel sides of a trapezium divides the non-parallel sides proportionally.

Sol. Given : A trapezium ABCD in which $\mathrm{DC} \| \mathrm{AB}$ and EF is a line parallel to DC and $A B$.

To Prove : $\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}$
Construction : Join AC, meeting EF in G.

Proof: In $\triangle \mathrm{ADC}$, we have
EG || DC
$\Rightarrow \quad \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AG}}{\mathrm{GC}}$ [By Thale's Theorem].
In $\triangle \mathrm{ABC}$, we have
GF || AB
$\Rightarrow \frac{\mathrm{AG}}{\mathrm{GC}}=\frac{\mathrm{BF}}{\mathrm{FC}}[\mathrm{By}$ Thale's Theorem$]$.
From (i) and (ii), we get

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}
$$

Ex. 22 Prove that the line drawn from the mid-point of one side of a triangle parallel of another side bisects the third side.

Sol. Given : A $\triangle \mathrm{ABC}$, in which D is the midpoint of side AB and the line DE is drawn parallel to BC , meeting AC in E .

To Prove : E is the mid-point of AC i.e., $\mathrm{AE}=\mathrm{EC}$.

Proof: In $\triangle A B C$, we have
DE || BC
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}[\mathrm{By}$ Thale's Theorem$]$

But, D is the mid-point of $A B$.
$\Rightarrow \mathrm{AD}=\mathrm{DB}$
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{DB}}=1$
From (i) and (ii), we get

$$
\begin{aligned}
& \frac{\mathrm{AE}}{\mathrm{EC}}=1 \\
\Rightarrow & \mathrm{AE}=\mathrm{EC}
\end{aligned}
$$

Hence, E bisects AC.
Ex. 23 Prove that the line joining the mid-point of two sides of a triangle is parallel to the third side.
[NCERT]
Sol. Given : A $\triangle \mathrm{ABC}$ in which D and E are midpoint of sides $A B$ and $A C$ respectively.

To Prove: DE || BC
Proof : Since D and E are mid-points of AB and AC respectively.
$\therefore \quad \mathrm{AD}=\mathrm{DB}$ and $\mathrm{AE}=\mathrm{EC}$
$\Rightarrow \quad \frac{\mathrm{AE}}{\mathrm{DB}}=1$ and $\frac{\mathrm{AE}}{\mathrm{EC}}=1$
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Thus, the line DE divides the sides AB and $A C$ of $\triangle A B C$ in the same ratio. Therefore, by the converse of Basic Proportionality Theorem, we have

DE || BC
Ex. 24 AD is a median of $\triangle \mathrm{ABC}$. The bisector of $\angle A D B$ and $\angle A D C$ meet $A B$ and $A C$ in E and F respectively. Prove that $\mathrm{EF} \| \mathrm{BC}$.

Sol. Given : In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median and DE and DF are the bisectors of $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$ respectively, meeting AB and AC in E and F respectively.

To Prove: EF || BC
Proof : In $\triangle \mathrm{ADB}, \mathrm{DE}$ is the bisector of $\angle A D B$.

$\therefore \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EB}}$
In $\triangle \mathrm{ADC}, \mathrm{DF}$ is the bisector of $\angle \mathrm{ADC}$.
$\therefore \quad \frac{\mathrm{AD}}{\mathrm{DC}}=\frac{\mathrm{AF}}{\mathrm{FC}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AF}}{\mathrm{FC}}\left[\begin{array}{l}\Theta \mathrm{AD} \text { is the median } \\ \therefore \mathrm{BD}=\mathrm{DC}\end{array}\right]$
From (i) and (ii), we get

$$
\frac{\mathrm{AE}}{\mathrm{~EB}}=\frac{\mathrm{AF}}{\mathrm{FC}}
$$

Thus, in $\triangle A B C$, line segment EF divides the sides AB and AC in the same ratio.

Hence, EF is parallel to BC.
Ex. 25 O is any point inside a triangle ABC . The bisector of $\angle \mathrm{AOB}, \angle \mathrm{BOC}$ and $\angle \mathrm{COA}$ meet the sides AB, BC and CA in point D, E and F respectively. Show that $\mathrm{AD} \times \mathrm{BE} \times \mathrm{CF}=$ $\mathrm{DB} \times \mathrm{EC} \times \mathrm{FA}$.

Sol. In $\triangle A O B, O D$ is the bisector of $\angle A O B$.

$\therefore \quad \frac{\mathrm{OA}}{\mathrm{OB}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
In $\triangle \mathrm{BOC}, \mathrm{OE}$ is the bisector of $\angle \mathrm{BOC}$.

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{OB}}{\mathrm{OC}}=\frac{\mathrm{BE}}{\mathrm{EC}} \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{COA}, \mathrm{OF}$ is the bisector of $\angle \mathrm{COA}$

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{CF}}{\mathrm{FA}} \tag{iii}
\end{equation*}
$$

Multiplying the corresponding sides of (i), (ii) and (iii), we get

$$
\begin{aligned}
& \frac{\mathrm{OA}}{\mathrm{OB}} \times \frac{\mathrm{OB}}{\mathrm{OC}} \times \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{AD}}{\mathrm{DB}} \times \frac{\mathrm{BE}}{\mathrm{EC}} \times \frac{\mathrm{CF}}{\mathrm{FA}} \\
\Rightarrow & 1=\frac{\mathrm{AD}}{\mathrm{DB}} \times \frac{\mathrm{BE}}{\mathrm{EC}} \times \frac{\mathrm{CF}}{\mathrm{FA}} \\
\Rightarrow & \mathrm{DB} \times \mathrm{EC} \times \mathrm{FA}=\mathrm{AD} \times \mathrm{BE} \times \mathrm{CF} \\
\Rightarrow & \mathrm{AD} \times \mathrm{BE} \times \mathrm{CF}=\mathrm{DB} \times \mathrm{EC} \times \mathrm{FA}
\end{aligned}
$$

CRITERIA FOR SIMILARITY OF TRIANGLES

Equiangular Triangles :

Two triangles are said to be equiangular, if their corresponding angles are equal.
If two triangles are equiangular, then they are similar.
Two triangles ABC and DEF such that

$$
\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{~B}=\angle \mathrm{E} \text { and } \angle \mathrm{C}=\angle \mathrm{F} \text {. }
$$

Then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}
$$

Ex. 26 In figure, find $\angle \mathrm{L}$.

Sol. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{LMN}$,

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{4.4}{11}=\frac{2}{5} \\
& \frac{\mathrm{BC}}{\mathrm{MN}}=\frac{4}{10}=\frac{2}{5}
\end{aligned}
$$

and $\frac{\mathrm{CA}}{\mathrm{NL}}=\frac{3.6}{9}=\frac{2}{5}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{\mathrm{CA}}{\mathrm{NL}}$
$\Rightarrow \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{LMN} \quad$ (SSS similarity)
$\Rightarrow \angle \mathrm{L}=\angle \mathrm{A}$
$=180^{\circ}-\angle \mathrm{B}-\angle \mathrm{C}$
$=180^{\circ}-50^{\circ}-70^{\circ}=60^{\circ}$
$\Rightarrow \angle \mathrm{L}=60^{\circ}$
Ex. 27 Examine each pair of triangles in Figure, and state which pair of triangles are similar. Also, state the similarity criterion used by you for answering the question and write the similarity relation in symbolic form.

Figure (i)

Figure (ii)

Figure (iii)

Figure (iv)

Figure (v)

Figure (vi)

Figure (vii)
Sol. (i) $\angle \mathrm{A}=\angle \mathrm{Q}, \angle \mathrm{B}=\angle \mathrm{P}$ and $\angle \mathrm{C}=\angle \mathrm{R}$. $\therefore \triangle \mathrm{ABC} \sim \Delta \mathrm{QPR}$ (AAA-similarity)
(ii) In triangle $P Q R$ and $D E F$, we observe that

$$
\frac{\mathrm{PQ}}{\mathrm{DE}}=\frac{\mathrm{QR}}{\mathrm{EF}}=\frac{\mathrm{PR}}{\mathrm{DF}}=\frac{1}{2}
$$

Therefore, by SSS-criterion of similarity, we have

$$
\Delta \mathrm{PQR} \sim \Delta \mathrm{DEF}
$$

(iii) SAS-similarity is not satisfied as included angles are not equal.
(iv) $\Delta \mathrm{CAB} \sim \Delta \mathrm{QRP}$ (SAS-similarity), as
$\frac{\mathrm{CA}}{\mathrm{QR}}=\frac{\mathrm{CB}}{\mathrm{QP}}$ and $\angle \mathrm{C}=\angle \mathrm{Q}$.
(v) In Δ 's ABC and DEF, we have

$$
\angle \mathrm{A}=\angle \mathrm{D}=80^{\circ}
$$

But, $\frac{\mathrm{AB}}{\mathrm{DE}} \neq \frac{\mathrm{AC}}{\mathrm{DF}}$
[$\Theta \mathrm{AC}$ is not given]
So, by SAS-criterion of similarity these two triangles are not similar.
(vi) In Δ 's DEF and MNP, we have

$$
\begin{aligned}
\angle \mathrm{D} & =\angle \mathrm{M}=70^{\circ} \\
\angle \mathrm{E} & =\angle \mathrm{N}=80^{\circ}\left[\Theta \angle \mathrm{N}=180^{\circ}-\angle \mathrm{M}-\angle \mathrm{P}\right. \\
& \left.=180^{\circ}-70^{\circ}-30^{\circ}=80^{\circ}\right]
\end{aligned}
$$

So, by AA-criterion of similarity

$$
\Delta \mathrm{DEF} \sim \triangle \mathrm{MNP} .
$$

(vii) $\mathrm{FE}=2 \mathrm{~cm}, \mathrm{FD}=3 \mathrm{~cm}, \mathrm{ED}=2.5 \mathrm{~cm}$
$\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$
$\therefore \Delta \mathrm{FED} \sim \Delta \mathrm{PQR}$ (SSS-similarity)

Ex. 28 In figure, QA and PB are perpendicular to AB . If $\mathrm{AO}=10 \mathrm{~cm}, \mathrm{BO}=6 \mathrm{~cm}$ and $\mathrm{PB}=9 \mathrm{~cm}$. Find AQ.
Sol. In triangles AOQ and BOP, we have
$\angle \mathrm{OAQ}=\angle \mathrm{OBP} \quad\left[\right.$ Each equal to $\left.90^{\circ}\right]$
$\angle \mathrm{AOQ}=\angle \mathrm{BOP}$
[Vertically opposite angles]
Therefore, by AA-criterion of similarity

$$
\Delta \mathrm{AOQ} \sim \Delta \mathrm{BOP}
$$

$\Rightarrow \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{OQ}}{\mathrm{OP}}=\frac{\mathrm{AO}}{\mathrm{BP}}$
$\Rightarrow \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{AQ}}{\mathrm{BP}} \Rightarrow \frac{10}{6}=\frac{\mathrm{AQ}}{9}$
$\Rightarrow \mathrm{AQ}=\frac{10 \times 9}{6}=15 \mathrm{~cm}$
Ex. 29 In figure, $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$. If $\mathrm{BC}=8 \mathrm{~cm}$, $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{BA}=6.5 \mathrm{~cm}, \mathrm{AP}=2.8 \mathrm{~cm}$, find CA and AQ.

Sol. We have, $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{AC}}{\mathrm{AP}}=\frac{\mathrm{CB}}{\mathrm{PQ}}=\frac{\mathrm{AB}}{\mathrm{AQ}} \\
& \Rightarrow \frac{\mathrm{AC}}{\mathrm{AP}}=\frac{\mathrm{CB}}{\mathrm{PQ}} \text { and } \frac{\mathrm{CB}}{\mathrm{PQ}}=\frac{\mathrm{AB}}{\mathrm{AQ}} \\
& \Rightarrow \frac{\mathrm{AC}}{2.8}=\frac{8}{4} \text { and } \frac{8}{4}=\frac{6.5}{\mathrm{AQ}} \\
& \Rightarrow \frac{\mathrm{AC}}{2.8}=2 \text { and } \frac{6.5}{\mathrm{AQ}}=2
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \mathrm{AC}=(2 \times 2.8) \mathrm{cm}=5.6 \mathrm{~cm} \text { and } \\
& \mathrm{AQ}=\frac{6.5}{2} \mathrm{~cm}=3.25 \mathrm{~cm}
\end{aligned}
$$

Ex. 30 The perimeters of two similar triangles ABC and $P Q R$ are respectively 36 cm and 24 cm . If $P Q=10 \mathrm{~cm}$, find $A B$.

