A prime producing quadratic expression.
An exploration on the trinomial $f(n)=n^{\wedge} 2+n+41$. Where n is a non-negative integer. Apparently, all cases where $f(n)$ is a composite number can be listed systematically. Maple Code for exact curve fit parabolas. Parabolas are described parametrically.

```
> x[1, 1, bottom] := z^2+z+41; y[1, 1] := z;
> p2 := plot([x[1, 1, bottom], y[1, 1], z = 0 .. 20]);
> with(plots);
> display(p2);
>
> x[1, 1, top] := z^2+z+41; y[1, 1, top]:= z^2+40;
> p3 := plot([x[1, 1, top], y[1, 1, top], z = 0 .. 20]);
> display(p3);
>
> y[2, 1]:= 2* z^2+z+81;x[2, 1]:= 4* z^2+163;
> p4 := plot([x[2, 1], y[2, 1], z = -10 .. 10]);
> display(p4);
>
>y[3,1]:= 3*z^2+2*z+122;x[3, 1]:= 9* z^2+3*z+367;
>p5 := plot([x[3, 1], y[3, 1], z = -4 .. 3]);
>
>y[3, 2]:= 6* z^2 2+z+244;x[3, 2]:= 9* z^}2+3**z+367
> p6 := plot([x[3, 2], y[3, 2], z = -4 .. 3]);
Now see plot on next page
```


Data points of $y^{2}+y+41 \equiv 0 \bmod x$. Also, parabolic exact curve fit of this data.
Rules for naming parabolas
$\mathrm{p} _\mathrm{r}, \mathrm{c}$ with p for parabola, r for row and c for column. Require that r and c are positive integers. Also, $0<r<c$ and $\operatorname{gcd}(r, c)=1$. Where gcd stands for greatest common divisor. Also, the count of the number of c parabolas for a given r is Euler's phi function phi(r). This enumerates as phi(r) $=1,2,2,4,2, \ldots$ see oeis.org/A10.

Here is a zoomed out view of the same graph.

$y^{\wedge} 2+y+41 \bmod x$ is congruent to 0.

Horizontal minimum of parabolas (not including p_top and p_bottom) is $163 *\left(x^{2}\right) / 4$. For some reason, the parabolas line up. Such is the nature of the integers.

A prime producing polynomial graph again with more analysis.

Graph of divisibility

Notice the vertical lines are tangent to the parabolas.
See that $163^{*} 1 / 4=40.75$. And, $163^{*}\left(2^{2}\right) / 4=163$. And $163^{*}\left(3^{2}\right) / 4=366.75$. So we have 3 vertical lines. The x minimum of the curve fit graphs line up exactly with the vertical lines. The parabolas are tangent there.

