All about k-tuples
Calculations and coding by Matt C Anderson
January 2022

Contact matthewcharlesanderson2@gmail.com

These are k-tuples. They involve sets of prime numbers without repition. <joke> They are not coffee. (Kurig k_cups) </end joke>.

These k-tuples are similar to prime constellations
See https://mattanderson.fun/f/prime-constellations
This webpage is paid for by me, and rented from an internet service provider (ISP).
Also, thanks to Norman Luhn and his webpage http://www.pzktupel.de/ktuplets.htm

Here is a Maple procedure for pairs of prime numbers. 2-tuples, if you will agree with me, are awesome.

```
> #This is Maple code
> # by Matt Anderson
> # have procecure to search for and find pairs of prime numbers
>
#input difference between the two prime numbers in variable diff1
    (meaning difference 1)
>
> # note the two prime numbers are not neccessarily consecutive
        primes.
>
> # you could use ithprime() to optimise this code, and make the
        calculations sub microsecond.
    # but it is pretty fast already. It is nice clean simple code.
>
>
>
>
    mattsPrimePairsProc := proc(diff1 );
    local a, counter, searchstop;
    counter:= 1:
    searchstop := 1000, # local parameter
    for a from 3 to searchstop by 2 do
    if isprime (a) and isprime (a+diffl ) then print (counter,
        "hourah!! we found a pair," , " ", a+diff1 );
    counter := counter + 1;
    end if;
    end do;
    end proc;
```

```
mattsPrimePairsProc := \(\mathbf{p r o c}(\) diff 1 )
    local \(a\), counter, searchstop;
    counter := 1;
    searchstop :=1000,
    for \(a\) from 3 by 2 to searchstop do
            if isprime ( \(a\) ) and isprime ( \(a+\) diff1 ) then
                print(counter, "hourah!! we found a pair", \(a\), " ", \(a+\) diffl )
                counter := counter + 1
            end if
    end do
end proc
```

> \# now try the procedure - like a test drive for computer code.
Enjoy.
Have a nice day.
k-tuples for k in the set $\{2,3,4,5,6,7,8,9,10,11\}$.
2-tuples (pairs of prime numbers) through 11-tuples are possible with the Maple code below. See code block

```
> # input 0 for less than a 10 tuple. Just give pattern.
>
>
    tuple10 := proc(searchstop,diff1,diff2,diff3,diff4, diff5,diff6,
        diff7, diff8, diff9, diff10 );
    local a, counter;
    counter := 1;
        # passed parameter for list lengthsis searchstop
    for a from }3\mathrm{ to searchstop by 2 do
    if isprime ( a) and isprime ( a + diffl ) and isprime ( }a+\operatorname{diff}2
        and isprime( a + diff3 ) and isprime (a+diff4) and isprime(a
        +diff5 ) and isprime ( a + diff6 ) and isprime( a + diff7 )
        and isprime(a+\operatorname{diff8 ) and isprime(a+diff9 ) and isprime(a}
        + diff10 ) then
    print(counter, "hourah!! we found a set", a, " ", a + diff1 , " ", a + diff2,
        a + diff3,a+diff4,a+diff5,a+diff6,a+diff7,a+diff8,a
        + diff9, a + diff10 );
    counter := counter + 1;
    end if;
    end do;
    end proc;
```

```
tuple10 := proc(searchstop, diff1 , diff2 , diff3, diff4 , diff5 , diff6,
    diff7, diff8, diff9, diff10 )
    local \(a\), counter;
    counter : \(=1\);
    for \(a\) from 3 by 2 to searchstop do
        if isprime ( \(a\) ) and isprime ( \(a+\) diff1 \()\) and \(\operatorname{isprime~}(a+\operatorname{diff} 2\) )
            and \(\operatorname{isprime}(a+\operatorname{diff} 3)\) and \(\operatorname{isprime}(a+\operatorname{diff4} 4)\) and
            isprime ( \(a+\operatorname{diff5}\) ) and isprime ( \(a+\operatorname{diff6}\) ) and isprime ( \(a\)
            \(+\operatorname{diff} 7)\) and \(\operatorname{isprime}(a+\operatorname{diff})\) and isprime \((a+\operatorname{diff9})\) and
            isprime ( \(a+\) diff10 ) then
            print (counter, "hourah!! we found a set", \(a\), " ", \(a+\) diffl ,
            " ", \(a+\) diff2 , \(a+\) diff3,\(a+\) diff4,\(a+\) diff5,\(a+\) diff6,\(a\)
            + diff7, \(a+\) diff8, \(a+\) diff9, \(a+\) diff10 );
            counter := counter +1
            end if
    end do
end proc
```

```
> # now try the procedure - like a test drive for computer code. Let's
    see if it works.
>
> # these have set repitition. Pretty cool. Good fun.
> tuple10(200, 12, 14, 0, 0, 0, 0, 0, 0, 0, 2);
                                    1, "hourah!! we found a set", 5, " ", 17, " ", 19, 5, 5, 5, 5, 5, 5, 5, 7
                    2, "hourah!! we found a set", 17, " ", 29, " ", 31, 17, 17, 17, 17, 17, 17, 17,
                    1 9
```