Sol. Since the ratio of the corresponding sides of similar triangles is same as the ratio of their perimeters.
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{36}{24}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{36}{24} \quad \Rightarrow \frac{\mathrm{AB}}{10}=\frac{36}{24}$
$\Rightarrow \mathrm{AB}=\frac{36 \times 10}{24} \mathrm{~cm}=15 \mathrm{~cm}$
Ex. 31 In figure, $\angle \mathrm{CAB}=90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$. If $\mathrm{AC}=75 \mathrm{~cm}, \mathrm{AB}=1 \mathrm{~m}$ and $\mathrm{BD}=1.25 \mathrm{~m}$, find AD.
Sol. We have,
$\mathrm{AB}=1 \mathrm{~m}=100 \mathrm{~cm}, \mathrm{AC}=75 \mathrm{~cm}$ and $\mathrm{BD}=125 \mathrm{~cm}$

In $\triangle \mathrm{BAC}$ and $\triangle \mathrm{BDA}$, we have

$$
\angle \mathrm{BAC}=\angle \mathrm{BDA} \quad\left[\text { Each equal to } 90^{\circ}\right]
$$

and, $\quad \angle \mathrm{B}=\angle \mathrm{B}$

So, by AA-criterion of similarity, we have

$$
\begin{aligned}
& \Delta \mathrm{BAC} \sim \Delta \mathrm{BDA} \\
\Rightarrow & \frac{\mathrm{BA}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{AD}} \\
\Rightarrow & \frac{100}{125}=\frac{75}{\mathrm{AD}} \\
\Rightarrow & \mathrm{AD}=\frac{125 \times 75}{100} \mathrm{~cm}=93.75 \mathrm{~cm}
\end{aligned}
$$

Ex. 32 In figure, if $\angle \mathrm{A}=\angle \mathrm{C}$, then prove that $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$.

Sol. In triangles AOB and COD, we have

$$
\angle \mathrm{A}=\angle \mathrm{C} \quad \text { [Given }]
$$

and, $\angle 1=\angle 2$ [Vertically opposite angles]
Therefore, by AA-criterion of similarity, we have

$$
\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}
$$

Ex. 33 In figure, $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}=\frac{1}{2}$ and $\mathrm{AB}=5 \mathrm{~cm}$. Find the value of $D C$.

Sol. In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ [Vertically opposite angles]

$$
\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}} \quad[\text { Given }]
$$

So, by SAS-criterion of similarity, we have

$$
\begin{aligned}
& \Delta \mathrm{AOB} \sim \Delta \mathrm{COD} \\
\Rightarrow & \frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}=\frac{\mathrm{AB}}{\mathrm{DC}} \\
\Rightarrow & \frac{1}{2}=\frac{5}{\mathrm{DC}} \quad[\Theta \quad \mathrm{AB}=5 \mathrm{~cm}] \\
\Rightarrow & \mathrm{DC}=10 \mathrm{~cm}
\end{aligned}
$$

Ex. 34 In figure, considering triangles BEP and CPD , prove that $\mathrm{BP} \times \mathrm{PD}=\mathrm{EP} \times \mathrm{PC}$.

Sol. Given : A $\triangle \mathrm{ABC}$ in which $\mathrm{BD} \perp \mathrm{AC}$ and $C E \perp A B$ and $B D$ and $C E$ intersect at P.

To Prove: $\mathrm{BP} \times \mathrm{PD}=\mathrm{EP} \times \mathrm{PC}$
Proof: In $\triangle \mathrm{EPB}$ and $\triangle \mathrm{DPC}$, we have
$\angle \mathrm{PEB}=\angle \mathrm{PDC}$ [Each equal to 90°]
$\angle \mathrm{EPB}=\angle \mathrm{DPC}$ [Vertically opposite angles]

Thus, by AA-criterion of similarity, we have

$$
\Delta \mathrm{EPB} \sim \Delta \mathrm{DPC}
$$

$$
\frac{\mathrm{EP}}{\mathrm{DP}}=\frac{\mathrm{PB}}{\mathrm{PC}}
$$

$\Rightarrow \mathrm{BP} \times \mathrm{PD}=\mathrm{EP} \times \mathrm{PC}$
Ex. 35 D is a point on the side BC of $\triangle \mathrm{ABC}$ such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Prove that $\frac{\mathrm{CA}}{\mathrm{CD}}=\frac{\mathrm{CB}}{\mathrm{CA}}$ or, $\mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}$.

Sol. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAC}$, we have

$$
\angle \mathrm{ADC}=\angle \mathrm{BAC} \text { and } \angle \mathrm{C}=\angle \mathrm{C}
$$

Therefore, by AA-criterion of similarity, we have

$$
\begin{aligned}
& \Delta \mathrm{ABC} \sim \triangle \mathrm{DAC} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{DA}}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{DC}} \\
\Rightarrow & \frac{\mathrm{CB}}{\mathrm{CA}}=\frac{\mathrm{CA}}{\mathrm{CD}}
\end{aligned}
$$

Ex. 36 P and Q are points on sides $A B$ and $A C$ respectively of $\triangle A B C$. If $A P=3 \mathrm{~cm}$, $\mathrm{PB}=6 \mathrm{~cm} . \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=10 \mathrm{~cm}$, show that $\mathrm{BC}=3 \mathrm{PQ}$.

Sol. We have,

$$
\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=(3+6) \mathrm{cm}=9 \mathrm{~cm}
$$

and, $\mathrm{AC}=\mathrm{AQ}+\mathrm{QC}=(5+10) \mathrm{cm}=15 \mathrm{~cm}$.
$\therefore \quad \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ and $\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{5}{15}=\frac{1}{3}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$

Thus, in triangles APQ and ABC, we have

$$
\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \text { and } \angle \mathrm{A}=\angle \mathrm{A} \text { [Common] }
$$

Therefore, by SAS-criterion of similarity, we have

$$
\begin{aligned}
& \Delta \mathrm{APQ} \sim \Delta \mathrm{ABC} \\
\Rightarrow & \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \\
\Rightarrow & \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{5}{15} \\
\Rightarrow & \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{1}{3} \Rightarrow \mathrm{BC}=3 \mathrm{PQ}
\end{aligned}
$$

Ex. 37 In figure, $\angle \mathrm{A}=\angle \mathrm{CED}$, prove that $\Delta \mathrm{CAB} \sim \Delta \mathrm{CED}$. Also, find the value of x .

Sol. In $\triangle \mathrm{CAB}$ and $\triangle \mathrm{CED}$, we have

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{CED} \text { and } \angle \mathrm{C}=\angle \mathrm{C} \text { [common }] \\
\therefore \quad & \Delta \mathrm{CAB} \sim \triangle \mathrm{CED} \\
\Rightarrow & \frac{\mathrm{CA}}{\mathrm{CE}}=\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{CB}}{\mathrm{CD}}
\end{aligned}
$$

$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{CB}}{\mathrm{CD}} \Rightarrow \frac{9}{\mathrm{x}}=\frac{10+2}{8}$
$\Rightarrow \mathrm{x}=6 \mathrm{~cm}$
Ex. 38 In the figure, E is a point on side CB produced of an isosceles $\triangle \mathrm{ABC}$ with $\mathrm{AB}=$ $A C$. If $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.

Sol. Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{AD} \perp \mathrm{BC}$. Side CB is produced to E and $\mathrm{EF} \perp \mathrm{AC}$.

To prove : $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.
Proof : we known that the angles opposite to equal sides of a triangle are equal.
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{C} \quad[\Theta \mathrm{AB}=\mathrm{AC}]$
Now, in $\triangle A B D$ and $\triangle E C F$, we have

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{C} \quad \text { [proved above }] \\
& \angle \mathrm{ADB}=\angle \mathrm{EFC}=90^{\circ} \\
\therefore \quad & \triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}[\text { By AA-similarity }]
\end{aligned}
$$

Ex. 39 In figure, $\angle \mathrm{BAC}=90^{\circ}$ and segment $\mathrm{AD} \perp \mathrm{BC}$. Prove that $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$.

Sol. In $\triangle A B D$ and $\triangle A C D$, we have

$$
\angle \mathrm{ADB}=\angle \mathrm{ADC} \quad\left[\text { Each equal to } 90^{\circ}\right]
$$

and, $\angle \mathrm{DBA}=\angle \mathrm{DAC}$

$$
\left[\begin{array}{l}
\text { Each equal to complement of } \\
\angle \mathrm{BAD} \text { i.e., } 90^{\circ}-\angle \mathrm{BAD}
\end{array}\right]
$$

Therefore, by AA-criterion of similarity, we have
$\Delta \mathrm{DBA} \sim \Delta \mathrm{DAC}$
$\left[\begin{array}{l}\therefore \angle \mathrm{D} \leftrightarrow \angle \mathrm{D}, \angle \mathrm{DBA} \leftrightarrow \angle \mathrm{DAC} \\ \text { and } \angle \mathrm{BAD} \leftrightarrow \angle \mathrm{DCA}\end{array}\right]$
$\Rightarrow \frac{\mathrm{DB}}{\mathrm{DA}}=\frac{\mathrm{DA}}{\mathrm{DC}}$
$\left[\begin{array}{l}\text { In similar triangles corresponding } \\ \text { sides are proportional }\end{array}\right]$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{AD}}{\mathrm{DC}} \Rightarrow \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$
Ex. 40 In an isosceles $\triangle \mathrm{ABC}$, the base AB is produced both ways in P and Q such that $\mathrm{AP} \times \mathrm{BQ}=\mathrm{AC}^{2}$ and CE are the altitudes. Prove that $\triangle \mathrm{ACP} \sim \triangle \mathrm{BCQ}$.

Sol. $\mathrm{CA}=\mathrm{CB} \Rightarrow \angle \mathrm{CAB}=\angle \mathrm{CBA}$
$\Rightarrow 180^{\circ}-\angle \mathrm{CAB}=180^{\circ}-\angle \mathrm{CBA}$
$\Rightarrow \angle \mathrm{CAP}=\angle \mathrm{CBQ}$
Now, $\mathrm{AP} \times \mathrm{BQ}=\mathrm{AC}^{2}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{BQ}} \Rightarrow \frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{BQ}}[\Theta \mathrm{AC}=\mathrm{BC}]$

Thus, $\angle \mathrm{CAP}=\angle \mathrm{CBQ}$ and $\frac{\mathrm{AP}}{\mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{BQ}}$.
$\therefore \triangle \mathrm{ACP} \sim \triangle \mathrm{BCQ}$.
Ex. 41 The diagonal BD of a parallelogram ABCD intersects the segment $A E$ at the point F, where E is any point on the side $B C$. Prove that $\mathrm{DF} \times \mathrm{EF}=\mathrm{FB} \times \mathrm{FA}$.

Sol. In $\triangle \mathrm{AFD}$ and $\triangle \mathrm{BFE}$, we have

$$
\begin{array}{ll}
\angle 1=\angle 2 & \text { [Vertically opposite angles] } \\
\angle 3=\angle 4 & \text { [Alternate angles] }
\end{array}
$$

So, by AA-criterion of similarity, we have

$$
\Delta \mathrm{FBE} \sim \Delta \mathrm{FDA}
$$

$\Rightarrow \frac{\mathrm{FB}}{\mathrm{FD}}=\frac{\mathrm{FD}}{\mathrm{FA}} \Rightarrow \frac{\mathrm{FB}}{\mathrm{DF}}=\frac{\mathrm{EF}}{\mathrm{FA}}$
$\Rightarrow \mathrm{DF} \times \mathrm{EF}=\mathrm{FB} \times \mathrm{FA}$
Ex. 42 Through the mid-point M of the side CD of a parallelogram ABCD , the line BM is drawn intersecting AC in L and AD produced in E . Prove that EL $=2 \mathrm{BL}$.

Sol. In $\triangle \mathrm{BMC}$ and $\triangle \mathrm{EMD}$, we have
$\mathrm{MC}=\mathrm{MD}[\Theta \mathrm{M}$ is the mid-point of CD$]$
$\angle \mathrm{CMB}=\angle \mathrm{EMD}$ [Vertically opposite angles]
and, $\angle \mathrm{MBC}=\angle \mathrm{MED} \quad$ [Alternate angles]
So, by AAS-criterion of congruence, we have
$\therefore \quad \triangle \mathrm{BMC} \cong \triangle \mathrm{EMD}$
$\Rightarrow \mathrm{BC}=\mathrm{DE}$
Also, $\mathrm{AD}=\mathrm{BC}$
[$\Theta \mathrm{ABCD}$ is a parallelogram]

$$
\begin{align*}
& \mathrm{AD}+\mathrm{DE}=\mathrm{BC}+\mathrm{BC} \\
\Rightarrow & \mathrm{AE}=2 \mathrm{BC} \tag{iii}
\end{align*}
$$

Now, in $\triangle \mathrm{AEL}$ and $\triangle \mathrm{CBL}$, we have
$\angle \mathrm{ALE}=\angle \mathrm{CLB}$
[Vertically opposite angles]
$\angle \mathrm{EAL}=\angle \mathrm{BCL}$
[Alternate angles]
So, by AA-criterion of similarity of triangles, we have

$\Delta \mathrm{AEL} \sim \Delta \mathrm{CBL}$
$\Rightarrow \frac{\mathrm{EL}}{\mathrm{BL}}=\frac{\mathrm{AE}}{\mathrm{CB}} \Rightarrow \frac{\mathrm{EL}}{\mathrm{BL}}=\frac{2 \mathrm{BC}}{\mathrm{BC}}$
[Using equations (iii)]
$\Rightarrow \frac{\mathrm{EL}}{\mathrm{BL}}=2$
$\Rightarrow \mathrm{EL}=2 \mathrm{BL}$
Ex. 43 In figure, $A B C D$ is a trapezium with $A B \| D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $\mathrm{AD}=\mathrm{BC}$.

Sol. In $\triangle \mathrm{EDC}$ and $\triangle \mathrm{EBA}$, we have

$$
\begin{array}{ll}
\angle 1=\angle 2 & \text { [Alternate angles] } \\
\angle 3=\angle 4 & \text { [Alternate angles] }
\end{array}
$$

and, $\angle \mathrm{CED}=\angle \mathrm{AEB}$ [Vertically opposite angles]
$\therefore \quad \triangle \mathrm{EDC} \sim \Delta \mathrm{EBA}$

$\Rightarrow \quad \frac{\mathrm{ED}}{\mathrm{EB}}=\frac{\mathrm{EC}}{\mathrm{EA}}$
$\Rightarrow \frac{\mathrm{ED}}{\mathrm{EC}}=\frac{\mathrm{EB}}{\mathrm{EA}}$
It is given that $\triangle \mathrm{AED} \sim \Delta \mathrm{BEC}$

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{ED}}{\mathrm{EC}}=\frac{\mathrm{EA}}{\mathrm{~EB}}=\frac{\mathrm{AD}}{\mathrm{BC}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\frac{E B}{E A}=\frac{E A}{E B}
$$

$\Rightarrow(\mathrm{EB})^{2}=(\mathrm{EA})^{2}$
$\Rightarrow \mathrm{EB}=\mathrm{EA}$
Substituting EB $=$ EA in (ii), we get

$$
\frac{\mathrm{EA}}{\mathrm{EA}}=\frac{\mathrm{AD}}{\mathrm{BC}} \Rightarrow \frac{\mathrm{AD}}{\mathrm{BC}}=1
$$

$\Rightarrow \mathrm{AD}=\mathrm{BC}$
Ex. 44 A vertical stick 20 cm long casts a shadow 6 cm long on the ground. At the same time, a tower casts a shadow 15 m long on the ground. Find the height of the tower.

Sol. Let the sun's altitude at that moment be θ.

$\Delta \mathrm{PQM} \sim \Delta \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{MP}}{\mathrm{MQ}}=\frac{\mathrm{AC}}{\mathrm{CB}}$
$\Rightarrow \quad \frac{\mathrm{h}}{15}=\frac{20}{6}$
\therefore Height of the tower $=50 \mathrm{~m}$.
Ex. 45 If a perpendicular is drawn from the vertex containing the right angle of a right triangle to the hypotenuse then prove that the triangle on each side of the perpendicular are similar to each other and to the original triangle. Also, prove that the square of the perpendicular is equal to the product of the lengths of the two parts of the hypotenuse.
[NCERT]
Sol. Given : A right triangle ABC right angled at $\mathrm{B}, \mathrm{BD} \perp \mathrm{AC}$.

To Prove :

(i) $\triangle \mathrm{ADB} \sim \triangle \mathrm{BDC}$
(ii) $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
(iii) $\Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}$
(iv) $\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC}$
(v) $\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
(vi) $\mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC}$

Proof:

(i) We have,

$$
\angle \mathrm{ABD}+\angle \mathrm{DBC}=90^{\circ}
$$

Also, $\angle \mathrm{C}+\angle \mathrm{DBC}+\angle \mathrm{BDC}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}+\angle \mathrm{DBC}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}+\angle \mathrm{DBC}=90^{\circ}$
But, $\angle \mathrm{ABD}+\angle \mathrm{DBC}=90^{\circ}$
$\therefore \quad \angle \mathrm{ABD}+\angle \mathrm{DBC}=\angle \mathrm{C}+\angle \mathrm{DBC}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{C}$
Thus, in $\triangle \mathrm{ADB}$ and $\triangle \mathrm{BDC}$, we have

$$
\angle \mathrm{ABD}=\angle \mathrm{C}
$$

[From (i)]
and, $\angle \mathrm{ADB}=\angle \mathrm{BDC}$
[Each equal to 90°]
So, by AA-similarity criterion, we have

$$
\Delta \mathrm{ADB} \sim \Delta \mathrm{BDC}
$$

(ii) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$, we have

$$
\angle \mathrm{ADB}=\angle \mathrm{ABC} \quad\left[\text { Each equal to } 90^{\circ}\right]
$$

and, $\angle \mathrm{A}=\angle \mathrm{A}$
[Common]
So, by AA-similarity criterion, we have

$$
\Delta \mathrm{ADB} \sim \Delta \mathrm{ABC}
$$

(iii) In $\triangle \mathrm{BDC}$ and $\triangle \mathrm{ABC}$, we have

$$
\angle \mathrm{BDC}=\angle \mathrm{ABC}
$$

[Each equal to 90°]

$$
\begin{equation*}
\angle \mathrm{C}=\angle \mathrm{C} \tag{Common}
\end{equation*}
$$

So, by AA-similarity criterion, we have

$$
\Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}
$$

(iv) From (i), we have

$$
\begin{aligned}
& \Delta \mathrm{ADB} \sim \Delta \mathrm{BDC} \\
\Rightarrow & \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{BD}}{\mathrm{DC}} \Rightarrow \mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC}
\end{aligned}
$$

(v) From (ii), we have

$$
\begin{aligned}
& \Delta \mathrm{ADB} \sim \Delta \mathrm{ABC} \\
& \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \Rightarrow \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}
\end{aligned}
$$

(vi) From (iii), we have

$$
\begin{aligned}
& \Delta \mathrm{BDC} \sim \Delta \mathrm{ABC} \\
\Rightarrow & \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{DC}}{\mathrm{BC}} \\
\Rightarrow & \mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC}
\end{aligned}
$$

Ex. 46 Prove that the line segments joining the mid points of the sides of a triangle form four triangles, each of which is similar to the original triangle.

Sol. Given : $\triangle \mathrm{ABC}$ in which $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the mid-points of sides BC, CA and AB respectively.

To Prove : Each of the triangles AFE, FBD, EDC and DEF is similar to $\triangle \mathrm{ABC}$.

Proof: Consider triangles AFE and ABC .
Since F and E are mid-points of $A B$ and $A C$ respectively.
$\therefore \quad \mathrm{FE} \| \mathrm{BC}$
$\Rightarrow \angle \mathrm{AEF}=\angle \mathrm{B}$
[Corresponding angles]
Thus, in $\triangle \mathrm{AFE}$ and $\triangle \mathrm{ABC}$, we have

$$
\angle \mathrm{AFE}=\angle \mathrm{B}
$$

and, $\angle \mathrm{A}=\angle \mathrm{A} \quad$ [Common]
$\therefore \quad \triangle \mathrm{AFE} \sim \triangle \mathrm{ABC}$.
Similarly, we have
$\Delta \mathrm{FBD} \sim \Delta \mathrm{ABC}$ and $\triangle \mathrm{EDC} \sim \Delta \mathrm{ABC}$.
Now, we shall show that $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$.
Clearly, ED || AF and DE || EA.
$\therefore \quad \mathrm{AFDE}$ is a parallelogram.
$\Rightarrow \quad \angle \mathrm{EDF}=\angle \mathrm{A}$
[Θ Opposite angles of a parallelogram are equal]

Similarly, BDEF is a parallelogram.
$\therefore \quad \angle \mathrm{DEF}=\angle \mathrm{B}$
[Θ Opposite angles of a parallelogram are equal]
Thus, in triangles DEF and ABC, we have

$$
\angle \mathrm{EDF}=\angle \mathrm{A} \text { and } \angle \mathrm{DEF}=\angle \mathrm{B}
$$

So, by AA-criterion of similarity, we have $\triangle \mathrm{DEF} \sim \triangle \mathrm{ABC}$.

Thus, each one of the triangles AFE, FBD, EDC and DEF is similar to $\triangle \mathrm{ABC}$.

Ex. 47 In $\triangle \mathrm{ABC}, \mathrm{DE}$ is parallel to base BC , with D on AB and E on AC . If $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{2}{3}$, find $\frac{\mathrm{BC}}{\mathrm{DE}}$.

Sol. In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{DE} \| \mathrm{BC} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}
$$

Thus, in triangles ABC and ADE , we have

$$
\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}} \text { and, } \angle \mathrm{A}=\angle \mathrm{A}
$$

Therefore, by SAS-criterion of similarity, we have

$$
\begin{align*}
& \Delta \mathrm{ABC} \sim \Delta \mathrm{ADE} \\
\Rightarrow & \frac{\mathrm{AD}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{DE}} \tag{i}
\end{align*}
$$

It is given that

$$
\begin{align*}
& \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{2}{3} \\
\Rightarrow & \frac{\mathrm{DB}}{\mathrm{AD}}=\frac{3}{2} \\
\Rightarrow & \frac{\mathrm{DB}}{\mathrm{AD}}+1=\frac{3}{2}+1 \\
\Rightarrow & \frac{\mathrm{DB}+\mathrm{AD}}{\mathrm{AD}}=\frac{5}{2} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{5}{2} \tag{ii}
\end{align*}
$$

From (i) and (ii), we get

$$
\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{5}{2}
$$

MORE ON CHARACTERISTIC PROPERTIES

Theorem 1 :

If two triangles are equiangular, prove that the ratio of the corresponding sides is same as the ratio of the corresponding medians.

Given : Two triangles ABC and DEF in which $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}, \mathrm{AP}$ and DQ are their medians.

Figure (i)

Figure (ii)

To Prove : $\frac{B C}{E F}=\frac{A P}{D Q}$
Proof : Since equiangular triangles are similar.
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{2 \mathrm{BP}}{2 \mathrm{EQ}}$

$$
\left.\begin{array}{rl}
& {\left[\begin{array}{l}
\Theta \mathrm{P} \text { and } \mathrm{Q} \text { are mid }- \text { po ints of } \mathrm{BC} \\
\text { and EF respectively }
\end{array}\right.} \\
\therefore \mathrm{BC}=2 \mathrm{BP} \text { and } \mathrm{EF}=2 \mathrm{EQ}
\end{array}\right]
$$

Now, in $\triangle \mathrm{ABP}$ and $\triangle \mathrm{DFQ}$, we have

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BP}}{\mathrm{EQ}}
$$

[From (ii)]
and, $\angle \mathrm{B}=\angle \mathrm{E}$
[Given]
So, by SAS-criterion of similarity, we have

$$
\begin{align*}
& \Delta \mathrm{ABP} \sim \Delta \mathrm{DEQ} \\
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AP}}{\mathrm{DQ}} \tag{iii}
\end{align*}
$$

From (i) and (iii), we get

$$
\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}
$$

Hence, the ratio of the corresponding sides is same as the ratio of corresponding medians.

Theorem 2 :

If two triangles are equiangular, prove that the ratio of the corresponding sides is same as the ratio of the corresponding angle bisector segments.

Given : Two triangles ABC and DEF in which $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$; and AX , DY are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ respectively.

Figure (i)

Figure (ii)

To Prove : $\frac{B C}{E F}=\frac{A X}{D Y}$
Proof : Since equiangular triangles are similar.

$$
\begin{align*}
& \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{ABX}$ and DEY , we have

$$
\angle \mathrm{B}=\angle \mathrm{E}
$$

[Given]
and, $\angle \mathrm{BAX}=\angle \mathrm{EDY}$

$$
\left[\begin{array}{c}
\Theta \angle \mathrm{A}=\angle \mathrm{D} \Rightarrow \frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{D} \\
\Rightarrow \angle \mathrm{BAX}=\angle \mathrm{EDY}
\end{array}\right]
$$

So, by AA-criterion of similarity, we have

$$
\triangle \mathrm{ABX} \sim \Delta \mathrm{DEY}
$$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AX}}{\mathrm{DY}}$
From (i) and (ii), we get

$$
\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AX}}{\mathrm{DY}}
$$

Theorem 3 :

If two triangles are equiangular, prove that the ratio of the corresponding sides is same as the ratio of the corresponding altitudes.

Given : Two triangles ABC and DEF in which
$\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ and
$\mathrm{AL} \perp \mathrm{BC}, \mathrm{DM} \perp \mathrm{EF}$

To Prove: $\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AL}}{\mathrm{DM}}$
Proof : Since equiangular triangles are similar.
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}$
In triangle ALB and DME, we have

$$
\begin{array}{lr}
\angle \mathrm{ALB}=\angle \mathrm{DME} & {\left[\text { Each equal to } 90^{\circ}\right]} \\
\angle \mathrm{B}=\angle \mathrm{E} & {[\text { Given }]}
\end{array}
$$

So, by AA-criterion of similarity, we have

$$
\Delta \mathrm{ALB} \sim \Delta \mathrm{DME}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AL}}{\mathrm{DM}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AL}}{\mathrm{DM}}
$$

Theorem 4 :

If one angle of a triangle is equal to one angle of another triangle and the bisectors of these equal angles divide the opposite side in the same ratio, prove that the triangles are similar.