 3, "hourah!! we found a set", 29, " ", 41, " ", 43, 29, 29, 29, 29, 29, 29, 29,
 31
 4, "hourah!! we found a set", 59, " ", 71, " ", 73, 59, 59, 59, 59, 59, 59, 59,
 61
 5, "hourah!! we found a set", 137, " ", 149, " ", 151, 137, 137, 137, 137,
 137, 137, 137, 139
 6, "hourah!! we found a set", 179, " ", 191, " ", 193, 179, 179, 179, 179,
 179, 179, 179, 181
 \# a shorter list because I required a twin pair with pattern (0,2,12,
 14). A 4-tuple, if you will.
 $>$
$>$
$>$ \#Please spread this or similar code around. Let me know, if you do.
\#email matthewcharlesanderson2@gmail.com
\# note OEIS.org only records prime pairs for even numbers 2
through 44.
\# Also, OEIS has limited 3-tuples in the database. They are deemed
'not of general intrest'.
tuple $10(900,50,2,0,0,0,0,0,0,0,0)$
1, "hourah!! we found a set", $3,{ }^{\prime \prime}$ ", $53, "^{\prime \prime}$ " $5,3,3,3,3,3,3,3,3$
2, "hourah!! we found a set", 11, " ", 61, " ", 13, 11, 11, 11, 11, 11, 11, 11,
11
3, "hourah!! we found a set", 17, " ", 67, " ", 19, 17, 17, 17, 17, 17, 17, 17,
17

4, "hourah!! we found a set", 29, " ", 79, " ", 31, 29, 29, 29, 29, 29, 29, 29,

5, "hourah!! we found a set", 59, " ", 109, " ", 61, 59, 59, 59, 59, 59, 59, 59, 59

6, "hourah!! we found a set", 101, " ", 151, " ", 103, 101, 101, 101, 101, 101, 101, 101, 101

7, "hourah!! we found a set", 107, " ", 157, " ", 109, 107, 107, 107, 107, 107, 107, 107, 107

8, "hourah!! we found a set", 149, " ", 199, " ", 151, 149, 149, 149, 149, $149,149,149,149$

```
> # all prime numbers
> # We want original calculations, that are not already in a public
    database.
>
> # now share on web. (wheather it wants it or not :-)
> # have a nice day
> # Matthew
>
> # This 3-tuple has pattern (0,12,14). It is a shorter list. All the
    primes are < 2,000.
> tuple10(500, 44, 0, 0, 0, 0, 0, 0, 0, 0, 0);
    1, "hourah!! we found a set", 3, " ", 47, " '" 3, 3, 3, 3, 3, 3, 3, 3, 3
    2, "hourah!! we found a set", 17, " ", 61, " '", 17, 17, 17, 17, 17, 17, 17, 17,
        1 7
```

 3, "hourah!! we found a set", \(23,{ }^{\prime \prime}\) ", 67, " ", 23, 23, 23, 23, 23, 23, 23, 23,
 23
 4, "hourah!! we found a set", 29, " ", 73, " ", 29, 29, 29, 29, 29, 29, 29, 29, 29

5, "hourah!! we found a set", $53,{ }^{\prime \prime}$ ", 97, " ", $53,53,53,53,53,53,53,53$, 53

6, "hourah!! we found a set", 59, " ", 103, " ", 59, 59, 59, 59, 59, 59, 59, 59, 59

7, "hourah!! we found a set", 83, " ", 127, " ", 83, 83, 83, 83, 83, 83, 83, 83, 83

8, "hourah!! we found a set", 107, " ", 151, " ", 107, 107, 107, 107, 107, 107, 107, 107, 107

This code needs work. Matt