Given : Two triangles ABC and DEF in which $\angle \mathrm{A}=\angle \mathrm{D}$. The bisectors AP and DQ or $\angle \mathrm{A}$ and $\angle \mathrm{D}$ intersect BC and EF in P and Q respectively such that $\frac{\mathrm{BP}}{\mathrm{PC}}=\frac{\mathrm{EQ}}{\mathrm{QF}}$.

To Prove : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Proof: We know that the bisectors of an angle of triangle of a triangle intersects the opposite side in the ratio of the sides containing the angle.

$\therefore \quad \mathrm{AP}$ is the bisector of $\angle \mathrm{A}$
$\Rightarrow \quad \frac{\mathrm{BP}}{\mathrm{PC}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
DQ is the bisector of $\angle \mathrm{D}$
$\Rightarrow \quad \frac{\mathrm{EQ}}{\mathrm{QF}}=\frac{\mathrm{DE}}{\mathrm{DF}}$
But, $\quad \frac{\mathrm{BP}}{\mathrm{PC}}=\frac{\mathrm{EQ}}{\mathrm{QF}}$
[Given]

Therefore, from (i) and (ii), we get

$$
\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{DF}}
$$

Thus, in triangles ABC and DEF , we have

$$
\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{DF}}
$$

and, $\quad \angle \mathrm{A}=\angle \mathrm{D}$
So, by SAS-criterion of similarity, we get

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}
$$

Theorem 5 :

If two sides and a median bisecting one of these sides of a triangle are respectively proportional to the two sides and the corresponding median of another triangle, then the triangles are similar.

Given : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ in which AP and DQ are the medians such that
[NCERT]

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}
$$

To Prove : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Proof: We have,

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}
$$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{EF}}=\frac{\mathrm{AP}}{\mathrm{DQ}} \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BP}}{\mathrm{EQ}}=\frac{\mathrm{AP}}{\mathrm{DQ}}
\end{aligned}
$$

$$
\Rightarrow \quad \triangle \mathrm{ABP} \sim \triangle \mathrm{DEQ}
$$

[By SSS-similarity]
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}
$$

[Given]
and, $\angle \mathrm{B}=\angle \mathrm{E}$
So, by SAS-criterion of similarity, we get
$\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$

Theorem 6 :

If two sides and a median bisecting the third side of a triangle are respectively proportional to the corresponding sides and the median of another triangle, then the two triangles are similar.
[NCERT]
Given : Two triangle ABC and DEF in which AP and DQ are the medians such that

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}
$$

To Prove : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Construction : Produce $A P$ to G so that $\mathrm{PG}=\mathrm{AP}$. Join CG. Also, produce DQ to H so that $\mathrm{QH}=\mathrm{DQ}$. Join FH.

Proof: In $\triangle \mathrm{APB}$ and $\triangle \mathrm{GPC}$, we have

$$
\begin{array}{lr}
\mathrm{BP}=\mathrm{CP} & {[\Theta \mathrm{AP} \text { is the median }]} \\
\mathrm{AP}=\mathrm{GP} & {[\mathrm{By} \text { construction }]}
\end{array}
$$

and, $\angle \mathrm{APB}=\angle \mathrm{CPG}$ [Vertically opposite angles]
So, by SAS-criterion of congruence, we have

$$
\Delta \mathrm{APB} \cong \Delta \mathrm{GPC}
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{AG}=\mathrm{GC} \tag{i}
\end{equation*}
$$

Again, In $\triangle \mathrm{DQE}$ and $\triangle \mathrm{HQF}$, we have
$E Q=F Q$
[$\Theta \mathrm{DQ}$ is the median]
$D Q=H Q$
[By construction]
and, $\angle \mathrm{DQE}=\angle \mathrm{HQF}$ [Vertically opposite angles]
So, by SAS-criterion of congruence, we have

$$
\begin{align*}
& \Delta \mathrm{DQE} \cong \triangle \mathrm{HQF} \\
\Rightarrow & \mathrm{DE}=\mathrm{HF} \tag{ii}
\end{align*}
$$

Now, $\frac{A B}{D E}=\frac{A C}{D F}=\frac{A P}{D Q}$
[Given]
$\Rightarrow \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}$
$[\Theta \mathrm{AB}=\mathrm{GC}$ and $\mathrm{DE}=\mathrm{HF}($ from (i) and (ii))]
$\Rightarrow \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{2 \mathrm{AP}}{2 \mathrm{DQ}}$
$\Rightarrow \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AG}}{\mathrm{DH}}$
$[\Theta 2 \mathrm{AP}=\mathrm{AG}$ and $2 \mathrm{DQ}=\mathrm{DH}]$
$\Rightarrow \Delta \mathrm{AGC} \sim \Delta \mathrm{DHF}$
[By SSS-criterion of similarity]
$\Rightarrow \angle 1=\angle 2$
Similarly, we have

$$
\begin{align*}
& \angle 3=\angle 4 \\
\therefore \quad & \angle 1+\angle 3=\angle 2+\angle 4 \\
\Rightarrow & \angle \mathrm{~A}=\angle \mathrm{D} \tag{iii}
\end{align*}
$$

Thus, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have

$$
\angle \mathrm{A}=\angle \mathrm{D}
$$

[From (iii)]
and, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
[Given]
So, by SAS-criterion of similarity, we have

$$
\Delta \mathrm{ABC} \sim \triangle \mathrm{DEF}
$$

> AREAS OF TWO SIMILAR TRIANGLES

Theorem 1 :

The ratio of the areas of two similar triangles are equal to the ratio of the squares of any two corresponding sides.
Given : Two triangles ABC and DEF such that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

To Prove : $\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$

Construction : Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$.
Proof : Since similar triangles are equiangular and their corresponding sides are proportional. Therefore,

$$
\begin{align*}
& \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \\
& \Rightarrow \angle \mathrm{~A}=\angle \mathrm{D}, \angle \mathrm{~B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F} \\
& \text { and } \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}} \tag{i}
\end{align*}
$$

Thus, in $\triangle \mathrm{ALB}$ and $\triangle \mathrm{DME}$, we have
$\Rightarrow \quad \angle \mathrm{ALB}=\angle \mathrm{DME} \quad\left[\right.$ Each equal to $\left.90^{\circ}\right]$
and, $\angle \mathrm{B}=\angle \mathrm{E}$
[From (i)]
So, by AA-criterion of similarity, we have
$\Delta \mathrm{ALB} \sim \Delta \mathrm{DME}$
$\Rightarrow \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AB}}{\mathrm{DE}}$
From (i) and (ii), we get

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AL}}{\mathrm{DM}} \tag{iii}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \Rightarrow \quad \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=\frac{\frac{1}{2}(\mathrm{BC} \times \mathrm{AL})}{\frac{1}{2}(\mathrm{EF} \times \mathrm{DM})} \\
& \Rightarrow \frac{\text { Area }(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}}{\mathrm{EF}} \times \frac{\mathrm{AL}}{\mathrm{DM}}
\end{aligned}
$$

$$
\Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{ABC}}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}}{\mathrm{EF}} \times \frac{\mathrm{BC}}{\mathrm{EF}}\left[\operatorname{From}(\mathrm{iii}), \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AL}}{\mathrm{DM}}\right]
$$

$$
\Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}
$$

But, $\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$
$\Rightarrow \frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$
Hence, $\frac{\text { Area }(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}$

Theorem 2:

If the areas of two similar triangles are equal, then the triangles are congruent i.e. equal and similar triangles are congruent.

Given : Two triangles ABC and DEF such that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and Area $(\triangle \mathrm{ABC})=\operatorname{Area}(\triangle \mathrm{DEF})$.

To Prove : We have,
$\Delta \mathrm{ABC} \cong \Delta \mathrm{DEF}$
Proof : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

$$
\begin{aligned}
\Rightarrow \angle \mathrm{A} & =\angle \mathrm{D}, \angle \mathrm{~B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F} \text { and } \\
\frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}
\end{aligned}
$$

In order to prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$, it is sufficient to show that $\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}$ and $\mathrm{AC}=\mathrm{DF}$.

Now, \quad Area $(\triangle \mathrm{ABC})=$ Area $(\triangle \mathrm{DEF})$

$$
\begin{aligned}
\Rightarrow & \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=1 \\
\Rightarrow & \frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}=1 \\
& {\left[\Theta \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{AC}^{2}}{\mathrm{DF}^{2}}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{AB}^{2}=\mathrm{DE}^{2}, \mathrm{BC}^{2}=\mathrm{EF}^{2} \text { and } \mathrm{AC}^{2}=\mathrm{DF}^{2} \\
& \Rightarrow \mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF} \text { and } \mathrm{AC}=\mathrm{DF}
\end{aligned}
$$

Hence, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

* EXAMPLES *

Ex. 48 The areas of two similar triangles $\triangle \mathrm{ABC}$ and $\triangle P Q R$ are $25 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If $\mathrm{QR}=9.8 \mathrm{~cm}$, find BC .

Sol. It is being given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, ar $(\triangle \mathrm{ABC})=25 \mathrm{~cm}^{2}$ and ar $(\triangle \mathrm{PQR})=49 \mathrm{~cm}^{2}$. We know that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$
\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}
$$

$$
\Rightarrow \frac{25}{49}=\frac{\mathrm{x}^{2}}{(9.8)^{2}}, \text { where } \mathrm{BC}=\mathrm{x} \mathrm{~cm}
$$

$$
\Rightarrow \mathrm{x}^{2}=\left(\frac{25}{49} \times 9.8 \times 9.8\right)
$$

$$
\Rightarrow x=\sqrt{\frac{25}{49} \times 9.8 \times 9.8}=\left(\frac{5}{7} \times 9.8\right)=(5 \times 1.4)=7 .
$$

Hence $\mathrm{BC}=7 \mathrm{~cm}$.
Ex. 49 In two similar triangles $A B C$ and $P Q R$, if their corresponding altitudes AD and PS are in the ratio $4: 9$, find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$.

Sol. Since the areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.

$$
\begin{aligned}
& \therefore \frac{\text { Area }(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{PQR})}=\frac{\mathrm{AD}^{2}}{\mathrm{PS}^{2}} \\
& \Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{PQR})}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}
\end{aligned}
$$

[Θ AD : PS = $4: 9]$
Hence, Area $(\triangle \mathrm{ABC})$: Area $(\triangle \mathrm{PQR})=16: 81$

Ex. 50 If $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ such that $\triangle \mathrm{DEF}=64 \mathrm{~cm}^{2}, \mathrm{DE}=5.1 \mathrm{~cm}$ and area of $\triangle A B C=9 \mathrm{~cm}^{2}$. Determine the area of $A B$.

Sol. Since the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides.

$$
\begin{aligned}
& \therefore \quad \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}} \\
& \Rightarrow \frac{9}{64}=\frac{\mathrm{AB}^{2}}{(5.1)^{2}} \\
& \Rightarrow \mathrm{AB}=\sqrt{3.65} \Rightarrow \mathrm{AB}=1.912 \mathrm{~cm}
\end{aligned}
$$

Ex. 51 If $\triangle A B C \sim \triangle D E F$ such that area of $\triangle A B C$ is $16 \mathrm{~cm}^{2}$ and the area of $\triangle \mathrm{DEF}$ is $25 \mathrm{~cm}^{2}$ and $\mathrm{BC}=2.3 \mathrm{~cm}$. Find the length of EF .

Sol. We have,

$$
\begin{aligned}
& \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\
& \Rightarrow \quad \frac{16}{25}=\frac{(2.3)^{2}}{\mathrm{EF}^{2}} \Rightarrow \mathrm{EF}=\sqrt{8.265} \\
&=2.875 \mathrm{~cm}
\end{aligned}
$$

Ex. 52 In a trapezium $\mathrm{ABCD}, \mathrm{O}$ is the point of intersection of $A C$ and $B D, A B \| C D$ and $A B=2 \times C D$. If the area of $\triangle A O B=84 \mathrm{~cm}^{2}$. Find the area of $\triangle C O D$.

Sol. In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have

$$
\begin{aligned}
& \angle \mathrm{OAB}=\angle \mathrm{OCD}(\text { alt. int. } \angle \mathrm{s}) \\
& \angle \mathrm{OBA}=\angle \mathrm{ODC}(\text { alt. int. } \angle \mathrm{s}) \\
& \therefore \quad \Delta \mathrm{AOB} \sim \Delta \mathrm{COD} \quad[\mathrm{By} \text { AA-similarity }] \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\frac{\mathrm{AB}^{2}}{\mathrm{CD}^{2}}=\frac{(2 \mathrm{CD})^{2}}{\mathrm{CD}^{2}} \\
& \quad[\Theta \mathrm{AB}=2 \times \mathrm{CD}] \\
&= \frac{4 \times \mathrm{CD}^{2}}{\mathrm{CD}^{2}}=4 \\
& \Rightarrow \operatorname{ar}(\triangle \mathrm{COD})=1 / 4 \times \operatorname{ar}(\triangle \mathrm{AOB})
\end{aligned}
$$

$$
=\left(\frac{1}{4} \times 84\right) \mathrm{cm}^{2}=21 \mathrm{~cm}^{2}
$$

Hence, the area of $\triangle C O D$ is $21 \mathrm{~cm}^{2}$.
Ex. 53 Prove that the area of the triangle BCE described on one side BC of a square ABCD as base is one half the area of the similar triangle ACF described on the diagonal AC as base.
Sol. $\quad \mathrm{ABCD}$ is a square. $\triangle \mathrm{BCE}$ is described on side BC is similar to $\triangle \mathrm{ACF}$ described on diagonal AC.

Since ABCD is a square. Therefore,

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \text { and, } \mathrm{AC}=\sqrt{2} \mathrm{BC} \\
& {[\Theta \text { Diagonal }=\sqrt{2}(\text { Side })]}
\end{aligned}
$$

Now, $\triangle \mathrm{BCE} \sim \triangle \mathrm{ACF}$

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{BCE})}{\text { Area }(\triangle \mathrm{ACF})}=\frac{\mathrm{BC}^{2}}{\mathrm{AC}^{2}} \\
& \Rightarrow \quad \frac{\operatorname{Area}(\triangle \mathrm{BCE})}{\text { Area }(\triangle \mathrm{ACF})}=\frac{\mathrm{BC}^{2}}{(\sqrt{2} \mathrm{BC})^{2}}=\frac{1}{2} \\
& \Rightarrow \text { Area }(\triangle \mathrm{BCE})=\frac{1}{2} \operatorname{Area}(\triangle \mathrm{ACF})
\end{aligned}
$$

Ex. 54 D, E, F are the mid-point of the sides BC, CA and $A B$ respectively of a $\triangle A B C$. Determine the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$.
Sol. Since D and E are the mid-points of the sides $B C$ and $A B$ respectively of $\triangle A B C$. Therefore,

$$
\begin{align*}
& \mathrm{DE} \| \mathrm{BA} \\
\Rightarrow & \mathrm{DE} \| \mathrm{FA} \tag{i}
\end{align*}
$$

Since D and F are mid-points of the sides BC and $A B$ respectively of $\triangle A B C$. Therefore,

$$
\mathrm{DF}\|\mathrm{CA} \Rightarrow \mathrm{DF}\| \mathrm{AE}
$$

From (i), and (ii), we conclude that AFDE is a parallelogram.
Similarly, BDEF is a parallelogram.
Now, in $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$, we have
$\angle \mathrm{FDE}=\angle \mathrm{A}$
[Opposite angles of parallelogram AFDE]
and, $\angle \mathrm{DEF}=\angle \mathrm{B}$
[Opposite angles of parallelogram BDEF]
So, by AA-similarity criterion, we have

$$
\Delta \mathrm{DEF} \sim \Delta \mathrm{ABC}
$$

$$
\begin{array}{r}
\Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{DEF})}{\text { Area }(\triangle \mathrm{ABC})}=\frac{\mathrm{DE}^{2}}{\mathrm{AB}^{2}}=\frac{(1 / 2 \mathrm{AB})^{2}}{\mathrm{AB}^{2}}=\frac{1}{4} \\
{\left[\Theta \mathrm{DE}=\frac{1}{2} \mathrm{AB}\right]}
\end{array}
$$

Hence, Area $(\triangle \mathrm{DEF})$: Area $(\triangle \mathrm{ABC})=1: 4$.
Ex. 55 D and E are points on the sides AB and AC respectively of a $\triangle A B C$ such that $D E \| B C$ and divides $\triangle \mathrm{ABC}$ into two parts, equal in area. Find $\frac{\mathrm{BD}}{\mathrm{AB}}$.

Sol. We have,
Area $(\triangle \mathrm{ADE})=$ Area $($ trapezium BCED $)$
\Rightarrow Area ($\triangle \mathrm{ADE})+$ Area ($\triangle \mathrm{ADE}$)
$=$ Area (trapezium BCED) + Area ($\triangle \mathrm{ADE}$)
$\Rightarrow 2$ Area $(\triangle \mathrm{ADE})=$ Area $(\triangle \mathrm{ABC})$
In $\triangle A D E$ and $\triangle A B C$, we have
$\angle \mathrm{ADE}=\angle \mathrm{B}$
$[\Theta \mathrm{DE} \| \mathrm{BC} \therefore \angle \mathrm{ADE}=\angle \mathrm{B}$ (Corresponding angles)]
and, $\angle \mathrm{A}=\angle \mathrm{A} \quad$ [Common]
$\therefore \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$

$\Rightarrow \quad \frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\text { Area }(\triangle \mathrm{ABC})}=\frac{\mathrm{AD}^{2}}{\mathrm{AB}^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{Area}(\triangle \mathrm{ADE})}{2 \mathrm{Area}(\triangle \mathrm{ADE})}=\frac{\mathrm{AD}^{2}}{\mathrm{AB}^{2}} \\
& \Rightarrow \frac{1}{2}=\left(\frac{\mathrm{AD}}{\mathrm{AB}}\right)^{2} \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \mathrm{AB}=\sqrt{2} \mathrm{AD} \Rightarrow \mathrm{AB}=\sqrt{2}(\mathrm{AB}-\mathrm{BD}) \\
& \Rightarrow(\sqrt{2}-1) \mathrm{AB}=\sqrt{2} \mathrm{BD} \\
& \Rightarrow \frac{\mathrm{BD}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}
\end{aligned}
$$

Ex. 56 Two isosceles triangles have equal vertical angles and their areas are in the ratio $16: 25$. Find the ratio of their corresponding heights.
Sol. Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ be the given triangles such that $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{DE}=\mathrm{DF}, \angle \mathrm{A}=\angle \mathrm{D}$.
and, $\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{DEF})}=\frac{16}{25}$
Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{EF}$.
Now, $\mathrm{AB}=\mathrm{AC}, \mathrm{DE}=\mathrm{DF}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AC}}=1$ and $\frac{\mathrm{DE}}{\mathrm{DF}}=1$

$$
\Rightarrow \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{DF}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}
$$

Thus, in triangles ABC and DEF, we have

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}} \text { and } \angle \mathrm{A}=\angle \mathrm{D} \quad \text { [Given] }
$$

So, by SAS-similarity criterion, we have

$$
\begin{aligned}
& \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \\
\Rightarrow & \frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\text { Area }(\triangle \mathrm{DEF})}=\frac{\mathrm{AL}^{2}}{\mathrm{DM}^{2}} \\
\Rightarrow & \frac{16}{25}=\frac{\mathrm{AL}^{2}}{\mathrm{DM}^{2}} \\
\Rightarrow & \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{4}{5} \Rightarrow \mathrm{AL}: \mathrm{DM}=4: 5
\end{aligned}
$$

Ex. 57 In the given figure, $\mathrm{DE} \| \mathrm{BC}$ and DE : BC $=3: 5$. Calculate the ratio of the areas of $\triangle \mathrm{ADE}$ and the trapezium BCED.

Sol. $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\mathrm{DE}^{2}}{\mathrm{BC}^{2}}=\left(\frac{\mathrm{DE}}{\mathrm{BC}}\right)^{2}=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}$
Let ar $(\triangle \mathrm{ADE})=9 \mathrm{x}$ sq units
Then, $\operatorname{ar}(\triangle \mathrm{ABC})=25 \mathrm{x}$ sq units

$$
\begin{aligned}
& \operatorname{ar}(\text { trap. } \mathrm{BCED})=\operatorname{ar}(\triangle \mathrm{ABC})-\operatorname{ar}(\triangle \mathrm{ADE}) \\
& \quad=(25 \mathrm{x}-9 \mathrm{x})=(16 \mathrm{x}) \text { sq units } \\
& \therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\text { trap. } \mathrm{BCED})}=\frac{9 \mathrm{x}}{16 \mathrm{x}}=\frac{9}{16}
\end{aligned}
$$

PYTHAGORAS THEOREM

Theorem 1 :

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given : A right-angled triangle ABC in which $\angle \mathrm{B}=90^{\circ}$.

To Prove : $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$.
i.e., $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Construction : From B draw BD $\perp \mathrm{AC}$.

Proof : In triangle ADB and ABC , we have
$\angle \mathrm{ADB}=\angle \mathrm{ABC} \quad\left[\right.$ Each equal to $\left.90^{\circ}\right]$
and, $\angle \mathrm{A}=\angle \mathrm{A}$
[Common]
So, by AA-similarity criterion, we have
$\Delta \mathrm{ADB} \sim \Delta \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\left[\begin{array}{l}\Theta \text { In similar triangles corresponding } \\ \text { sides are proportional }\end{array}\right]$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
In triangles BDC and ABC , we have
$\angle \mathrm{CDB}=\angle \mathrm{ABC} \quad\left[\right.$ Each equal to $\left.90^{\circ}\right]$
and, $\quad \angle \mathrm{C}=\angle \mathrm{C}$
[Common]
So, by AA-similarity criterion, we have
$\Delta \mathrm{BDC} \sim \triangle \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{DC}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$[\Theta$ In similar triangles correspondng $]$ sides are proportional
$\Rightarrow \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{DC}$
Adding equation (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{AC} \times \mathrm{DC}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{AC}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
Hence, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
The converse of the above theorem is also true as proved below.

Theorem 2 : (Converse of Pythagoras Theorem).
In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the side is a right angle.

Given : A triangle ABC such that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Construction : Construct a triangle DEF such that $\mathrm{DE}=\mathrm{AB}, \mathrm{EF}=\mathrm{BC}$ and $\angle \mathrm{E}=90^{\circ}$,
Proof : In order to prove that $\angle \mathrm{B}=90^{\circ}$, it is sufficient to show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

For this we proceed as follows :
Since $\triangle \mathrm{DEF}$ is a right angled triangle with right angle at E. Therefore, by Pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{DF}^{2}=\mathrm{DE}^{2}+\mathrm{EF}^{2} \\
& \Rightarrow \mathrm{DF}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

$$
[\Theta \mathrm{DE}=\mathrm{AB} \text { and } \mathrm{EF}=\mathrm{BC}
$$

(By construction)]
$\Rightarrow \mathrm{DF}^{2}=\mathrm{AC}^{2}\left[\Theta \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}\right.$ (Given) $]$
$\Rightarrow \mathrm{DF}=\mathrm{AC}$
Thus, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, we have

$$
\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF} \quad[\mathrm{By} \text { construction }]
$$

and, $\mathrm{AC}=\mathrm{DF}$
[From equation (i)]
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{E}=90^{\circ}$
Hence, $\triangle \mathrm{ABC}$ is a right triangle right angled at B .

* EXAMPLES *

Ex. 58 Side of a triangle is given, determine it is a right triangle.
$(2 a-1) \mathrm{cm}, 2 \sqrt{2 \mathrm{a}} \mathrm{cm}$ and $(2 \mathrm{a}+1) \mathrm{cm}$
Sol. Let $\mathrm{p}=(2 \mathrm{a}-1) \mathrm{cm}, \mathrm{q}=2 \sqrt{2 \mathrm{a}} \mathrm{cm}$ and $\mathrm{r}=(2 \mathrm{a}+1) \mathrm{cm}$.
Then,

$$
\begin{aligned}
\left(p^{2}+\right. & \left.q^{2}\right)=(2 a-1)^{2} \mathrm{~cm}^{2}+(2 \sqrt{2 a})^{2} \mathrm{~cm}^{2} \\
& =\left\{\left(4 a^{2}+1-4 a\right)+8 a\right\} \mathrm{cm}^{2} \\
& =\left(4 a^{2}+4 a+1\right) \mathrm{cm}^{2} \\
& =(2 a+1)^{2} \mathrm{~cm}^{2}=r^{2} . \\
\therefore & \left(p^{2}+q^{2}\right)=r^{2} .
\end{aligned}
$$

Hence, the given triangle is right angled.
Ex. 59 A man goes 10 m due east and then 24 m due north. Find the distance from the starting point.

Sol. Let the initial position of the man be O and his final position be B . Since the man goes 10 m due east and then 24 m due north. Therefore, $\triangle A O B$ is a right triangle right-angled at A such that $\mathrm{OA}=10 \mathrm{~m}$ and $\mathrm{AB}=24 \mathrm{~m}$.

By Phythagoras theorem, we have

$$
\mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2}
$$

$\Rightarrow \mathrm{OB}^{2}=10^{2}+24^{2}=100+576=676$
$\Rightarrow \mathrm{OB}=\sqrt{676}=26 \mathrm{~m}$
Hence, the man is at a distance of 26 m from the starting point.
Ex. 60 Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m , find the distance between their tops.
Sol. $\quad \mathrm{AC}^{2}=(15)^{2}+(20)^{2}=625$
$\Rightarrow \mathrm{AC}=25 \mathrm{~m}$.

Ex. 61 In Fig., $\triangle \mathrm{ABC}$ is an obtuse triangle, obtuse angled at B . If $\mathrm{AD} \perp \mathrm{CB}$, prove that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \times \mathrm{BD}$
Sol. Given : An obtuse triangle ABC, obtuseangled at B and AD is perpendicular to CB produced.
To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \times \mathrm{BD}$
Proof : Since $\triangle \mathrm{ADB}$ is a right triangle right angled at D. Therefore, by Pythagoras theorem, we have
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$

Again $\triangle \mathrm{ADC}$ is a right triangle right angled at D .
Therefore, by Phythagoras theorem, we have

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AD}^{2}+\mathrm{DC}^{2} \\
\Rightarrow \mathrm{AC}^{2} & =\mathrm{AD}^{2}+(\mathrm{DB}+\mathrm{BC})^{2} \\
\Rightarrow \mathrm{AC}^{2} & =\mathrm{AD}^{2}+\mathrm{DB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD} \\
\Rightarrow \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD}
\end{aligned}
$$

[Using (i)]
Hence, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD}$
Ex. 62 In figure, $\angle \mathrm{B}$ of $\triangle \mathrm{ABC}$ is an acute angle and $\mathrm{AD} \perp \mathrm{BC}$, prove that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
Sol. Given : A $\triangle \mathrm{ABC}$ in which $\angle \mathrm{B}$ is an acute angle and $\mathrm{AD} \perp \mathrm{BC}$.

To Prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$.
Proof : Since $\triangle \mathrm{ADB}$ is a right triangle rightangled at D. So, by Pythagoras theorem, we have
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
Again $\triangle \mathrm{ADC}$ is a right triangle right angled at D .

So, by Pythagoras theorem, we have

$$
\begin{aligned}
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \\
& \Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+(\mathrm{BC}-\mathrm{BD})^{2} \\
& \Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\left(\mathrm{BC}^{2}+\mathrm{BD}^{2}-2 \mathrm{BC} \cdot \mathrm{BD}\right) \\
& \Rightarrow \mathrm{AC}^{2}=\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)+\mathrm{BC}^{2}-2 \mathrm{BC} \cdot \mathrm{BD} \\
& \Rightarrow \mathrm{AC}^{2}= \\
& \mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \cdot \mathrm{BD}
\end{aligned}
$$

[Using (i)]
Hence, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \cdot \mathrm{BD}$
Ex. 63 If ABC is an equilateral triangle of side a, prove that its altitude $=\frac{\sqrt{3}}{2}$ a.

Sol. $\quad \triangle \mathrm{ABD}$ is an equilateral triangle.
We are given that $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=\mathrm{a}$.
AD is the altitude, i.e., $\mathrm{AD} \perp \mathrm{BC}$.
Now, in right angled triangles ABD and ACD, we have
$\mathrm{AB}=\mathrm{AC} \quad$ (Given)
and $\mathrm{AD}=\mathrm{AD} \quad$ (Common side)
$\Rightarrow \triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ (By RHS congruence)
$\Rightarrow \mathrm{BD}=\mathrm{CD} \Rightarrow \mathrm{BD}=\mathrm{DC}=\frac{1}{2} \mathrm{BC}=\frac{\mathrm{a}}{2}$

From right triangle ABD.

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \Rightarrow \mathrm{a}^{2}=\mathrm{AD}^{2}+\left(\frac{\mathrm{a}}{2}\right)^{2} \\
& \Rightarrow \mathrm{AD}^{2}= \\
& \mathrm{a}^{2}-\frac{\mathrm{a}^{2}}{4}=\frac{3}{4} \mathrm{a}^{2} \Rightarrow \mathrm{AD}=\frac{\sqrt{3}}{2} \mathrm{a}
\end{aligned}
$$

Ex. 64 ABC is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of the two sides containing the right angle are 5 cm and 12 cm . Find the radius of the circle.

Sol. Given that $\triangle \mathrm{ABC}$ is right angled at A .

Let the radius of the inscribed circle be r Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OAB}$

$$
+ \text { Area of } \triangle \mathrm{OBC}+\text { Area of } \triangle \mathrm{OCA}
$$

$$
\Rightarrow \frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}
$$

$$
=\frac{1}{2}(12 \times \mathrm{r})+\frac{1}{2}(13 \times \mathrm{r})+\frac{1}{2}(5 \times \mathrm{r})
$$

$$
\Rightarrow 12 \times 5=\mathrm{r} \times\{12+13+5\}
$$

$$
\Rightarrow 60=r \times 30 \Rightarrow r=2 \mathrm{~cm}
$$

Ex. 65 ABCD is a rhombus. Prove that $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Sol. Let the diagonals AC and BD of rhombus ABCD intersect at O .

Since the diagonals of a rhombus bisect each other at right angles.
$\therefore \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=\angle \mathrm{DOA}=90^{\circ}$
and $\mathrm{AO}=\mathrm{CO}, \mathrm{BO}=\mathrm{OD}$.
Since $\triangle \mathrm{AOB}$ is a right triangle right-angle at O .

$\therefore \quad \mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\left(\frac{1}{2} \mathrm{AC}\right)^{2}+\left(\frac{1}{2} \mathrm{BD}\right)^{2}\left[\begin{array}{l}\Theta \mathrm{OA}=\mathrm{OC} \\ \text { and } \mathrm{OB}=\mathrm{OD}\end{array}\right]$
$\Rightarrow 4 \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Similarly, we have

$$
\begin{align*}
& 4 \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \tag{ii}\\
& 4 \mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \tag{iii}
\end{align*}
$$

and, $4 \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Adding all these results, we get

$$
\begin{aligned}
& 4\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AD}^{2}\right)=4\left(\mathrm{AC}^{2}+\mathrm{BD}^{2}\right) \\
& \Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}= \\
& \mathrm{AC}^{2}+\mathrm{BD}^{2}
\end{aligned}
$$

Ex. $66 \quad P$ and Q are the mid-points of the sides $C A$ and CB respectively of a $\triangle \mathrm{ABC}$, right angled at C. Prove that :
(i) $4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2}$
(ii) $4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2}$
(iii) $\left(4 \mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5 \mathrm{AB}^{2}$

Sol. (i) Since $\triangle A Q C$ is a right triangle right-angled at C.
$\therefore \mathrm{AQ}^{2}=\mathrm{AC}^{2}+\mathrm{QC}^{2}$
$\Rightarrow 4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+4 \mathrm{QC}^{2}$
[Multiplying both sides by 4]
$\Rightarrow 4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+(2 \mathrm{QC})^{2}$
$\Rightarrow 4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2} \quad[\Theta \quad \mathrm{BC}=2 \mathrm{QC}]$
(ii) Since $\triangle \mathrm{BPC}$ is a right triangle right-angled at C .

$\therefore \quad \mathrm{BP}^{2}=\mathrm{BC}^{2}+\mathrm{CP}^{2}$
$\Rightarrow 4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+4 \mathrm{CP}^{2}$
[Multiplying both sides by 4]
$\Rightarrow 4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+(2 \mathrm{CP})^{2}$
$\Rightarrow 4 \mathrm{BP}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2} \quad[\Theta \mathrm{AC}=2 \mathrm{CP}]$
(iii) From (i) and (ii), we have

$$
\begin{aligned}
& 4 \mathrm{AQ}^{2}=4 \mathrm{AC}^{2}+\mathrm{BC}^{2} \text { and, } 4 \mathrm{BC}^{2}=4 \mathrm{BC}^{2}+\mathrm{AC}^{2} \\
& \therefore 4 \mathrm{AQ}^{2}+4 \mathrm{BP}^{2}=\left(4 \mathrm{AC}^{2}+\mathrm{BC}^{2}\right)+\left(4 \mathrm{BC}^{2}+\mathrm{AC}^{2}\right) \\
& \Rightarrow 4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right) \\
& \Rightarrow 4\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=5 \mathrm{AB}^{2}
\end{aligned}
$$

[In $\triangle \mathrm{ABC}$, we have $\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$]
Ex. 67 From a point O in the interior of a $\triangle \mathrm{ABC}$, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that:
[NCERT]
(i) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}$

$$
+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}
$$

(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

Sol. Let O be a point in the interior of $\triangle A B C$ and let $\mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{CA}$ and $\mathrm{OF} \perp \mathrm{AB}$.
(i) In right triangles $\triangle \mathrm{OFA}, \triangle \mathrm{ODB}$ and $\triangle \mathrm{OEC}$, we have

$$
\begin{aligned}
\mathrm{OA}^{2} & =\mathrm{AF}^{2}+\mathrm{OF}^{2} \\
\mathrm{OB}^{2} & =\mathrm{BD}^{2}+\mathrm{OD}^{2} \\
\text { and, } \mathrm{OC}^{2} & =\mathrm{CE}^{2}+\mathrm{OE}^{2}
\end{aligned}
$$

Adding all these results, we get

$$
\begin{gathered}
\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}+\mathrm{OF}^{2} \\
+\mathrm{OD}^{2}+\mathrm{OE}^{2}
\end{gathered} \begin{array}{r}
\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2} \\
+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}
\end{array}
$$

(ii) In right triangles $\triangle \mathrm{ODB}$ and $\triangle \mathrm{ODC}$, we have

$$
\begin{array}{r}
\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2} \\
\text { and, } \mathrm{OC}^{2}=\mathrm{OD}^{2}+\mathrm{CD}^{2}
\end{array}
$$

$\therefore \mathrm{OB}^{2}-\mathrm{OC}^{2}=\left(\mathrm{OD}^{2}+\mathrm{BD}^{2}\right)-\left(\mathrm{OD}^{2}+\mathrm{CD}^{2}\right)$
$\Rightarrow \mathrm{OB}^{2}-\mathrm{OC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2}$
Similarity, we have

$$
\begin{align*}
\mathrm{OC}^{2}-\mathrm{OA}^{2} & =\mathrm{CE}^{2}-\mathrm{AE}^{2} \tag{ii}\\
\text { and, } \mathrm{OA}^{2}-\mathrm{OB}^{2} & =\mathrm{AF}^{2}-\mathrm{BF}^{2} \tag{iii}
\end{align*}
$$

Adding (i), (ii) and (iii), we get
$\left(\mathrm{OB}^{2}-\mathrm{OC}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OA}^{2}\right)+\left(\mathrm{OA}^{2}-\mathrm{OB}^{2}\right)$
$=\left(\mathrm{BD}^{2}-\mathrm{CD}^{2}\right)+\left(\mathrm{CE}^{2}-\mathrm{AE}^{2}\right)+\left(\mathrm{AF}^{2}-\mathrm{BF}^{2}\right)$
$\Rightarrow\left(\mathrm{BD}^{2}+\mathrm{CE}^{2}+\mathrm{AF}^{2}\right)-\left(\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}\right)=0$
$\Rightarrow \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{BF}^{2}+\mathrm{CD}^{2}$
Ex. 68 In a right triangle ABC right-angled at C, P and Q are the points on the sides CA and CB respectively, which divide these sides in the ratio $2: 1$. Prove that
(i) $9 \mathrm{AQ}^{2}=9 \mathrm{AC}^{2}+4 \mathrm{BC}^{2}$
(ii) $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
(iii) $9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}$

Sol. It is given that P divides CA in the ratio 2:1. Therefore,

$$
\begin{equation*}
\mathrm{CP}=\frac{2}{3} \mathrm{AC} \tag{i}
\end{equation*}
$$

Also, Q divides CB in the ratio 2:1.
$\therefore \quad \mathrm{QC}=\frac{2}{3} \mathrm{BC}$

(i) Applying pythagoras theorem in right-angled triangle ACQ, we have
$\mathrm{AQ}^{2}=\mathrm{QC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AQ}^{2}=\frac{4}{9} \mathrm{BC}^{2}+\mathrm{AC}^{2} \quad[$ Using (ii) $]$
$\Rightarrow 9 \mathrm{AQ}^{2}=4 \mathrm{BC}^{2}+9 \mathrm{AC}^{2}$
(ii) Applying pythagoras theorem in right triangle BCP , we have
$\mathrm{BP}^{2}=\mathrm{BC}^{2}+\mathrm{CP}^{2}$
$\Rightarrow \mathrm{BP}^{2}=\mathrm{BC}^{2}+\frac{4}{9} \mathrm{AC}^{2} \quad[$ Using (i) $]$
$\Rightarrow 9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 \mathrm{AC}^{2}$
Adding (iii) and (iv), we get

$$
\begin{aligned}
& 9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13\left(\mathrm{BC}^{2}+\mathrm{AC}^{2}\right) \\
\Rightarrow & 9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}
\end{aligned}
$$

$$
\left[\Theta \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}\right]
$$

Ex. 69 In a $\triangle A B C, A D \perp B C$ and $A D^{2}=B C \times C D$. Prove that $\triangle A B C$ is a right triangle.

Sol. In right triangles ADB and ADC, we have

$$
\begin{equation*}
\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \tag{i}
\end{equation*}
$$

and, $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
Adding (i) and (ii), we get
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2} \times \mathrm{BD}^{2}+\mathrm{DC}^{2}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{BD} \times \mathrm{CD}+\mathrm{BD}^{2}+\mathrm{DC}^{2}$

$$
\left[\Theta \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}(\text { Given })\right]
$$

$\Rightarrow \mathrm{AB}^{2}+\mathrm{AC}^{2}=(\mathrm{BD}+\mathrm{CD})^{2}=\mathrm{BC}^{2}$
Thus, in $\triangle \mathrm{ABC}$, we have

$$
\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}
$$

Hence, $\triangle \mathrm{ABC}$, is a right triangle right-angled at A.

Ex. 70 The perpendicular AD on the base BC of a $\triangle \mathrm{ABC}$ intersects BC at D so that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.

Sol. We have,

$$
\begin{align*}
& \mathrm{DB}=3 \mathrm{CD} \\
\therefore \quad & \mathrm{BC}=\mathrm{BD}+\mathrm{DC} \\
\Rightarrow & \mathrm{BC}=3 \mathrm{CD}+\mathrm{CD} \\
\Rightarrow & \mathrm{BD}=4 \mathrm{CD} \Rightarrow \mathrm{CD}=\frac{1}{4} \mathrm{BC} \\
\therefore & \mathrm{CD}=\frac{1}{4} \mathrm{BC} \text { and } \mathrm{BD}=3 \mathrm{CD}=\frac{1}{4} \mathrm{BC} \tag{i}
\end{align*}
$$

Since $\triangle \mathrm{ABD}$ is a right triangle right-angled at D .
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
Similarly, $\triangle \mathrm{ACD}$ is a right triangle right angled at D.
$\therefore \quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
Subtracting equation (iii) from equation (ii) we get

$$
\begin{aligned}
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2} \\
\Rightarrow & \mathrm{AB}^{2}-\mathrm{AC}^{2}=\left(\frac{3}{4} \mathrm{BC}\right)^{2}-\left(\frac{1}{4} \mathrm{BC}\right)^{2} \\
& {\left[\text { From (i) } \mathrm{CD}=\frac{1}{4} \mathrm{BC}, \mathrm{BD}=\frac{3}{4} \mathrm{BC}\right] } \\
\Rightarrow & \mathrm{AB}^{2}-\mathrm{AC}^{2}=\frac{9}{16} \mathrm{BC}^{2}-\frac{1}{16} \mathrm{BC}^{2} \\
\Rightarrow & \mathrm{AB}^{2}-\mathrm{AC}^{2}=\frac{1}{2} \mathrm{BC}^{2} \\
\Rightarrow & 2\left(\mathrm{AB}^{2}-\mathrm{AC}^{2}\right)=\mathrm{BC}^{2} \\
\Rightarrow & 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

Ex. 71 ABC is a right triangle right-angled at C. Let $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$ and let p be the length of perpendicular from C on $A B$, prove that
(i) $\mathrm{cp}=\mathrm{ab}$
(ii) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$

Sol.(i) Let $C D \perp A B$. Then, $C D=p$.

$\therefore \quad$ Area of $\triangle \mathrm{ABC}=\frac{1}{2}($ Base \times Height $)$
\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{AB} \times \mathrm{CD})=\frac{1}{2} \mathrm{cp}$
Also,

$$
\begin{aligned}
& \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}(\mathrm{BC} \times \mathrm{AC})=\frac{1}{2} \mathrm{ab} \\
\therefore \quad & \frac{1}{2} \mathrm{cp}=\frac{1}{2} \mathrm{ab} \Rightarrow \mathrm{cp}=\mathrm{ab}
\end{aligned}
$$

(ii) Since $\triangle \mathrm{ABC}$ is right triangle right-angled at C.

$$
\begin{aligned}
& \therefore \quad \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2} \\
& \Rightarrow \mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& \Rightarrow\left(\frac{\mathrm{ab}}{\mathrm{p}}\right)^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}\left[\Theta \mathrm{cp}=\mathrm{ab} \quad \therefore \mathrm{c}=\frac{\mathrm{ab}}{\mathrm{p}}\right] \\
& \Rightarrow \frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{p}^{2}}=\mathrm{a}^{2}+\mathrm{b}^{2} \\
& \Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}} \Rightarrow \quad \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{a}^{2}} \\
& \Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}
\end{aligned}
$$

IMPORTANT POINTS TO BE REMEMBERED

1. Two figures having the same shape but not necessarily the same size are called similar figures.
2. All congruent figures are similar but the converse is not true.
3. Two polygones having the same number of sides are similar, if
(a) Their corresponding angles are equal and
(b) Their corresponding sides are proportional

> (i.e., in the same ratio)
4. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
5. If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side of the triangle.
6. The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
7. If a line through one vertex of a triangle divides the opposite side in the ratio of other two sides, then the line bisects the angle at the vertex.
8. The external bisector of an angle of a triangle divides the opposite side externally in the ratio of the sides containing the angle.
9. The line drawn from the mid-point of two sides of a triangle is parallel of another side bisects the third side.
10. The line joining the mid-points of two sides of a triangle is parallel to the third side.
11. The diagonals of a trapezium divide each other proportionally.
12. If a diagonals of a quadrilateral divide each other proportionally, then it is a trapezium.
13. Any line parallel to the parallel sides of a trapezium divides the non-parallel sides proportionally.
14. If three or more parallel lines are intersected by two transversals, then the intercepts made by them on the transversals are proportional.
15. AAA similarity criterion : If in two triangles, corresponding angles are equal, then the triangles are similar.
16. AA Similarity criterion : If in two triangles, two angles of one triangle are respectively equal the two angles of the other triangle, then the two triangles are similar.
17. SSS Similarity criterion : If in two triangles, corresponding sides are in the same ratio, then the two triangles are similar.
18. If one angle of a triangles is equal to one angle of another triangle and the sides including these angles are in the same ratio, then the triangles are similar.
19. If two triangles are equiangular, then
(i) The ratio of the corresponding sides is same as the ratio of corresponding median.
(ii) The ratio of the corresponding sides is same as the ratio of the corresponding angle bisector segments.
(iii) The ratio of the corresponding sides is same as the ratio of the corresponding altitudes.
20. If one angle of a triangle is equal to one angle of another triangle and the bisectors of these equal angles divide the opposite side in the same ratio, then the triangles are similar.
21. If two sides and a median bisecting one of these sides of a triangle are respectively proportional to the two sides and the corresponding median of another triangle, then the triangles are similar.
22. If two sides and a median bisecting the third side of a triangle are respectively proportional to the two sides and the corresponding median of another triangle, then the triangles are similar.
23. The ratio of the areas of two similar triangles is equal to the ratio of
(i) The squares of any two corresponding sides
(ii) The squares of the corresponding altitudes.
(iii) The squares of the corresponding medians.
(iv) The squares of the corresponding angle bisector segments.
24. If the areas of two similar triangles are equal, then the triangles are congruent i.e., equal and similar triangles congruent.
25. If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.
26. Pythagoras Theorem : In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
27. Converse of Pythagoras Theorem : If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to first side is a right angle.
28. In any triangle, the sum of the squares of any two sides is equal to twice the square of half of the third side together with the twice of the square of the median which bisects the third side.
29. Three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.
30. Three times the square of any side of an equilateral triangle is equal to four times the square of the altitude.

A. Very Short Answer Type Questions

Q. $1 \quad$ In a $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$.
(i) If $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, find AC.
(ii) If $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{3}{4}$ and $\mathrm{AC}=15 \mathrm{~cm}$ find AE .
(iii) If $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{2}{3}$ and $\mathrm{AC}=18 \mathrm{~cm}$, find AE
(iv) If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}, \mathrm{DB}=\mathrm{x}-4$ and $E C=3 x-19$, find x.
(v) If $\mathrm{AD}=8 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{AE}=12 \mathrm{~cm}$, find CE .
(vi) If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=4.5 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, find AC .
(vii) If $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{AC}=9 \mathrm{~cm}$, find AE .
(viii) If $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{4}{5}$ and $\mathrm{EC}=2.5 \mathrm{~cm}$, find AE .
(ix) If $\mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$, find the value of x .
(x) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=(3 x-1)$, find the value of x.
(xi) $\mathrm{AD}=4 \mathrm{x}-3, \mathrm{AE}=8 \mathrm{x}-7, \mathrm{BD}=3 \mathrm{x}-1$ and $C E=5 x-3$, find the value of x.
Q. 2 In a $\triangle A B C, D$ and E are points on the sides $A B$ and AC respectively. For each of the following cases show that $\mathrm{DE} \| \mathrm{BC}$:
(i) $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$ and $\mathrm{AE}=1.8 \mathrm{~cm}$
(iii) $\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$ and $\mathrm{AE}=2.8 \mathrm{~cm}$.
(iv) $\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{BD}=9.5 \mathrm{~cm}, \mathrm{AE}=3.3 \mathrm{~cm}$ and $\mathrm{EC}=5.5 \mathrm{~cm}$
Q. 3 In a $\triangle \mathrm{ABC}, \mathrm{AD}$ is the bisector of $\angle \mathrm{A}$, meeting side BC at D .
(i) If $\mathrm{BD}=2.5 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=4.2 \mathrm{~cm}$, find $D C$.
(ii) If $\mathrm{BD}=2 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$, find $A C$
(iii) If $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{AC}=4.2 \mathrm{~cm}$ and $\mathrm{DC}=2.8 \mathrm{~cm}$, find $B D$.
(iv) If $\mathrm{BC}=10 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find $B D$ and $D C$.
(v) If $\mathrm{AC}=4.2 \mathrm{~cm}, \mathrm{DC}=6 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$, find $A B$.
(vi) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$, find $B C$.
(vii) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{BD}=3.2 \mathrm{~cm}$ find $A C$.
(viii) If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=12 \mathrm{~cm}$, find $B D$ and $D C$.
Q. $4 \quad$ In $\triangle \mathrm{ABC}, \angle \mathrm{B}=2 \angle \mathrm{C}$ and the bisector of $\angle \mathrm{B}$ intersects AC and D . Prove that $\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BC}}{\mathrm{BA}}$.
Q. $5 \quad$ In fig. if $\mathrm{AB} \perp \mathrm{BC}$ and $\mathrm{DE} \perp \mathrm{AC}$. Prove that $\Delta \mathrm{ABC} \sim \Delta \mathrm{AED}$.

Q. 6 In fig. if $\angle \mathrm{P}=\angle \mathrm{RTS}$, prove that $\Delta \mathrm{RPQ} \sim \Delta \mathrm{RTS}$.

Q. 7 In fig. $A D$ and $C E$ are two altitudes of $\triangle A B C$.

Prove that
(i) $\triangle \mathrm{AEF} \sim \triangle \mathrm{CDF}$
(ii) $\Delta \mathrm{ABD} \sim \Delta \mathrm{CBE}$
(iii) $\Delta \mathrm{AEF} \sim \Delta \mathrm{ADB}$
(iv) Δ FDC $\sim \Delta$ BEC
Q. 8 In fig. if $\mathrm{BD} \perp \mathrm{AC}$ and $\mathrm{CE} \perp \mathrm{AB}$,

Prove that
(i)
$\triangle \mathrm{AEC} \sim \Delta \mathrm{ADB}$
(ii) $\frac{\mathrm{CA}}{\mathrm{AB}}=\frac{\mathrm{CE}}{\mathrm{DB}}$
Q. 9 E is a point on side AD produced of a parallelogram ABCD and BE intersects CD at F. Prove that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.
Q. 10 In fig. E is a point on side CB produced of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$. If
$\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{EF} \perp \mathrm{AC}$, prove that $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$.

B. Short Answer Type Questions
Q. 11 In fig, AE is the bisector of the exterior $\angle \mathrm{CAD}$ meeting BC produced in E . If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $\mathrm{BC}=12 \mathrm{~cm}$, find $C E$.

Q. $12 \mathrm{D}, \mathrm{E}$ and F are the points on sides BC, CA and $A B$ respectively of $\triangle A B C$ such that $A D$ bisects $\angle \mathrm{A}, \mathrm{BE}$ bisects $\angle \mathrm{B}$ and CF bisects $\angle \mathrm{C}$. If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=4 \mathrm{~cm}$, determine AF, CE and BD .
Q. 13 (i) In fig.1, if $A B \| C D$, find the value of x.
(ii) In fig.2, if $A B \| C D$, find the value of x.

Fig. 1

Fig. 2
(iii) In fig. $3, \mathrm{AB} \| \mathrm{CD}$. If $\mathrm{OA}=3 \mathrm{x}-19$, $\mathrm{OB}=\mathrm{x}-4, \mathrm{OC}=\mathrm{x}-3$ and $\mathrm{OD}=4$, find x .

Fig. 3
Q. 14 In a $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on sides AB and AC respectively such that $\mathrm{BD}=\mathrm{CE}$. If $\angle \mathrm{B}=\angle \mathrm{C}$, show that $\mathrm{DE} \| \mathrm{BC}$.
Q. 15 In fig. if $\frac{\mathrm{AD}}{\mathrm{DC}}=\frac{\mathrm{BE}}{\mathrm{EC}}$ and $\angle \mathrm{CDE}=\angle \mathrm{CED}$, prove that $\Delta \mathrm{CAB}$ is isosceles.

Q. 16 In $\triangle \mathrm{ABC}, \mathrm{D}$ is the mid-point of BC and ED is the bisector of the $\angle \mathrm{ADB}$ and EF is drawn parallel to BC cutting AC in F. Prove that $\angle \mathrm{EDF}$ is a right angle.
Q. 17 The bisectors of the angles B and C of a triangle ABC , meet the opposite side in D and E respectively. If $D E \| B C$, prove that the triangle is isosceles.
Q. 18 In fig. if $\frac{\mathrm{QT}}{\mathrm{PR}}=\frac{\mathrm{QR}}{\mathrm{QS}}$ and $\angle 1=\angle 2$. Prove that $\triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$

Q. 19 If CD and GH (D and H lie on AB and FE) are respectively bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ and $\triangle \mathrm{ABC} \sim \Delta \mathrm{FEG}$, prove that
(i) $\triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$
(ii) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(iii) $\Delta \mathrm{DCB} \sim \Delta \mathrm{HGE}$
Q. 20 If $\triangle \mathrm{ABC}$, if $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$, prove that $\angle \mathrm{BAC}=90^{\circ}$.
Q. 21 In fig. if $\mathrm{AD} \perp \mathrm{BC}$ and $\frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{DA}}{\mathrm{DC}}$, prove that $\triangle \mathrm{ABC}$ is a right triangle.
Q. 22 ABC is an isosceles right triangle, right angled at C . Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$.
Q. 23 In an isosceles triangle ABC , with $\mathrm{AB}=\mathrm{AC}$, BD is perpendicular from B to the side AC . Prove that $\mathrm{BD}^{2}-\mathrm{CD}^{2}=2 \mathrm{CD} \cdot \mathrm{AD}$
Q. 24 In a $\triangle A B C$, the angles at B and C are acute. If BE and CF be drawn perpendiculars on AC and AB respectively, prove that

(i) $\mathrm{BC}^{2}=\mathrm{AB} \times \mathrm{BF}+\mathrm{AC} \times \mathrm{CE}$.
(ii) $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{AB}$. BF
(iii) $\mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{AC}^{2}-2 \mathrm{AC}$. CF
Q. 25 ABC is a right triangle, right angled at C and $\mathrm{AC}=\sqrt{3} \mathrm{BC}$. prove that $\angle \mathrm{ABC}=60^{\circ}$.
Q. 26 In a right-angled triangle if a perpendicular is drawn from the right angle to the hypotenuse, prove that the square of the perpendicular is equal to the area of rectangle contained by the two segments of the hypotenuse.

C. Long Answer Type Questions

Q. 27 ABCD is a quadrilateral; $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the points of trisection of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively and are adjacent to A and C; prove that PQRS is a parallelogram.
Q. 28 In $\triangle \mathrm{ABC}$, the bisector of $\angle \mathrm{B}$ meets AC at D . A line $\mathrm{PQ} \| \mathrm{AC}$ meets AB, BC and BD at P , Q and R respectively. Show that
(i) $\mathrm{PR} \cdot \mathrm{BQ}=\mathrm{QR} \cdot \mathrm{BP}$
(ii) $\mathrm{AB} \times \mathrm{CQ}=\mathrm{BC} \times \mathrm{AP}$.
Q. 29 In fig. CD and GH are respectively the medians of $\triangle A B C$ and $\triangle E F G$. If $\Delta \mathrm{ABC} \sim \Delta \mathrm{FEG}$.

Prove that
(i) $\Delta \mathrm{ADC} \sim \Delta \mathrm{FHG}$
(ii) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AB}}{\mathrm{FE}}$

(iii) $\Delta \mathrm{CDB} \sim \Delta \mathrm{GHE}$
Q. 30 In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{DC}=2 \mathrm{AB}$. $E F$ drawn parallel to $A B$ cuts $A D$ in F and $B C$ in E such that $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{3}{4}$. Diagonal DB intersects EF at G . Prove that $7 \mathrm{FE}=10 \mathrm{AB}$.
Q. 31 Through the vertex D of a parallelogram ABCD , a line is drawn to intersect the sides BA and BC produced at E and F respectively. Prove that

$$
\frac{\mathrm{DA}}{\mathrm{AE}}=\frac{\mathrm{FB}}{\mathrm{BE}}=\frac{\mathrm{FC}}{\mathrm{CD}}
$$

Q. 32 In fig. ABC is a right triangle right angled at B and D is the foot of the perpendicular drawn from B on $A C$. If $D M \perp B C$ and $D N \perp A B$.

prove that
(i) $\mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=\mathrm{DM} \times \mathrm{AN}$
Q. 33 In fig. AD and BE are respectively perpendiculars to BC and AC .

Show that
(i) $\triangle \mathrm{ADC} \sim \triangle \mathrm{BEC}$
(ii) $\mathrm{CA} \times \mathrm{CE}=\mathrm{CB} \times \mathrm{CD}$
(iii) $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEC}$
(iv) $\mathrm{CD} \times \mathrm{AB}=\mathrm{CA} \times \mathrm{DE}$
Q. $34 \quad \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and D is a point on $A C$ such that $\mathrm{BC}^{2}=A C \times C D$. Prove that $\mathrm{BD}=\mathrm{BC}$.
Q. 35 In $\triangle \mathrm{PQR}, \mathrm{QM} \perp \mathrm{PR}$ and $\mathrm{PR}^{2}-\mathrm{PQ}^{2}=\mathrm{QR}^{2}$.

Prove that $\mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{MR}$.
Q. 36 Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

ANSWER KEY

A. VERY SHORT ANSWER TYPE :

1. (i) 12 cm ,
(ii) 6.43 cm ,
(iii) 7.2 cm ,
(iv) 11 cm ,
(v) 6 cm ,
(vi) 17 cm ,
(vii) 3 cm ,
(viii) 2 cm ,
(ix) $x=4$,
(x) $x=1$,
(xi) $x=1$
2. (i) 2.1 cm ,
(ii) 7.5 cm ,
(iii) 2.3 cm ,
(iv) $2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}$,
(v) 2.8 cm ,
(vi) 5.8 cm ,
(vii) 4.9 cm ,
(viii) $7.5 \mathrm{~cm}, 4.5 \mathrm{~cm}$

B. SHORT ANSWER TYPE :

11. 18
12. $5 / 3 \mathrm{~cm}, 32 / 13 \mathrm{~cm}, 40 / 9 \mathrm{~cm}$
13. (i) 3 , (ii) 2 , (iii) 11 or 8

EXERCISE \# 2

Short Answer Type Questions

Q. 1 For a triangle ABC , the true statement is -
(A) $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
(B) $\mathrm{AC}=\mathrm{AB}+\mathrm{BC}$
(C) $\mathrm{AC}>\mathrm{AB}+\mathrm{BC}$
(D) $\mathrm{AC}<\mathrm{AB}+\mathrm{BC}$
Q. 2 If AD, BE and CF are the medians of a triangle ABC , then the true statement is -

(A) $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}$
(B) $2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)$

$$
=3\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)
$$

(C) $3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)$

$$
=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)
$$

(D) $\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}$

$$
=3\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)
$$

(E) $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+1 / 2 \mathrm{BC}^{2}$
Q. 3 The distance between the tops of two trees 20 m and 28 m high is 17 m . Find the horizontal distance between the trees.
Q. 4 Triangle ABC is such that $\mathrm{AB}=3 \mathrm{~cm}$, $\mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{CA}=2.5 \mathrm{~cm}$. Triangle DEF is similar to $\triangle \mathrm{ABC}$. If $\mathrm{EF}=4 \mathrm{~cm}$, then find the perimeter of $\triangle \mathrm{DEF}$.
Q. 5 In $\triangle \mathrm{ABC}, \mathrm{AB}=3 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and AD is the bisector of $\angle \mathrm{A}$. Then find $\mathrm{BD}: \mathrm{DC}$.
Q. 6 In an equilateral triangle ABC , if $\mathrm{AD} \perp \mathrm{BC}$, then prove that $3 \mathrm{AB}^{2}=4 \mathrm{AB}^{2}$.
Q. $7 \quad \mathrm{ABC}$ is a triangle and DE is drawn parallel to BC cutting the other sides at D and E . If $\mathrm{AB}=$ $3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$, then find $A E$.
Q. 8 In a right angled triangle, one of the angles is 60°. Find the side opposite to this angle.

In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median through A and E is the mid point of AD and BE produced meets $A C$ in F. Then, find $A F$.

Q. 10 In the adjoining figure, $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{AP} \perp \mathrm{BC}$. Then,

(A) $A B=A P$
(B) $\mathrm{AB}<\mathrm{AP}$
(C) $A B>A P$
(D) $\mathrm{AB} \leq \mathrm{AP}$
Q. 11 If ABCD is a square and DCE is an equilateral triangle in the given figure, then find $\angle \mathrm{DAE}$.

Q. 12 If in the $\triangle^{\prime} \mathrm{s} \mathrm{ABC}$ and DEF , angle A is equal to angle E , both are equal to $40^{\circ}, \mathrm{AB}$: $\mathrm{ED}=\mathrm{AC}: \mathrm{EF}$ and angle F is 65°, then find angle B.
Q. 13 In the adjoining figure, XY is parallel to AC. If $x y$ divides the triangle into equal parts, then find the value of $\frac{\mathrm{AX}}{\mathrm{AB}}$.

Q. 14 The ratio of the corresponding sides of two similar triangles is $1: 3$. Find the ratio of their corresponding heights.
Q. 15 The areas of two similar triangles are $49 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. Find the ratio of their corresponding sides.
Q. 16 The areas of two similar triangles are $12 \mathrm{~cm}^{2}$ and $48 \mathrm{~cm}^{2}$. If the height of the smaller one is 2.1 cm , then find the corresponding height of the bigger one.
Q. 17 In the adjoining figure, ABC and DBC are two triangles on the same base $\mathrm{BC}, \mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$. Then find, $\frac{\operatorname{area}(\triangle \mathrm{ABC})}{\operatorname{area}(\triangle \mathrm{DBC})}$?

Q. 18 In the adjoining figure, $\mathrm{AB}=10 \mathrm{~cm}$, $\mathrm{BC}=15 \mathrm{~cm} \mathrm{AD}: \mathrm{DC}=2: 3$, then find $\angle \mathrm{ABC}$.

Q. 19 In $\triangle \mathrm{ABC}, \mathrm{D}$ and E are points on AB and AC respectively such that $\mathrm{DE} \| \mathrm{BC}$. If $\mathrm{AE}=2 \mathrm{~cm}$, $\mathrm{EC}=3 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$, then find DE .
Q. 20 In $\Delta \mathrm{ABC}$, the medians BE and CF intersect at G. AGD is a line meeting BC in D . If GD is 1.5 cm , then find AD .

Q. 21 In the given figure, $\angle \mathrm{ABC}=90^{\circ}$ and BM is a median, $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$. Then, find length BM .

Q. 22 If D, E, F are respectively the mid points of the sides BC, CA and AB of $\triangle \mathrm{ABC}$ and the area of $\triangle A B C$ is $24 \mathrm{sq} . \mathrm{cm}$, then find the area of $\triangle \mathrm{DEF}$.
Q. 23 A 25 m long ladder is placed against a vertical wall inside a room such that the foot of the ladder is 7 m from the foot of the wall. If the top of the ladder slides 4 m downwards, then find the foot of the ladder will slide by how much.

ANSWER KEY

1. (D)
2. (C)
3. 15 m
4. 15 cm
5. $3: 4$
7.1 .4 cm
6. $\frac{\sqrt{3}}{2} \times$ Hypotenuse
7. $\frac{1}{3} \mathrm{AC}$
8. (C)
9. 15°
10. 75°
11. $\frac{1}{\sqrt{2}}$
12. $1: 3$
13. $7: 8$
14. 4.2 cm
15. $\frac{\mathrm{AO}}{\mathrm{OD}}$
16. 40°
17. 4 cm
18. 4.5 cm
19. 5 cm
20. $6 \mathrm{~cm}^{2}$
21. 8 m
